解三角形应用举例

合集下载

解直角三角形应用举例

解直角三角形应用举例

海洋100海里以内的区域,如图,设A、B
是我们的观察站,A和B 之间的距离为
157.73海里,海岸线是过A、B的一条直
线,一外国船只在P点,在A点测得
∠BAP=450,同时在B点测得∠ABP=600,
问此时是否要向外国船只发出警告,令
其退出我国海域.
P
A
B
——坡度、坡角
学习目标
1、知道坡角、坡比(坡度)的意义。 2、能将h、l、c、i各量的计算问题转化 为解直角三角形的问题,这些量中若已知 两个量,可求其他量. 3、在有些实际问题中没有直角三角形, 学会添加辅助线构造直角三角形.
Ex
x
100 2xD
1、解直角三角形的关键是找到与已知和未知 相关联的直角三角形,当图形中没有直角三角 形时,要通过作辅助线构筑直角三角形(作某 边上的高是常用的辅助线);当问题以一个实 际问题的形式给出时,要善于读懂题意,把实 际问题化归为直角三角形中的边角关系。
2、一些解直角三角形的问题往往与其他知识联 系,所以在复习时要形成知识结构,要把解直 角三角形作为一种工具,能在解决各种数学问 题时合理运用。
65° P
C 34°
B
例4.海中有一个小岛A,它的周围8海里范围内 有暗礁,渔船跟踪鱼群由西向东航行,在B点测 得小岛A在北偏东60°方向上,航行12海里到达 D点,这时测得小岛A在北偏东30°方向上,如 果渔船不改变航线继续向东航行,有没有触礁 的危险?
A
60°
B 12
30°
DF
3.国外船只,除特许外,不得进入我国
___1 :__3__。
h
α
L
例1.水库大坝的横断面是梯形,坝顶宽6m,坝高
23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度

解三角形的实际应用举例

解三角形的实际应用举例

AB sin CAB 15 sin15 BC sin120 sin ACB
6 2 sin15 4
5 6 BC ( 3 1) 4.48(海里) 2
(1)解决实际应用问题的关键思想方法是把实际问题转化为 数学问题,即数学建模思想。 (2)解决实际应用问题的步骤
(1)设A到P的距离为xkm,用x表示B,C到P的距离,并求x的值;
(2)求静止目标P到海防警戒线a的距离(结果精确到0.01km).
a
P B C
D A
分析
(1)PA,PB,PC长度之间的关系可以通过收到信号的先后时
间建立起来. (2)作PD⊥a,垂足为D,要求PD的长,只需要求出PA的长和cos∠APD, 即cos∠PAB的值.由题意,PA-PB,PC-PB都是定值,因此,只需分别在 △PAB和△PAC中,求出cos∠PAB, cos∠PAC的表达式,建立方程即 可.
=3.571 ∴BC≈1.89(m). 答:顶杆BC约长1.89m.
例2.如图,两点C,D与烟囱底部在同一水平直线上,在点C1,D1利
用高1.5m的测角仪器, 测得烟囱的仰角分别是 =450和 =600, CD间的距离是12m.求烟囱的高AB (结果精确到0.01m). B
C1 C

D1 D

(18 2 6)(m)
从而 A1 B 因此
2 BC1 18 3 19.732(m) 2 AB A1B AA1 19.732 1.5 21.23(m)
例3:如图是曲柄连杆机构的示意图,当曲柄CB绕点C旋转时,通
过连杆AB的传递,活塞作直线往复运动.当曲柄在CB0位置时,曲 柄和连杆成一条直线,连杆的端点A在A处.设连杆AB长为l mm,曲 柄CB长为r mm,l>r. (1)当曲柄自CB0按顺时针方向旋转角为θ时,其中0O≤θ<360O, 求活塞移动的距离(即连杆的端点A移动的距离A0A); (2)当l =340mm, r =85mm,θ=80O时,求A0A的长(结果精确到1mm).

解三角形应用举例

解三角形应用举例

解三角形应用举例一、测量距离问题例1(1)如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B 的距离,测量者可以在河岸边选定两点C,D,若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为km.答案6 4解析∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BCcos 45°=34+38-2×32×64×22=38.∴AB=64km.∴A,B两点间的距离为64km.(2)如图,为了测量两座山峰上P,Q两点之间的距离,选择山坡上一段长度为300 3 m且和P,Q两点在同一平面内的路段AB的两个端点作为观测点,现测得∠PAB=90°,∠PAQ=∠PBA=∠PBQ=60°,则P,Q两点间的距离为m.答案900解析由已知,得∠QAB=∠PAB-∠PAQ=30°.又∠PBA=∠PBQ=60°,∴∠AQB=30°,∴AB=BQ.又PB为公共边,∴△PAB≌△PQB,∴PQ =PA.在Rt△PAB中,AP=AB·tan 60°=900(m),故PQ=900 m,∴P,Q两点间的距离为900 m.二、测量高度问题例2如图所示,为测量一树的高度,在地面上选取A,B两点,从A,B两点分别测得树尖的仰角为30°,45°,且A,B 两点间的距离为60 m,则树的高度为m.答案30+30 3解析在△PAB中,∠PAB=30°,∠APB =15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=22×32-22×12=6-2 4,由正弦定理得PB sin 30°=AB sin 15°, 所以PB =12×606-24=30(6+2), 所以树的高度为PB ·sin 45°=30(6+2)×22=(30+303)(m ). 三、测量角度问题例3 已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇.岛A 处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?⎝⎛⎭⎫参考数据:sin 38°≈5314,sin 22°≈3314 解 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为x 海里/小时,结合题意知BC =0.5x ,AC =5,∠BAC =180°-38°-22°=120°.由余弦定理可得BC 2=AB 2+AC 2-2AB ·ACcos 120°,所以BC 2=49,所以BC =0.5x =7, 解得x =14.又由正弦定理得sin ∠ABC =AC ·sin ∠BAC BC=5×327=5314, 所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以14海里/小时的速度向正北方向行驶,恰好用0.5小时截住该走私船. 素养提升 数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程,主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或数学术语予以表征.从实际问题中抽象出距离、高度、角度等数学问题,然后利用正弦定理、余弦定理求解,很好地体现了数学抽象的数学素养.。

2025年高考数学总复习课件36第四章第七节解三角形应用举例

2025年高考数学总复习课件36第四章第七节解三角形应用举例
必备知识
落实“四基”
自查自测
知识点 测量中的几个有关术语
1.判断下列说法的正误,正确的画“√”,错误的画“×”.
(1)东南方向与南偏东45˚方向相同.( √ ) (2)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关
系.( √ ) (3)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=
在△ACM中,由正弦定理得sinA6C0˚=siAnM45˚,所以AC=siAnM45˚·sin 60˚,
所以BC=AC·sin 60˚=siAnM45˚·sin260˚=1002 2 × 34=150(m).
2
第七节 解三角形应用举例
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
测量高度问题的求解策略 (1)理解仰角、俯角、方向(位)角是关键. (2)在实际问题中,若遇到空间与平面(地面)同时研究的问题,最好画两个图 形,一个空间图形,一个平面图形. (3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.
(2)若b2+c2=8,求b,c. 解:(方法一)在△ABD与△ACD中,
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
c2=
由余弦定理得൞
b2=
1 4 1 4
a2+1-2×
1 2
a2
+1-2×
1 2
a×1× cos a×1× cos
π-∠ADC ∠ADC,

整理得12a2+2=b2+c2,而b2+c2=8,则a=2 3.
△ABC中,若AD是边BC上的中线,则AB2+AC2=2(BD2+AD2),AD2=14(b2+c2

《解直角三角形应用举例》课件

《解直角三角形应用举例》课件
一号的组合体在离地球表面 343 km 的圆形轨道上运行.
如图,当组合体运行到地球表面
P 点的正上方时,从中能直接看到的地球
表面最远的点在什么位置?最远点与 P 点
的距离是多少 (地球半径约为 6 400 km,π
取 3.142,结果取整数)?
F
P
FQ 是☉O 的切线,
∠FQO 为直角
Q
最远点
O
෢ 的长,要先
解:在 Rt△AOC 中,∵sin75°=


,
∴OC ≈ 38.8 cm.
在 Rt△BOC 中,∵tan30°=

,

∴BC ≈ 67.3 cm.
答:该台灯照亮水平面的宽度 BC 约为67.3 cm.
易错警示:注意结果必须根据题目要求精确到0.1cm.
技巧点拨:
借助公共边解双直角三角形
面的夹角是 30°,拉索 CD 与水平桥面的夹角是 60°,
两拉索顶端的距离 BC 为 2米.两拉索底端的距离 AD 为
20米,请求出立柱 BH 的长.(结果精确到0.1米, 3≈1.732)
解:设 DH =x 米. ∵ ∠CDH =60° ,∠H =90°,
∴ CH =DH·tan60°= 3x 米,
∴ 此时南楼的影子落在北楼上约 3.5 m 高.
解:(2)如图,若使每层楼在冬天都受阳光照射,则
DC =0 m,即点 C 与点 D 重合.
当点 C 与点 D 重合时,
tan∠ACB
∴ BD=

= ,即


tan32°
=
tan32°=
16
tan32°



≈ 25.6 (m),

解三角形应用举例

解三角形应用举例

B C
α β
A
D
BC AB = sin(α β ) sin(90 + β )
BC sin(90 + β ) BC cos β = 所以,AB = sin(α β ) sin(α β )
解RtABD, 得 BC cos β sin α BD = AB sin ∠BAD = sin(α β ) 28 cos 30 sin 60 = sin(60 30 ) = 42(m)
视 线
N 仰角 俯角
水平线
方位角 60度
目标方向线
视 线
二、例 题 讲 解
例2、如图,要测底部不能到达的烟囱的高 ,从与烟囱底部在 、如图,要测底部不能到达的烟囱的高AB, 间的距离是12m.已知测角仪器高 已知测角仪器高1.5m,求烟囱的高。 求烟囱的高。 , 间的距离是 求烟囱的高 β = 60° CD间的距离是 已知测角仪器高 想一想 图中给出了怎样的一个 几何图形?已知什么, 几何图形?已知什么, 求什么? 求什么?
a sin β AC = sin(α β ) a sin α sin β AB = AE + h = AC sin α + h = +h sin(α β )
ห้องสมุดไป่ตู้
练习: 在山顶铁塔上B处测得地面 练习 在山顶铁塔上 处测得地面 上一点A的俯角 的俯角α= ° 上一点 的俯角 = 60° ,在塔底 C处测得 处的俯角 =30°。已 处测得A处的俯角 处测得 处的俯角β= ° 知铁塔BC部分的高为 部分的高为28m,求出 知铁塔 部分的高为 , 山高CD. 山高 分析:根据已知条件, 分析:根据已知条件,应该设 法计算出AB或 的长 法计算出 或AC的长 解:在⊿ABC中, 中 ∠BCA=90°+β, ° ∠ABC=90°-α, ∠BAC=α° β, ∠BAD=α.根据正弦定理, 根据正弦定理, 根据正弦定理

解三角形应用举例

解三角形应用举例

3 .
14
在Rt HAO中,AH=350米,cos HAO=11, 14
所以OA= AH =4900 445(米). cos HAO 11
答:扇形的半径OA的长约为445米.
测量角度问题
【例5】 缉私艇发现在北偏东45°方向,距离12 n mile的海面上有一走私船正以10 n mile/h的 速度沿东偏南15°方向逃窜.缉私艇的速度 为14 n mile/h.若要在最短的时间内追上该走 私船,缉私艇应沿北偏东45°+α的方向去 追.求追及所需的时间和角α的正弦值.
方法2:连结AC, 作OH AC,交AC于H. 由题意,得 CD=500米,AD=300米,CDA=120. 在 ACD中, AC 2=CD 2+AD 2-2?CD·AD·cos120 =5002+3002+2 500 300 1=7002,
2 所以AC=700(米).
则cos CAD= AC2 AD2 CD2 =11. 2 AC AD 14
44
得A+ ,故A= .
42
4
2由S=1 AC·ABsinA=3 2 AB=3,得AB=2 2.
2
4
由此及余弦定理得BC2=AC2+AB2-2AC ABcosA
=9+8-2 3 2 2 2 =5,故BC= 5. 2
测量距离问题
【例1】 如图,某住宅小区的平面图呈 扇形AOC.小区的两个出入口设 置在点A及点C处,小区里有两 条笔直的小路AD,DC,且拐弯处的转角为120°. 已知某人从C沿CD走到D用了10分钟,从D沿DA走 到A用了6分钟.若此人步行的速度为每分钟50米, 求该扇形的半径OA的长(精确到1米).
【解析】方法1:设该扇形的半径为r米. 由题意,得 CD=500米,DA=300米,CDO=60. 在 CDO中, CD2+OD2-2 CD OD cos60=OC2,

解三角形应用举例

解三角形应用举例

的一艘故障船正以10海里/小时的速度向岛A北偏西22°方向行驶,问救援
艇朝何方向以多大速度行驶,恰好用0.5小时追赶上该故障船?
参考数据:sin
38°取5143,sin
22°取3143
如图,设救援艇在C处追赶上故障船,D为岛A正南方 向上一点,救援艇的速度为x海里/小时, 结合题意知BC=0.5x,AC=5,∠BAC=180°-38° -22°=120°. 由 余 弦 定 理 可 得 BC2 = AB2 + AC2 - 2AB·ACcos 120°= 9 + 25 - 2×3×5×-12=49, 所以BC=0.5x=7,解得x=14.
在△ABC中,由正弦定理得 BC=AsBisni∠n∠ACBABC=sinasαin+ββ, ∴河流的宽度 d=BCsin∠ABC=assiinnαα+sinββ.
(2)如图,为计算湖泊岸边两景点B与C之间的距离,在岸上选取A和D两 点,现测得AB=5 km,AD=7 km,∠ABD=60°,∠CBD=23°,∠BCD =117°,据以上条件可求得两景点B与C之间的距离为______ km5.8 (精确到0.1 km,参考数据:sin 40°≈0.643,sin 117°≈0.891).
由正弦定理得sin∠PAPBA=sin∠ABAPB, 即sinA1P50°=sin532°8-37°,
可得
AP=sin
53°cos
14 37°-cos
53°sin
37°
≈0.821-40.62=50(m).
所以山的高度约为PQ=AP·sin 37°=50×0.6=30(m).
(2)“伦敦眼”坐落在英国伦敦泰晤士河畔,是世界上首座观景摩天轮, 又称“千禧之轮”,该摩天轮的半径为6(单位:10 m),游客在乘坐舱P 升到上半空鸟瞰伦敦建筑BC,伦敦眼与建筑之间的距离AB为12(单位: 10 m),游客在乘坐舱P看建筑BC的视角为θ.当乘坐舱P在伦敦眼的最高 点D时,视角θ=30°,则建筑BC的高度为__1_2___3_-__1_2.(单位:10 m)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2│ 新课感知 新课感知
在日常生活和工农业生产中,为了达到某种目的,常常 想测得一个点与另一个不可到达的点间的距离或在远处的 两个物体之间的距离,这样的想法能实现吗?如何实现呢?
测量距离的问题
例1、设A、B两点在河的两岸,要测量两点之间的距离。 测量者在A的同测,在所在的河岸边选定一点C,测出 75 , C 60 AC的距离是55cm, A= = ,求A、B 6 2.449 ). 两点间的距离(精确到0.1m ,
10 A
50 40
B

BC 28
∴我舰的追击速度为14n mile/h
又在△ABC中由正弦定理得:
AC BC sin B sin A
即 B=38.2° 故我舰行的方向为北偏东
AC sin A 5 3 故 sin B BC 14
50°- 38.2°=11.8°
课堂小结 1、本节课通过举例说明了解斜三角形在实际中的一些应用。 掌握利用正弦定理及余弦定理解任意三角形的方法。 2、在分析问题解决问题的过程中关键要分析题意,分清已知 与所求,根据题意画出示意图,并正确运用正弦定理和余 弦定理解题。 3、在解实际问题的过程中,贯穿了数学建模的思想,其流程 图可表示为: 实际问题
15 45
解:在⊿ABC中, ∠A=15°, ∠C=45°-15°=30°. 根据正弦定理,
15 45
BC AB sin A sin C
AB sin A 5sin15 5( 6 2) BC 2.5875(km). sቤተ መጻሕፍቲ ባይዱn C sin 30 2
CD=BC×tan∠DBC=BC×tan15°≈693(m) 答:山的高度约为693米。
28 cos30 sin 60 sin(60 30 ) 42( m)
CD=BD-BC=42-28=14(m) 答:山的高度约为14米。
测量高度的问题
例5 一辆汽车在一条水平的公路上向正西行驶,到A处时测得 公路北侧远处一山顶D在西偏北15°的方向上,行驶5km后到 达B处,测得此山顶在西偏北45°的方向上,仰角15°,求此 山的高度CD. 分析:要测出高CD,只要 测出高所在的直角三角形 的另一条直角边或斜边的 长。根据已知条件,可以 计算出BC的长。
a sin sin AB AE h AC sin h h sin( )
D H


C G
E B
测量高度的问题
例4: 在山顶铁塔上B处测得地面 上一点A的俯角α= 60° ,在塔底 C处测得A处的俯角β=30°。已 知铁塔BC部分的高为28m,求出 山高CD. 分析:根据已知条件,应该设 法计算出AB或AC的长 解:在⊿ABC中, ∠BCA=90°+β, ∠ABC=90°-α, ∠BAC=αβ, ∠BAD=α.根据正弦定理,
分析:已知两角一边,可以用正弦定理解三角形
AB AC = sin C sin B
测量距离的问题
例2、A、B两点都在河的对岸(不可到达),设计一种 测量两点间的距离的方法。
分析:用例1的方法,可以计算出河的这一岸的一 点C到对岸两点的距离,再测出∠BCA的大小, 借助于余弦定理可以计算出A、B两点间的距离。
测量角度的问题
例6 我舰在敌岛 A 南偏西 50°相距 12 海里的 B 处,发现敌舰正 由岛沿北偏西10°的方向以10海里/小时的速度航行.问我舰需 以多大速度、沿什么方向航行才能用2小时追上敌舰? C
解:如图,在△ABC中由余弦定理得:
BC 2 AC 2 AB 2 2 AB AC cos BAC 1 202 122 2 12 20 ( ) 2 784
画图形
数学模型
解 三 角 形
实际问题的解
检验(答)
数学模型的解
B
C

A
D
BC AB sin( ) sin( 90 )
BC sin(90 ) BC cos 所以,AB sin( ) sin( ) 解RtABD, 得 BC cos sin BD AB sin BAD sin( )
1.2 解三角形应用举例
新课导入
塞乐斯生于公元前624年,是古希腊第一位闻名 世界的大数学家.他原是一位很精明的商人,靠卖橄 榄油积累了相当财富后,塞乐斯便专心从事科学研究 和旅行.他游历埃及时,曾用一种巧妙的方法算出了 金字塔的高度,使古埃及国王阿美西斯钦羡不已.
1.2 │ 新课导入

[解析] 塞乐斯的方法既巧妙又简单:选一个天 气晴朗的日子,在金字塔边竖立一根小木棍,然 后观察木棍阴影的长度变化,等到阴影长度恰好 等于木棍长度时,赶紧测量金字塔影的长度,因 为在这一时刻,金字塔的高度也恰好与塔影长度 相等.
测量高度的问题
例3 AB是底部B不可到达的一个建筑物,A为建筑物 的最高点,设计一种测量建筑物高度AB的方法 解:选择一条水平基线HG,使 H,G,B三点在同一条直线上。由 在G,H两点用测角仪器测得A的 仰角分别是α,β,CD=a,测角仪 器的高是h.那么,在⊿ACD中, 根据正弦定理可得
A
a sin AC sin( )
相关文档
最新文档