中考数学必考经典题型
中考数学必考题型

中考数学必考题型中考数学必考题型中考数学是中考必考科目之一,在中考数学考试中,有一些必考题型。
本文主要介绍中考数学必考题型,帮助同学们更好地备考数学。
一、选择题选择题是中考数学考试中占比较大的一种题型。
选择题要求考生从给出的几个选项中选择正确的答案。
选择题的答案应该简洁、明确,并且应该与其他选项明显区别开来。
选择题的优点是能够快速检查学生在某一知识点上的掌握情况,帮助学生提升分数。
二、填空题填空题是中考数学考试中比较常见的一种题型。
填空题要求考生在空缺的位置填入正确的答案,通常是数字、符号、单词等。
填空题的要求是正确无误地填写每个空格,同时还要注重书写规范和格式。
三、计算题计算题是中考数学考试中重点考查的题型之一。
计算题要求考生在规定时间内计算题目中的数据并得出正确答案。
计算题是考察学生计算能力、数学思维和解题方法的重要手段。
在做计算题时,要注重计算细节,注意数据的单位和数量级,同时还要注意答案的书写规范,避免失分。
四、应用题应用题是中考数学考试中难度较高的一种题型。
应用题通常会给出一个实际生活中的问题,要求考生运用相关数学知识来解决问题。
在做应用题时,要注重理解问题,分析数据,找到解题方法,同时还要注意答案的书写格式,以便让阅卷老师更容易理解。
五、证明题证明题是中考数学考试中非常重要的一种题型。
证明题要求考生能够通过逻辑推理和数学知识证明一个数学定理或者问题。
证明题是考察学生分析问题、解决问题和表达能力的重要手段,同时也是考察学生数学能力的重要途径。
在做证明题时,要注重思路清晰,逻辑严密,同时还要注意语言表达规范,尽可能地使答案更明确、更准确。
总之,以上五种题型是中考数学考试中必考的题型,希望大家在备考中认真复习,不断提升自己的数学能力,为取得好成绩打下坚实的基础。
中考数学十大必考题型

中考数学十大必考题型有许多,这里列举一些常见的题型:
1. 方程问题:这是中考必考题型,主要考察方程的解法、方程组的解法以及应用题等。
2. 函数图像问题:主要考察函数图像的画法、图像的变化以及根据图像求函数解析式等。
3. 圆的相关问题:中考数学中,圆是必考内容之一,包括圆的性质、圆的有关定理、定理的应用等。
4. 三角形的问题:中考数学中,三角形也是一个重要的考点,包括三角形的内角和、三角形的分类讨论、直角三角形、等腰三角形、等边三角形的性质和定理等。
5. 最值问题:中考数学中,常常会涉及到一些最值问题,如一元二次方程的最值、三角函数的最值、几何图形的最值等。
6. 统计与概率问题:中考数学中,统计与概率也是一个重要的考点,包括数据的收集、数据的整理、数据的分析、概率的求法等。
7. 开放性试题:这类试题可以考查学生的发散性思维和创新能力,是中考数学的一个热点。
8. 跨学科问题:如与物理、化学、生物等结合在一起的应用题,考查综合运用数学知识解决实际问题的能力。
9. 阅读理解题:中考数学也常涉及到一些阅读理解题,需要学生认真阅读题目并理解题目的意思。
10. 方案设计题:这类题目需要学生设计出符合题意的方案,需要学生有一定的创新能力。
需要注意的是,中考数学试题千变万化,除了以上十大必考题型外,还有许多其他类型的题目,例如难题、新题等。
考生需要掌握好基础知识,并多做练习,才能应对各种不同类型的题目。
以上是中考数学十大必考题型的简要介绍,希望能对您有所帮助。
总之,考生在备考中考数学时,需要注重基础知识的学习和练习,同时要注意培养自己的思维能力和创新能力。
九年级数学必考题型与技巧题

九年级数学的必考题型与技巧题主要包括以下几类:
1. 代数题:主要考察一元二次方程、不等式、分式方程等知识。
解决这类题目的关键是掌握好代数的基本运算法则,如合并同类项、消元法等。
2. 几何题:主要考察三角形、四边形、圆等几何图形的性质与计算。
解决这类题目的关键是灵活运用几何定理和公式,如勾股定理、面积公式等,并注意图形的变换,如平移、旋转等。
3. 统计与概率题:主要考察数据的处理、分析及概率计算。
解决这类题目的关键是理解统计与概率的基本概念,如平均数、中位数、众数、概率等,并能运用这些知识解决实际问题。
4. 方程与不等式题:主要考察一元一次方程、一元二次方程、分式方程以及不等式的解法。
解决这类题目的关键是掌握各种方程与不等式的解法,如公式法、因式分解法、图像法等。
5. 函数题:主要考察一次函数、二次函数、反比例函数等函数的性质与计算。
解决这类题目的关键是理解函数的概念,掌握各种函数的性质和图像,并能运用这些知识解决实际问题。
在解题过程中,可以运用以下技巧:
1. 理解题意:认真阅读题目,理解题目所考察的知识点,明确解题思路。
2. 善于画图:对于几何题和函数题,画出图形有助于直观地理解问题,找到解题的关键点。
3. 运用公式和定理:熟练掌握数学公式和定理,能快速解题。
4. 分类讨论:对于一些题目,需要进行分类讨论,不遗漏任何一种情况。
5. 整理与检查:解题过程中注意整理步骤,解完后进行检查,确保答案正确。
初中中考数学试卷题型

一、选择题1. (每题3分,共30分)选择题部分主要考察学生对基础知识、基本技能的掌握程度。
以下为几种常见的题型:(1)实数运算:考察实数的加减乘除、开平方等运算。
例题:若a、b为实数,且a² + b² = 0,则a、b的关系是()A. a = 0,b = 0B. a = 0,b ≠ 0C. a ≠ 0,b = 0D. a ≠ 0,b ≠ 0答案:A(2)几何图形:考察对平面几何图形的认识、计算及证明。
例题:已知等边三角形ABC的边长为a,则其面积S为()A. √3/4 a²B. 1/2 a²C. √3/2 a²D. 1/4 a²答案:A(3)代数式化简:考察代数式的化简、因式分解等。
例题:将下列代数式化简:3x² - 2x + 1 - 2(x² - x + 1)答案:x - 2(4)方程与不等式:考察一元一次方程、一元二次方程、不等式等。
例题:解方程:2x² - 5x + 2 = 0答案:x₁ = 1,x₂ = 2(5)函数:考察函数的概念、性质、图像等。
例题:函数f(x) = 2x + 3在x = 1时的值为()A. 5B. 4C. 6D. 7答案:A二、填空题1. (每题3分,共30分)填空题部分主要考察学生对基础知识的记忆和应用。
(1)写出下列各数的平方根:√4,√9,√16答案:±2,±3,±4(2)写出下列各角的度数:直角,平角,周角答案:90°,180°,360°(3)写出下列各式的立方根:∛27,∛64答案:3,4(4)写出下列各式的对数:log₂8,log₃27答案:3,2(5)写出下列各式的根式:√(a² + b²),√(a³ + b³)答案:√(a² + b²),(a√(a² + b²) + b√(a² + b²))/(a² + b²)三、解答题1. (每题10分,共30分)解答题部分主要考察学生的综合运用能力和解题技巧。
初三数学经典总结题型

初三数学经典总结题型包括但不限于以下几种:
1. 线段、角的计算与证明:包括线段长度的计算、角的度数计算、线段与角的综合问题等。
2. 函数问题:包括一次函数、二次函数等,涉及到函数的性质、图像、最值等问题。
3. 方程与不等式问题:包括一元一次方程、一元二次方程、不等式的解法及实际应用等。
4. 三角形问题:包括三角形的性质、全等三角形、相似三角形等,涉及到三角形的边长、角度、面积等问题。
5. 四边形问题:包括平行四边形、矩形、菱形、正方形等,涉及到四边形的性质、判定条件及面积计算等。
6. 圆的问题:包括圆的性质、圆与直线的位置关系、圆与圆的位置关系等,涉及到圆的半径、直径、周长、面积等问题。
7. 统计与概率问题:包括数据的收集与整理、概率初步知识与事件的概率等,涉及到数据的分析、预测及概率的计算等。
8. 综合题:包括多个知识点的综合应用,如函数与三角形、四边形、圆的综合应用等,需要学生综合运用所学知识进行分析和解答。
中招数学经典例题

中招数学经典例题中考数学经典例题在中考数学考试中占据重要地位,考生们应该掌握这些例题,才能够顺利应对中考数学考试。
下面我们来介绍一些经典例题。
一、平面向量1. 有两个平面向量 $\vec{a}=3\vec{i}-\vec{j}$,$\vec{b}=2\vec{i}+\vec{j}$,求它们的数量积。
2. 已知两个平面向量 $\vec{a}=2\vec{i}-\vec{j}+3\vec{k}$,$\vec{b}=-\vec{i}+5\vec{j}+2\vec{k}$,求它们的叉积。
3. 已知两个平面向量 $\vec{a}=3\vec{i}+4\vec{j}$,$\vec{b}=2\vec{i}-\vec{j}$,试求它们的夹角 $cos\alpha$。
二、三角函数1. 求证:$cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}$。
2. 已知 $\frac{sinx}{cosx}+tanx=1$,求 $x$ 的值。
3. 已知正弦函数 $y=a\sin\omega x$,求 $y$ 的最大值和最小值。
三、平面几何1. 已知四边形 $ABCD$,$E$、$F$ 分别为 $AB$、$BC$ 上的点,$EF$ 与 $AD$、$CD$ 的延长线交于 $P$、$Q$,试证明:四边形$APBQ$ 与 $EPFQ$ 的面积相等。
2. 在 $\triangle ABC$ 中,点 $E$、$F$ 分别在 $AC$、$AB$ 上,$BE$ 与 $CF$ 交于点 $O$,若 $\frac{AE}{EC}=\frac{BF}{FA}$,则证明 $AO$ 是 $\triangle ABC$ 中的角平分线。
3. 已知圆 $O$ 的半径为 $r$,圆上分别取两点 $A$、$B$,则弦$AB$ 的中垂线长为多少?四、解析几何1. 已知点 $A$、$B$ 的坐标分别为 $A(-2,-1)$,$B(4,3)$,求点 $M$ 到$AB$ 的距离。
中考数学必考题型分析及解题策略总结

中考数学必考题型分析及解题策略总结一、必考题型分析1、线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2、图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3、动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4、一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
5、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。
初三数学考试题型及答案

初三数学考试题型及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式的基本性质?A. 不等式两边同时乘以一个负数,不等号方向不变B. 不等式两边同时乘以一个正数,不等号方向不变C. 不等式两边同时加上同一个数,不等号方向不变D. 不等式两边同时除以一个正数,不等号方向不变答案:B2. 一个数的平方是9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 函数y=2x+1的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个圆的直径是10cm,那么这个圆的半径是:A. 5cmB. 10cmC. 15cmD. 20cm答案:A5. 一个等腰三角形的两个底角相等,那么这个三角形的顶角是:A. 90度B. 60度C. 30度D. 无法确定答案:D6. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 10D. -10答案:A7. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么这个长方体的体积是:A. 24cm³B. 12cm³C. 8cm³D. 6cm³答案:A8. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对答案:C9. 一个二次函数y=ax²+bx+c的图象开口向上,那么a的值是:A. 正数B. 负数C. 0D. 无法确定答案:A10. 一个等差数列的前三项是2,5,8,那么这个数列的公差是:A. 3B. 2C. 1D. 4答案:A二、填空题(每题3分,共30分)1. 一个数的立方是27,那么这个数是________。
答案:32. 一个直角三角形的两条直角边长分别是3cm和4cm,那么这个三角形的斜边长是________。
答案:5cm3. 一个数的倒数是1/2,那么这个数是________。
答案:24. 一个三角形的内角和是________度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学必考经典题型题型一 先化简再求值命题趋势由河南近几年的中考题型可知,分式的化简求值是每年的考查重点,几乎都以解答题的形式出现,其中以除法和减法形式为主,要求对分式化简的运算法则及分式有意义的条件熟练掌握。
例:先化简,再求值:,12)1111(22+--÷-++x x x x x x 其中.12-=x 分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值带入计算即可求值。
题型二 阴影部分面积的相关计算命题趋势近年来的中考有关阴影面积的题目几乎每年都会考查到,而且不断翻新,精彩纷呈.这类问题往往与变换、函数、相似等知识结合,涉及到转化、整体等数学思想方法,具有很强的综合性。
例 如图17,记抛物线y =-x 2+1的图象与x 正半轴的交点为A ,将线段OA 分成n 等份.设分点分别为P 1,P 2,…,P n -1,过每个分点作x 轴的垂线,分别与抛物线交于点Q 1,Q 2,…,Q n -1,再记直角三角形OP 1Q 1,P 1P 2Q 2,…的面积分别为S 1,S 2,…,这样就有S 1=2312n n -,S 2=2342n n -…;记W=S 1+S 2+…+S n -1,当n 越来越大时,你猜想W 最接近的常数是( )(A)23 (B)12 (C)13 (D)14分析 如图17,抛物线y =-x 2+1的图象与x 正半轴的交点为A(1,0),与y 轴的交点为8(0,1).设抛物线与y 轴及x 正半轴所围成的面积为S ,M(x ,y )在图示抛物线上,则222OM x y =+()21y y =-+ =21324y ⎛⎫-+ ⎪⎝⎭. 由0≤y ≤1,得34≤OM 2≤1.这段图象在图示半径为32、1的两个14圆所夹的圆环内,所以S 在图示两个圆14面积之间,即从而316π<S <14π. 显然,当n 的值越大时,W 的值就越来越接近抛物线与y 轴和x 正半轴所围成的面积的一半,所以332π<W <18π. 与其最接近的值是,故本题应选C .题型三 解直角三角形的实际应用命题趋势解直角三角形的应用是中考的必考内容之一,它通常以实际生活为背景,考查学生运用直角三角形知识建立数学模型的能力,解答这类问题的方法是运用“遇斜化直”的数学思想,即通过作辅助线(斜三角形的高线)把它转化为直角三角形问题,然后根据已知条件与未知元素之间的关系,利用解直角三角形的知识,列出方程来求解。
例 如图2,学校旗杆附近有一斜坡。
小明准备测量旗杆AB 的高度,他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC=20米,斜坡坡面上的影长CD=8米,太阳光线AD 与水平地面BC 成30°角,斜坡CD 与水平地面BC 成45°的角,求旗杆AB 的高度。
(449.26414.12732.13===,,精确到1米)。
图2简解:延长AD 交BC 延长线于E ,作DH ⊥BC 于H 。
在Rt △DCH 中,∠DCH=45°,DC=8,所以DH=HC=8sin45°24=在Rt △DHE 中,∠E=30°64332430tan DHHE ==︒=所以BE=BC+CH+HE452.35796.9656.520642420=++=++=在Rt △ABE 中,)(2033452.3530tan 米≈⨯=︒⋅=BC AB 。
答:旗杆的高度约为20米。
点拨:解本题的关键在于作出适当的辅助线,构造直角三角形,并灵活地应用解直角三角形的知识去解决实际问题。
题型四 一次函数和反比例函数的综合题命题趋势一次函数和反比例函数的综合题近几年来几乎每年都会考到,基本上是在19题或者20题的位置出现,难度中等,问题主要为;求函数的解析式,利用数形结合思想求不等式的解集以及结合三角形,四边形知识的综合考查。
例 已知)2,(m A 是直线l 与双曲线x y 3=的交点。
(1)求m 的值;(2)若直线l 分别与x 轴、y 轴相交于E ,F 两点,并且Rt △OEF(O 是坐标原点)的外心为点A ,试确定直线l 的解析式;(3)在双曲线xy 3=上另取一点B 作x BK ⊥轴于K ;将(2)中的直线l 绕点A 旋转后所得的直线记为l ′,若l ′与y 轴的正半轴相交于点C ,且OF OC 41=,试问在y 轴上是否存在点p,使得BOK PCA S S ∆∆=若存在,请求出点P 的坐标?若不存在,请说明理由.解:∵直线与双曲线=的一个交点为,,(1)y A(m 2)l 3x∴=,即=.332m 2m ∴点坐标为,.A (322) (2)作AM ⊥x 轴于M .∵A 点是Rt △OEF 的外心,∴EA =FA .由AM ∥y 轴有OM =ME .∴OF =2OM .∵MA =2,∴OF =4.∴F 点的坐标为(0,4).设l :y =kx +b ,则有3243k b 2b 4k b 4+=,=.∴=-,=.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪ ∴直线的解析式为=-+.l y x 443(3)OC OF OC 1∵=,∴=.14∴C 点坐标为(0,1).设B 点坐标为(x 1,y 1,),则x 1y 1=3.∴=·=.△S |x ||y |BOK 111232设P 点坐标为(0,y),满足S △PCA =S △BOK .①当点P 在C 点上方时,y >1,有S (y 1)(y 1)PCA △=-×=-=.12323432∴y =3.②当点P 在C 点下方时,y <1,有S (1y)PCA △=-=.1232∴y =-2.综上知,在y 轴存在点P(0,3)与(0,-2),使得S △PAC =S △BOK总结:直线与双曲线的综合题的重要组成部分是两种图象的交点,这是惟一能沟通它们的要素,应用交点时应注意:(1)交点既在直线上也在双曲线上,交点坐标既满足直线的解析式也满足双曲线的解析式.(2)要求交点坐标时,应将两种图象对应的解析式组成方程组,通过解方程组求出交点坐标.(3)判断两种图象有无交点时,可用判别式确定,也可以画出草图直观地确定.题型五 实际应用题命题趋势中考考查的实际应用题知识点主要集中在一次方程(组),一次不等式,一次函数的实际应用及其相关方案的设计问题,此类问题近几年每年必考,且分值相对稳定。
例 某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8︰3︰2,且其单价和为130元.⑴请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?⑵若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?解题方法指导:列方程解应用题的一般步骤:(1)审题,弄清题意。
即全面分析已知量与未知量,已知量与未知量的关系;(2)根据题目需要设合适的未知量;(3)找出题目中的等量关系,并列出方程;(4)解方程,求出未知数的值;(5)检验并作答,对方称的解进行检验,看是否符合题意,针对问题做出答案。
题型六 函数动态变化问题命题趋势函数动态变化问题最近几年每年必考,该类问题综合性强,题目难度较大,题型,题序及分值都很稳定,每年均在23题以解答题的形式命题。
一般为3问,第一问常常考查待定系数法确定二次函数解析式;第二问结合三角形周长,面积及线段长等问题考查二次函数解析式及最值问题;第三问多是几何图形的探究问题。
例 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)k y k x =>的图象与AC 边交于点E .(1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.思路分析本题看似几何问题,但是实际上△AOE 和△FOB 这两个直角三角形的底边和高恰好就是E,F 点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K 。
所以直接设点即可轻松证出结果。
第二问有些同学可能依然纠结这个△EOF 的面积该怎么算,事实上从第一问的结果就可以发现这个矩形中的三个RT △面积都是异常好求的。
于是利用矩形面积减去三个小RT △面积即可,经过一系列化简即可求得表达式,利用对称轴求出最大值。
第三问的思路就是假设这个点存在,看看能不能证明出来。
因为是翻折问题,翻折之后大量相等的角和边,所以自然去利用三角形相似去求解,于是变成一道比较典型的几何题目,做垂线就可以了.方法指导针对函数与几何图形结合的题目,首先要考虑代数与几何知识之间的相互关联,找出其内在的联系,然后设出要求的解析式,用待定系数法求解即可。
对于涉及存在探究性问题,首先假设条件的存在,然后再通过证明推理及计算,探究所假设的结果是否与已知,推理过程相矛盾,若矛盾则假设不成立,否则假设成立。