(2005) Trans Tech Publications, Switzerland Optical and Electron Correlation Effects in Si
近十年国外助推理论研究述评及进展

近十年国外助推理论研究述评及进展自20世纪末以来,推理理论在国外得到了广泛的研究和应用,成为人工智能学科中的一个重要分支。
近十年来,这一领域取得了重要的进展和突破,本文将针对这些研究成果进行述评。
首先,关于不确定性推理方面的研究,研究者们主要集中在对贝叶斯理论的应用以及对贝叶斯网络的改进方面进行探讨。
贝叶斯理论是在先验知识基础上利用贝叶斯公式来计算后验知识,最近几年,研究者们通过此方法进行新的推理问题的解决。
贝叶斯网络是利用图论进行表示的,其中每个节点代表一个变量,节点之间通过有向边连接。
最近,研究者们对贝叶斯网络进行了一些改进,例如基于非线性因果关系的新方法、基于不确定性量化的贝叶斯网络方法等。
这些研究提高了推理的准确性和效率,应用于很多领域,如医学诊断和金融风险度量等。
其次,非单调推理方面的研究也是近年来的研究热点之一。
非单调推理是指当新的信息引入时,原有的推理关系会受到影响,可能会改变原有的结论。
近年来,研究者们提出了一些新的非单调推理方法,例如基于关键元素分析的方法、基于约束性技术的方法等。
这些方法可以处理更为复杂的推理问题,如智能体的行为规划和反应等。
第三,近年来还有一些研究者开始探索相反推理和解释推理的问题。
相反推理是基于一系列相反的存在推断系统的基础上进行的,解释推理则是为了理解某个现象的发生原因而进行的推理。
这些研究可以帮助人们更好地理解和处理实际问题。
最后,值得一提的是,机器学习在推理理论方面的应用也是近年来的热点之一。
机器学习技术可以对现有数据进行模式的学习,从而提高推理的准确性和效率。
其中,深度学习等技术的应用,能够在某些领域获得比传统方法更好的表现。
总之,近十年来,关于推理理论的研究和应用不断取得了进展和突破,这些成就为推理理论和实践的进一步发展提供了坚实的理论基础和创新思路。
国内外第一本可变模糊集理论专著 《可变模糊集理论与模型及其应用》出版

2005诺贝尔化学奖

介绍与解读
诺贝尔浅谈
★诺贝尔是一位瑞典2有机化学家、产业家、 甘油炸hkj药的发明者。
★ 1863年10月,ww诺贝尔获得f炸药发爆 剂的发明专利权开始,建立了了巨大的 炸药产业。
★ 诺贝尔是一个非常努力工作的人,他用 语言给我们留下了他的形象.
"Home is where I work and I work everywhere."
理查德·施罗克 (1945)
美国麻省理工学院
Richard R. Schrock PhD in chemistry in 1971 from Harvard University
诺贝尔化学奖获得者的成就与贡献
奖项标题
Development of the Metathesis Method in Organic Synthesis
(有机合成中烯烃复分解方法的发展)
获奖者nhjk的成就 他们在有机化学的烯烃复分解方法研究方面作出了杰出的贡献
获奖者的贡献 获奖者的发现已经对学术研究、新型药物和生物活性化合物的研发、
以及高分子材料和工业合成的研发产生巨大的影响, 将极大地有益于人类的民生、健康和环境
Metathesis Method (烯烃复分解方法)
那是我30年前的工作,我现在已经退休了。 诺贝尔太不寻常了,但那不是你期待就能得到的事情。 电话在早上 5:30 响起才使我头脑里晃出一点奇妙的想法。
烯烃复分解反应的发现简史
★ 烯烃复分解现象2早在 1957 年就在美国 Du Pont 的一项专利中提到过。在 MoO3/Al/LiAlH4 催化体系中,从单体烯烃可以得到含有烯键的高聚物。
(诺贝尔化学奖2005)
情理之中 意料之外
信息检索练习题(1)

1.小王在某个数据库中检索到了50篇文献,查准率和查全率分别为40%、80%,则全部相关文档有25篇。
2.INTERNET是基于TCP/IP 协议的。
3.文件ABC.001.TXT的后缀名是TXT 。
文件类型是文本文件。
4.多数网页采用HTML编写,这里的HTML指的是:超文本标识语言。
5.目录型搜索引擎主要提供族性检索模式,索引型搜索引擎主要提供特性检索模式。
6.在使用搜索引擎检索时,URL:ustc可以查到网址中带有ustc的网页。
7.根据索引编制方式的不同,可以将搜索引擎分为索引型搜索引擎和网络目录型搜索引擎。
8.按文献的相对利用率来划分,可以把文献分为核心文献、相关文献、边缘文献。
9.定期(多于一天)或不定期出版的有固定名称的连续出版物是期刊。
10.检索工具具有两个方面的职能:存储职能、检索职能。
11.以单位出版物为著录对象的检索工具为:目录。
12.将文献作者的姓名按字顺排列编制而成的索引称为:作者索引。
13.利用原始文献所附的参考文献,追踪查找参考文献的原文的检索方法称为追溯法,又称为引文法。
14.已知一篇参考文献的著录为:”Levitan, K. B. Information resource management. New Brunswick: RutgersUP,1986”,该作者的姓是:Levitan 。
15.检索语言可分为两大类:分类语言、主题词语言。
16.LCC指的是美国国会图书馆分类法。
17.当检索关键词具有多个同义词和近义词时,容易造成漏检,使得查全率较低。
18.主题词的规范化指的是词和概念一一对应,一个词表达一个概念。
19.国际上通常根据内容将数据库划分为:参考数据库、源数据库、混合数据库。
20.查询关键词为短语"DA TA OUTPUT",可以用位置算符(W)改写为:DA TA(W) OUTPUT 。
21.著录参考文献时,对于三个以上的著者,可以在第一著者后面加上et al. ,代表"等人"的意思。
美华裔教授破百年物理定律 无法实证理论获证实

美华裔教授破百年物理定律无法实证理论获证实2009年08月02日09:41 [我来说两句(327)] [字号:大中小]来源:中国新闻网陈刚与实验用的真空室。
(美国《世界日报》/取材自麻省理工学院网站)中新网8月2日电据美国《世界日报》报道,美国麻省理工学院(MIT)30日宣布,该校动力工程学华裔教授陈刚与其团队的研究,首次打破“黑体辐射定律”的公式,证实物体在极度近距时的热力传导,可以高到定律公式所预测的一千倍之多。
该研究将在“NanoLetter”8月号科学杂志上发表。
德国物理学家普朗克(Max Planck)于1900年所创的“黑体辐射定律”(blackbodyradiationlaw)是公认的物体间热力传导基本法则,虽然有物理学家怀疑此定律在两个物体极度接近时不能成立,但始终无法证明和提出实证。
普朗克的“黑体辐射定律”创定在不同温度下,此定律在绝大多数情况下都成立,但如何在极微小的距离中稳定控制物体,达成能量传导的测试有极高的困难度。
百多年来,科学家始终无法突破。
而普朗克也对此定律在微距物体间是否仍成立,持保留态度。
中国华中科技大学、柏克莱加州大学出身的陈刚是知名的纳米热电材料和流体学者。
他的研究团队采用方位较易控制的小玻璃珠对着平面物体的方式,取代在纳米(10亿分之一米)距离中根本不可能不碰触的两平行平面体;并采用双金属臂梁(bi-metalliccantilever)科技的原子能动力显微镜去精准地测量两物体间的温度变化。
麻省理工学院表示,陈刚团队的研究成果,证实科学家所预言但无法实证的理论,已获得国际间同领域学者的喝彩。
此项发现不但让人们对基本物理有进一步的了解,对改良计算机数据储存用的硬盘(harddisks)的“记录头”(recordinghead),以及发展储聚能源的新设计等工业应用上十分重要。
陈刚说,目前计算机使用的硬盘,记录头与硬盘表面约有五至六纳米的距离,记录头容易发热,而研究员一直在寻找控制热力的方法。
自由能之天线系统

自由能之天线系统天线系统, 自由能pdf格式英文原文下载:自由能之天线系统google翻译自由能之天线系统如下:人们普遍认为,天线是不是能够搜集多少权力。
流行的概念是,唯一的电力供应是低级别从遥远的无线电发射器的无线电波,虽然它的确,无线电波可以挑选进行航空up ,权力的真正源头不无线电发射机。
例如,我们将寻求在从赫尔曼Plauston任何信息,他认为他的这次访问没有产生一个搒购物中心不是一个功率超过100千瓦以上,?系统天线系统。
托马斯亨利马里向观众展示了他的系统反复,在高达50千瓦的水平拉。
这些电源水平是不生产的电台信号。
尼古拉特斯拉抯系统。
尼古拉特斯拉产生了空中装置,值得一提。
这是5月21日申请专利1901年是主要的辐射能量的使用情况揂pparatus ?美国专利号码685957 。
该装置看似简单,但特斯拉指出,电容需要搊f 大量静电容量呢,他建议使用最优质的云母建造它作为1897年在他的专利号577671 。
该电路通过一个绝缘的绘制,有光泽的金属板的力量。
绝缘可喷涂在塑料。
盘越大,就越能回升。
越高板升高,更大的回升。
这种特斯拉抯系统拿起能源白天和黑夜。
电容得到被控和振动开关多次放电电容为降压变压器。
变压器降低电压,并提出了当前可用的输出功率,然后利用电力负荷。
看来,这可能主要是从器件的静电,一些人认为是零点能源领域的体现。
特斯拉抯设备操作时,很可能由马达驱动的威姆斯赫斯特机,而不是一个大的空中板喂食。
家建威姆斯赫斯特设备的详细资料在书中提供慔omemade闪电?由RA福特,书号0-07-021528-6 。
但是,应该认识到,特斯拉描述两种不同形式的能量回升。
首先是静电,拿起从非常轻微与零点能透过它流场接机板互动,和其他正在回升的动力辐射能活动,通常由雷击。
在一个偶然一瞥,一般人不会认为是一个可行的能源来源闪电,但事实并非如此,因为有大约200雷击每秒- 主要是在热带-与人们普遍不理解的是,他们辐射能事件及其影响即刻感受到作为传输地球上任何地方通过零点能在任何领域的瞬时距离。
近50年可靠性理论先驱

近50年可靠性理论先驱近50年可靠性理论的先驱摘要与结论谨以本文献给在过去50年当中对可靠性理论做出过贡献的学者们。
本文简要的介绍了先驱者们的可靠性理论以及其对如今可靠性分析的影响。
同时,本文也是一篇可靠性理论和方法的综述报告。
为站在中立的角度阐述问题,文中的信息主要源于一手文献。
当然,有的资料也是从参考资料1-4中取得的。
可靠性分析包括可靠性参数表达、更换(renewal)理论、并行结构、图模型、理论方法以及其他交叉(miscellaneous)技术。
图模型包括框图、故障树,事件树和流程图。
理论方法包括排队论、渐进(asymptotic)分析、布尔代数、贝叶斯方法、蒙特卡罗仿真、优化技术。
不能归入哪一类方法的交叉方法。
回顾上个世纪,绝大多数可靠性的贡献都是在近50年的成果。
威布尔(Weibull)、爱普斯坦(Epstein)、索博尔(Sobel)对我们今天使用的分布函数有很大的影响。
Lotka,Campbell,Feller,Cox,Smith,Barlow,Proschan,Hunter,Marshall,Esary,Gnedenko,Belyaev,Solov’yev提高了可靠性理论。
塔卡克斯(Takács)在旅居期间论文主动进行了渐进研究。
伯恩鲍姆(Birnbaum)一家对相关结构的元器件重要度量作了研究。
1.引言早在1773年Pierre-Simon Laplace发明拉普拉斯变换和1812年出版Théotie analytique des probabilités时,可靠性分析的理论基础就已形成。
1880年,Andrei Andreevich Markov又发明了马尔可夫链。
然而,直到上个世纪50年代,人们都很少注意到可靠性研究。
50年代末60年代初是可靠性的黄金时间。
很多理论都是那时建立的。
那时正是现代技术兴起的时期。
商业部门和军事部门都需要可靠的产品。
科学文摘

《科学文摘》简述 科学文摘》
内容 《科学文摘》主要报道由英国电气工程师 科学文摘》 学会的情报服务处搜集的文献, 学会的情报服务处搜集的文献,包括世界各国出 版的各种文字的期刊、科技报告、会议资料、 版的各种文字的期刊、科技报告、会议资料、图 论文和英美两国的专利说明书(1977年以 书、论文和英美两国的专利说明书(1977年以 后不再收录专利)。 后不再收录专利)。 各辑都按分类编排,1960年以前 年以前, 分类 各辑都按分类编排,1960年以前,采用国 际十进分类法编排。1961年改用自编的分类法 年改用自编的分类法。 际十进分类法编排。1961年改用自编的分类法。 1977年起 则按情报服务处、美国物理学会、 1977年起,则按情报服务处、美国物理学会、 年起, 英国物理学会、 英国物理学会、欧洲物理学会和国际科学协会理 事会文摘局共同编制的分类表编排。 事会文摘局共同编制的分类表编排。
查主题指南: 2008.2为例 查主题指南:以2008.2为例 control systems 1340, 3210P 确定分类号 1340 Specific control systems 1496 3210P Control systems 1542 得知3210P最切题,页码为1542。 得知3210P最切题,页码为1542。 最切题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Optical and Electron Correlation Effects in Silicon Quantum DotsS.K.Ghoshal1, K.P. Jain2, and R. J. Elliott3,1Department of Applied Physics, Guru Jambheshwar University, Hisar, Haryana-125001, India.lordkrishnasib@2Physics Department, Indian Institute of Technology, New Delhi-110067, India.3Department of Theoretical Physics, 1 Keble Road, Oxford OX13NP, England, UK. Keywords:Nanostructure, quantum dots, photoluminescence, pseudo-potential, confinement, radiative recombination, passivation and HOMO-LUMO states.Abstract. We study (through computer simulation) the variation of the band gap as a function of sizes and shapes of small Silicon (Si) dots using pseudo-potential approach. We have used empirical pseudo-potential Hamiltonian and a plane wave basis expansion and a basic tetrahedral structure. It is found that the gap decreases for increasing dot size. Furthermore, the band gap increases as much as 0.13eV on passivation the surface of the dot with hydrogen. So both quantum confinement and surface passivation determine the optical and electronic properties of Si quantum dots. Visible luminescence is probably due to radiative recombination of electrons and holes in the quantum confined nanostructures. The effect of passivation of the surface dangling bonds by hydrogen atoms and the role of surface states on the gap energy as well as on the HOMO-LUMO states has also been examined. We have investigated the entire energy spectrum starting from the very low lying ground state to the very high lying excited states for silicon dots having 5, 18, 17 and 18 atoms. The results for the size dependence of the HOMO-LUMO gap and the wave functions for the bonding-anti-bonding states are presented and the importance of the confinement and the role of hydrogen passivation on the confinement are also discussed.IntroductionThe discovery of luminescence from silicon nanostructures and porous silicon has attracted much attention in recent years [1-5]. It has been surmised that these nanostructures of silicon have a direct band gap and emit light from violet to red depending upon the size of nanostructures. With a large surface-to-volume ratio, the surface effects become more enhanced therefore, geometry plays an important role. Surface effects as well as the quantum confinement effects control the optical and electronic properties of these materials. It is possible that the luminescence properties may be related to different silicon compounds such as a – Si:H, polysilane, SiH x and surface defect states [3-6].Semiconductor quantum dots have attracted intense theoretical and experimental investigation over last one decade [2, 3]. The importance of such an investigation stems from the fact that the modeling of novel materials requires a fundamental understanding of the electronic structure including the role played by surfaces having different geometries, disorder, in-homogeneity and so on. However, in spite of intensive experimental and theoretical studies, no conclusive argument has been given on the mechanism of the efficient light emission from Si nanostructures [7, 8]. In this paper we investigate the effect of quantum confinement on the energy gap in silicon dots of different sizes and geometry and the role of hydrogen passivation for this system. The dependence of energy gaps on the size and geometry of the silicon dots is examined in detail. Surface passivation of the dot with hydrogen atoms is modeled through appropriate hydrogen pseudo-potential [5].MethodologyNormally a large number of plane-wave basis states are required to adequately describe the electronic wave functions of the silicon dot. Instead we use the empirical pseudo-potential approximation, which allows the wave functions to be expanded using a much smaller number of plane-wave basis states. We know that most of the physical properties of solids are dependent on the valence electrons to a much greater extent than on the core electrons. The pseudo-potential approximation exploits this by removing the core electrons and by replacing them and the strong ionic potential by a weaker pseudo-potential that acts on a set of pseudo wave functions rather than the true valence wave functions [1, 5]. We therefore use the empirical pseudo-potential method (EPM) for the electronic structure of silicon quantum dots of different sizes.Following Wang and Zunger an appropriate form of the local empirical pseudo-potential for silicon as well as for hydrogen is used. The total screened potential in the EPM is approximated by the superposition of atomic pseudo-potentials. The dot wave functions are expanded in a large basis of plane waves with a bond length a = 5.43A° and two different values of cutoff energies (5 Ry and 10 Ry) is used for the plane wave expansion and the same cutoff is used for the potential energy too.Our interest here is to find the size dependence of the gap energy and the near band gap solutions i.e. the separation between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Now we solve the effective single-particle Schrödinger equation for different sizes of the quantum dot.ResultsA five atom dot with tetrahedral arrangements joined by a single bond without and with hydrogen atoms at the surface gave an energy gap ~ 1.997 eV and ~ 2.07 eV respectively. In each case we kept the fixed bond length a = 5.43 A°between two silicon atoms. As we passivate the surface of 5-atom dot with hydrogen i.e. Si5H12, the occupied number of level changes and the emerged value of the gap also show a change.Following a similar procedure, we examine the 8, 17 and 18 atom dot without and with hydrogen atoms at the surface. We found an energy gap ~ 1.82 eV and ~ 1.89 eV for 8 atom, ~1.79 eV and ~ 1.85 eV for 17 atom, and ~ 1.693 eV and ~ 1.824 eV for 18 atom dot without and with hydrogen respectively. In each case we kept the fixed cubic cell size a = 3.2 A° between two silicon atoms.The value of the gap energy as observed from the energy spectrum decreases as the size of the dot increases implies weaker confinement for larger sizes. As we increase the number of atoms in the dot and change its geometry, the degeneracies are increasingly lifted. This is because the grouping-up tendency of the energy levels in a single energy value becomes less (effect of de-confinement). We see that for smaller sizes the confinement is more and the degeneracies are also higher. As one saturates the surface dangling bonds with hydrogen atoms, there is an enhancement of the gap energy ~ 0.07 eV for 5 atom cluster and ~ 0.13 eV for 18 atom dot. The degeneracies are also lifted because the presence of hydrogen at the surface imparts an interaction potential that acts as a perturbation. For relatively larger dot due to sp2and sp3hybridization de-localization of the electron is more and the energy spectrum is more non-degenerate. For smaller dots this effect of de-localization near the surface is less and hence the degeneracies are more pronounced.We present the results of our simulation for the variation of gap energy for different sizes of the dot in Fig. 1 without hydrogen-passivation (diamond symbol) and with hydrogen-passivation (filled square). We find the gap energy increases as the size of the dot decreases that confirms the stronger confinement for the smaller sizes. Higher gap with passivation is due to the localization of electron cloud arising from the sp3hybridization of the silicon-dangling bond with the hydrogen atom. These results are in conformity with the earlier observation [5-9]. Finally, in Fig. 2 wecompare our results (plus and solid circles) for the gap energy as a function of the dot size with other calculations. Here we have calculated the effective size of the dot under linear mapping d = Na (A°) to get a scaling of our data points.Figure 1. Plot of the HOMO-LUMO gap energy (in eV) versus the number of atoms in different dots. Solid line (diamond): for the free surface and the solid line (square): when the surface dangling bonds are passivated with hydrogen atoms.Figure 2. LUMO-HOMO band gap versus the effective sizes from Wang and Zunger (triangles), multi band effective mass result (stars), the result of the method of Rama Krishna and Friesner (square boxes) and our result without hydrogen (plus) and with hydrogen (solid circles).Next, we turn our attention to the wave function both for the low-lying states as well as the pair of states near the band gap (HOMO and LUMO states) for all different sizes. We calculate the ground state as well as excited state wave function for all dots using periodic boundary conditions.The real part of the ground state wave function has very strong oscillation near the core region, is highly asymmetric and then decays to a very small constant value beyond a critical distance equal to the size of the box. The imaginary part of the wave function oscillates and then rapidly goes to zero. We have calculated the wave function for the HOMO and LUMO states as a function of r and both the bonding and the anti-bonding states show strong oscillation as before near the core region and are highly asymmetric. The wave function for the HOMO and LUMO states for 8 atoms dot with hydrogen at the surface behaves in a different manner. Here, for 8 atom cluster nature of oscillation of the wave functions are different from that of the 5 atom cluster and clearly reflects the effect of geometry of the structure. This result is expected because the bonding and the anti-bonding states are having different symmetry and the effect of passivation is also different for the two cases. The surface states contribute differently for the HOMO and LUMO states. Here, the nature of oscillation of the wave functions are also different from that of the 5 and 8 atom cluster and clearly reflects the effect of geometry of the structure as we mentioned earlier. Our results show that the HOMO-LUMO states are localized and bulk-like instead of surface-like [9-11].SummaryWe have used the empirical pseudo-potential method to calculate electronic structure of silicon quantum dots of different sizes with 5, 8, 17 and 18 atoms to examine the quantum size effects on gap energy. In the present treatment we neglect the role of multi-band coupling. Our results show that the gap energy increases as the size of the dot decreases implies the stronger confinement for smaller dots. This result is in conformity with the earlier observation of Wang and Zunger. The most interesting and remarkable result we find for the HOMO-LUMO gap energy as we vary the size of the dot. We have observed that the change in the energy gap on passivation as a function of the dot size is more prominent for larger dots. The presence of hydrogen lifts the degeneracies of the eigenvalue spectrum and results in an enhancement of the gap energies. The basic characteristics of the quantum dot wave functions pattern indicate that in all cases, the HOMO and LUMO states are localized in the interior of the quantum dot with zero amplitude on the surfaces. Recently Wolkin et al found that the PL characteristics are determined by both quantum confinement and surface passivation, which determined by the electronic states of the silicon quantum dots [11]. The above study indicates that the presence of hydrogen at the surface contributes surface states near the gap to enhance the gap energy and hence the confinement which is in conformity with the experimental results. The passivated surface states play an important role as far as the photoluminescence from finite size dots are concerned.References[1] L.W. Wang and A.Zunger: J. Phys. Chem., 98, (1994), p. 2158.[2] I. Vasiliev, S. Ogutt and J.R. Chelikowsky: Phys. Rev. Lett., 86, (2001), p. 1813.[3] R. E. Millar and V.B. Shenoy: Nanotechnology 11, (2000), p. 139.[4] T. Takagahara and K. Takeda: Phys. Rev. B., 53, (1996), p. R4205.[5] L.W. Wang and A. Zunger: J. Phys. Chem, 98, (1994), p. 2158.[6] Y. Kanemitsu: Physics Reports, 263, 1 (1995) and references therein.[7] S.B. Zhang, C.Y. Yeh and A. Zunger: Phys. Rev. B., 48, (1993), p. 11204.[8] X. D. Zhu: Appl. Phys. Lett., 74, (1999), p. 525.[9] T. Takagahara: Phys. Rev. B., 47, (1993), p. 4569.[10] F. Buda, J. Kohanoff and M. Parrinello: Phys. Rev. Lett., 69, (1992), p. 1272.[11] M.V. Wolkin, J. Jorne, P.M. Fauchet and C. Delrue: Phys. Rev. Lett., 82, (1999), p. 197.。