探讨一些数列极限的求法

合集下载

求极限的12种方法总结及例题

求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。

在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。

本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。

2. 利用极限的定义我们可以利用极限的定义来求解问题。

根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。

利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。

3. 利用夹逼准则夹逼准则是求极限常用的方法之一。

当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。

要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。

4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。

利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。

要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。

5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。

洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。

通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。

6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。

当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。

通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。

7. 利用换元法换元法是求解复杂函数极限的常用方法之一。

通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。

对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。

求极限的12种方法

求极限的12种方法

求极限的方法
1、利用极限的四则运算和幂指数的运算法则
2、利用函数的连续性
3、利用变量替换
4、利用等价无穷小
5、利用洛必达法则
6、分别求左右极限
7、把数列极限转化为函数极限
8、利用夹逼定理(极限存在两定理之一)
1)利用简单的放大、缩小函数法
2)利用不等式的性质进行放大或缩小【根据定义不等式求极限】
3)对积分的极限可以利用积分的性质进行放大缩小
9、利用递归数列先证明极限的存在(常用单调数列必有界),
再利用递归关系求出极限。

10、利用定积分求和式求极限
11、利用泰勒公式
12、利用导数定义求极限
附加:
1、 利用函数极限求数列极限 Example:
(1) n n
n ln lim +∞
→ 解:记:x x
n n x n ln ln lim lim +∞→+∞→= =0。

求数列极限的方法

求数列极限的方法

求数列极限的方法一、引言数列是数学中一个重要的概念,它是由一系列有序的数按照一定规律排列而成。

在数学中,我们经常需要研究数列的性质,尤其是数列的极限。

数列的极限是指当数列中的数值逐渐接近一个固定的值时,这个固定值就是数列的极限。

本文将介绍几种常见的方法来求解数列的极限。

二、数列极限的定义数列的极限是指当数列的项无限接近某个固定的值时,这个固定的值就是数列的极限。

数列的极限可以是有限的实数,也可以是无穷大或无穷小。

三、数列极限的求解方法1. 递推法递推法是求解数列极限的一种常用方法。

当数列的每一项都可以通过前一项来递推得到时,我们可以通过递推关系式来求解数列的极限。

例如,对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差,我们可以通过递推关系式an = an-1 + d来求解数列的极限。

2. 收敛法收敛法是求解数列极限的另一种常用方法。

当数列的每一项都是有界的,并且数列的差值趋近于0时,我们可以通过数列的收敛性来求解数列的极限。

例如,对于数列an = 1/n,我们可以通过证明数列的收敛性来求解数列的极限。

3. 夹逼法夹逼法是求解数列极限的一种重要方法。

当数列的每一项都被夹在两个已知的数列之间,并且这两个数列的极限相等时,我们可以通过夹逼法来求解数列的极限。

例如,对于数列an = sqrt(n)/n,我们可以通过夹逼法来求解数列的极限。

4. 递归法递归法是求解数列极限的一种常见方法。

当数列的每一项都可以通过前几项来递归得到时,我们可以通过递归关系式来求解数列的极限。

例如,对于斐波那契数列an = an-1 + an-2,其中a1 = 1,a2 = 1,我们可以通过递归关系式来求解数列的极限。

四、案例分析现在,我们通过几个具体的数列来演示上述方法的应用。

1. 求解等差数列的极限考虑数列an = 2n + 3,首先我们可以使用递推法来求解数列的极限。

由递推关系式an = an-1 + 2,我们可以得到a2 = a1 + 2,a3 = a2 + 2,以此类推。

数列极限方法

数列极限方法

数列极限方法一、引言数列极限是数学分析中的一个基本概念,它描述了一个数列当项数趋于无穷时的行为。

理解数列极限的概念是深入理解数学分析和其他数学领域的基础。

本文将介绍几种常用的数列极限的求解方法。

二、数列极限的基本概念一个数列 {an} 的极限定义为:对于任意小的正数ε,都存在一个正整数 N,使得当 n > N 时,|an - L| < ε恒成立,其中 L 为常数。

我们记作 lim(n→∞) an = L。

三、求解数列极限的方法1.直接观察法:对于一些简单的数列,我们可以通过观察它们的规律来直接得出极限。

例如,对于数列 {1, 1/2, 1/3, 1/4, ...},显然有 lim(n→∞) 1/n = 0。

2.夹逼法:对于一个数列 {an},如果存在两个常数 M 和 m,使得 m ≤ an ≤M 对于所有的 n 都成立,那么 lim(n→∞) an = M(或 lim(n→∞) an = m)。

这是因为对于任意的ε > 0,存在一个 N,使得当 n > N 时,M - ε≤ an ≤M + ε。

由于 m ≤ an ≤ M,我们可以得到 |an - M| < ε,即 lim(n→∞) an = M。

3.收敛的级数法:如果一个级数Σan 收敛到 S,那么其部分和 Sn 必定趋近于S。

因此,对于任何的 n,我们有 lim(n→∞) Sn = S。

特别地,如果级数的每一项都非负(或都非正),且级数收敛,那么该数列必定有界且单调。

4.洛必达法则:洛必达法则是求解极限的一种有效方法,特别适用于0/0型和∞/∞型的极限问题。

如果 f 和 g 在某点 a 的某邻域内可导,且 g' (a)≠0,那么 lim(x→a) f'(x)/g'(x) = f'(a)/g'(a)。

在数列的情境下,这可以被应用于求和公式的展开。

5.斯特林公式:斯特林公式给出了一个非负整数 n 的正整数次幂的阶乘与 n!的近似比。

求极限的若干方法

求极限的若干方法

求极限的若干方法一、数列极限的求解方法1、夹逼准则法(夹逼定理):若数列{an}、{bn}、{cn}满足an≤bn≤cn(n≥N0),且lim an=lim cn = L,则数列{bn}有极限且lim bn = L。

2、单调有界数列必有极限法:单调递增的数列有上确界、单调递减的数列有下确界,因此,单调有界数列必有极限。

3、数列按定义法:对于任何一个ε>0,只要找到一个正整数N,使得当n>N时,有|an-L|<ε,则该数列的极限为L。

二、函数极限的求解方法1、极限的定义法:通过定义式计算出函数在某一点的极限。

2、夹逼定理法:当x趋近于a时,若能找到两个函数f(x)≤g(x)≤h(x),且lim f(x) = lim h(x) = L,则函数g(x)在x→a时有极限,且lim g(x) = L。

3、函数的分解法(分子分母有理化、公式替代、三角函数化合成、指数幂换底等方式):通过对函数进行分解或替换等操作,将其转换为可以用其它非分数函数进行极限操作的形式。

4、洛必达求极限法:当函数f(x)和g(x)在某一点均为0或无穷大时,计算并求出函数f(x) / g(x) 的极限l。

如果极限l存在,则f(x) / g(x) 在该点处的极限也是l。

三、无穷级数的求极限方法1、比项法则法:若某一级数后一项于前一项同比变化的极限为L,则这个级数也有极限,且级数的极限为L。

2、积分判断法:对于大于1的自然数n,若函数f(x)在[1,n+1]上是单调递减的且非负,那么它可以累次积分,获得一个极限值;相反地,若g(x)在[1,∞)上是单调递增的和非负的,若及时积分比对之后的级数的部分和同比下减小,则极限l存在;否则若极限不存在,则级数发散。

3、柯西收敛定理法:当对于任意ε >0,存在自然数N>0,使得对于所有的n>m>N,都有|\sum_{k=m}^n a_k|<ε 成立,则此级数是收敛的;如果它不满足上述条件,则是发散的。

求数列极限的方法总结及例题

求数列极限的方法总结及例题

求数列极限的方法总结及例题以《求数列极限的方法总结及例题》为标题,写一篇3000字的中文文章一、什么是数列极限数列极限是数学中非常重要的概念,它是指当数列中的每一项都确定时,其值是无限值,而它表示的数字则不会变化。

数列极限是描述数字趋势的一种抽象思想,它可以帮助我们理解许多数学问题。

然而,要求出数列极限的思路并不是十分简单,需要我们熟悉一些基本的数学知识和求极限的方法来推导出最终的结果。

二、常用的求极限的方法1.t极限定义法。

在求极限的过程中,极限定义法是最基本也是最强有力的一种方法,它可以使用限定条件将极限运算表达式化简,这样最终可以得出一个易于理解的极限表达式。

2.t化为无穷积分法。

将极限表达式进行拆分变形,将复杂的极限表达式化为无穷积分的形式,利用积分的性质来求解极限。

3.t求解解微分方程求解极限。

这种求极限的方法由求解解微分方程的极限问题引出,其本质是求解极限问题时将表达式进行拆分化简,将复杂的极限表达式化为微分方程来求解极限。

4.t比较定理。

具有相同极限值的函数可以用比较定理来求极限,其本质是利用比较定理来求出未知项的极限值。

三、例题例1:已知数列{an}为正数序列,且满足liman= 0,求lim(1/an)解:用极限定义法求解,lim(1/an)=lim(1/liman)=1/0,根据定义,1/0不存在,即数列的极限不存在。

例2:已知数列{an}为正数序列,求lim(1/an+1/bn)解:用比较定理求解,lim(1/an+1/bn)=lim(1/an)+lim(1/bn)根据定义, lim(1/an)=lim(1/bn)=0,所以lim(1/an+1/bn)=0+0=0。

四、总结从上面的分析中可以发现,要求数列极限的法子有很多,只需要熟悉基本思路,就可以把数列极限问题解决出来。

其中极限定义法是最基本也是最强有力的一种方法,它可以将极限运算表达式简化;而化为无穷积分法可以将复杂的极限表达式化为无穷积分的形式;求解解微分方程求解极限方法则是求解极限问题时将表达式进行拆分;比较定理则是利用比较定理来求出未知项的极限值。

求数列极限的若干方法

求数列极限的若干方法

求数列极限的若干方法求解数列极限是数学分析中一个重要的问题,常用的方法有以下几种:1.直接求解最简单的方法是直接计算数列的通项公式,然后逐渐增加项数,观察数列的变化趋势,看是否有收敛或发散的特性。

如果数列趋向于一个确定的数,即极限存在,则该数即为极限值。

这种方法适用于简单数列,例如等差数列、等比数列等。

2.夹逼定理夹逼定理是数学分析中的一个基本定理,可以用来求解一些复杂数列的极限。

夹逼定理的基本思想是将待求极限数列夹在两个已知极限数列之间。

如果两个已知极限数列的极限相同,那么待求极限就是它们的共同极限。

夹逼定理适用于求解一些无法通过直接求解得到极限的数列,例如级数、递推数列等。

3.利用数列性质数列具有一些基本性质,例如收敛数列的任意子列也收敛,并且极限相同;发散数列的一些子列无极限等。

可以通过这些性质来判断数列的极限是否存在,或者通过子列的极限值来确定数列的极限。

4.数列分解对于一些复杂的数列,可以将其分解成多个部分,然后分别求解每个部分的极限。

通过对各个部分的极限进行分析,再根据极限的性质进行组合,可以得到整个数列的极限。

这种方法常用于数列具有递推关系或递归定义的情况。

5.数列收敛性的判别数列收敛有一系列的判别法则,例如柯西收敛准则、单调有界准则、无穷大准则等。

这些准则可以用来判断一个数列是否收敛,或者一部分的数列是否收敛。

6.使用极限性质根据极限的性质,例如极限的四则运算性质、极限的保号性等,可以推导出一些数列的极限值。

通过运用这些性质,可以简化数列极限的求解过程。

总结起来,求解数列极限的方法是多种多样的。

我们可以根据数列的特点和性质,选择适合的方法进行求解。

常用的方法包括直接求解、夹逼定理、数列性质、数列分解、数列收敛性的判别和使用极限性质等。

数列求极限的方法总结

数列求极限的方法总结

数列求极限的方法总结数列求极限的方法有那些?极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。

极限分为一般极限,还有个数列极限,下面是为大家总结的数列求极限的方法总结。

数列求极限的方法总结1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记(x趋近无穷的时候还原成无穷小)。

2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。

首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。

对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列极限的数列极限的数列极限的数列极限的几种求法几种求法几种求法几种求法摘摘摘摘要要要要本文通过实例,归纳总结了数列极限的若干种求法.学习并掌握这些方法,对于学好数学分析颇有益处.关键词关键词关键词关键词数列极限;级数;定积分;重要极限;单调有界数列中图分类号中图分类号中图分类号中图分类号O171 Several Methods of Sequence limit Abstract::::Through examples,summarized several series method for finding the limit.Learn and master these methods,mathematical analysis is quite good for studying.Keywords::::Sequence limit;Series;Definite integral;Important limit;Monotone bounded sequence 1111引言引言引言引言极限是分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态.极限的概念,可追溯到古希腊时代,德谟克里特(Democritus)是古希腊的哲学家,他博学多才,著作多到五六十种,涉及哲学、数学、天文、生物、医学、逻辑、教育与文学艺术等方面.年轻时他花尽了父亲给他的全部财产到埃及、巴比伦、印度等国家游历,获得了大量的科学知识.马克思、恩格斯称他为“经验的自然科学家和希腊人第一百个百科全书式的学者”.谟克里特以探求真理为最大快乐,他有句名言:“宁可找到一个因果的解释,不愿获得一个波斯王位.”在他的著作中有一种原子法,把物体看作是由大量微小部分叠和而成,利用这一理论,求得锥体体积是等于等高柱体体积的三分之一,这是极限思想的萌芽.公元前五世纪,希腊数学家安提丰(Antiphon)在研究化圆为方问题时创立了割圆术,即从一个简单的圆内接正多边形出发,把每边所对的圆弧二等分,连结分点,得到一个边数加倍的圆内接正多边形,当重复这一步骤多次时,所得圆内接正多边形面积之差将小于任何给定的限度.实际上,安提丰认为圆内接正多边形与圆最终将会重合.稍后,另一位希腊数学家布里松(Bryson)考虑了用圆的外切正多边形逼近圆的类似步骤.这种以直线形逼近曲边形的过程表明,当时的希腊数学家已经产生了初步的极限思想.公元前4世纪,欧多克索斯(Eudoxus)将上述过程发展为处理面积、体积等问题的一般方法,称为穷竭法,并发展为较为严格的理论,提出现在分析中通称的“阿基米德公理”.穷竭法成功地运用于面积的计算.这些都可以看作是近代极限理论的雏形.朴素的、直观的极限思想在我国古代的文献中也有记载.如,中国古代的《墨经》中载有“穷,或有前,不容尺也”,《庄子·天下》中载有“一尺之棰啊,日取其半,万世不竭”.公元3世纪的中国数学家刘徽所创的割圆术,从圆内接正六边形出发割圆,得到圆内接6*2n边形序列,并指出割得越细,正多边形的面积与圆面积之差就越小,“之又割,以至于不可割.则与圆和体,面无所失矣”……,其中包括了深刻的极限思想.2222基基基基本本本本概念概念概念概念定义定义定义定义1111若函数f的定义域为全体正正数集合N+,则称:fNR+→ 或(),fnnN+∈为数列.因正整数集N+的元素可由小到大的顺序排列,故数列()fn也可写作12,,,,,naaa⋅⋅⋅⋅⋅⋅或简单地记为{}na,其中na称为该数列的通项.定义定义定义定义2222设{}na为一数列,如果存在常数a,对于任意给定的正数ε(无论它多么小),总存在正整数N,使得当nN<时,不等式naaε−<都成立,那么就称常数a是数列{}na的极限,或者称数列{}na收敛于a,记为limnnaa→∞=或()naan→→∞.若数列{}na 没有极限,则称{}na不收敛,或称{}na为发散数列.3333数列极限的几种求法数列极限的几种求法数列极限的几种求法数列极限的几种求法极限论包括数列极限和函数极限两类,其中计算数列极限有着多种多样的方法,除了要熟练运用极限的四则运算法则,极限和无穷小量之间的关系和初等函数的连续性以外,还要掌握和应用更多的方法和技巧.在这里,主要总结了以下几种方法:(1)四则运算法;(2)变量替换法;(3)初等变形法;(4)利用重要极限求数列极限;(5)单调有界数列法;(6)利用定积分求数列极限;(7)利用两边夹定理法;(8)级数法.下面通过实例讲述数列极限的若干种求法.(1)用四则运算法则求极限定理定理定理定理若{}na与{}nb为收敛数列,则{}nnab+,{}nnab−,{}nnab⋅也都是收敛数列,且有()limlimlimnnnnnnnabab→∞→∞→∞±=±,()limlimlimnnnnnnnabab→∞→∞→∞⋅=⋅.例1求()lim1nnnn→∞+−.解()111111nnnnnnn+−==++++,由()111,nn+→→∞.得()11lim1lim2111nnnnnn→∞→∞+−==++.(2)用变量替换求极限有时候,为了将已知的极限化简,转化成为已知的极限,可根据极限式的特点,适当引入新变量,以替换原有的变量,使原来较复杂的极限过程转化为更简化的极限过程.例2设11na−<<,()111,2,2nnaan−+==⋅⋅⋅求(i) ()lim41nnna→∞−;(ii) ()12limnnaaa→∞⋅⋅⋅⋅.解可令()0cos,0,aααπ=∈,则0111coscos222aaαα++===.()cos,1,2,2nnanα==⋅⋅⋅.于是(i)()22011lim41coslim24arccos222nnnnnaαα→∞→∞ −=⋅== .(ii)()122limlimcoscoscos222nnnnaaaααα→∞→∞ ⋅⋅⋅⋅=⋅⋅⋅⋅2coscoscos sin2222limsin2nnnnααααα→∞ ⋅⋅⋅⋅⋅ =2001sin1sin2limarccossin2nnnaaαααα→∞−===.(3)运用初等变形求极限对于某些较繁的数列{}na,可用初等数学的方法将其变形,转化为一个简单的数列,然后再对之求极限.例3求极限222111lim11123nn→∞ −−.解因⋅⋅⋅−⋅⋅⋅− 为22211111123n −−1325112233nnnn−+ =××××⋅⋅⋅×× .∴⋅⋅⋅−222111lim11123nn→∞ −−111lim22nnn→∞+=×=.(4)利用重要极限求数列极限两个重要极限分别为(i)0sinlim1xxx→=;(ii)1lim1nnen→∞ += .例4求()20lim1xxx→+.解()()()211200lim1lim11xxxxxxxxe→→ +=+⋅+= .(5)利用单调有界数列法求极限这一方法是利用极限理论基本定理:单调有界数列必有极限,其方法为:①判定数列是单调有界的,从而可设其极限为A;②建立数列相邻两项之间的关系式;③在关系式两端取极限,得到一个关于A的方程,若能解出A,问题得解.例5求数列,,,,,aaaaaaaaa+++⋅⋅⋅++⋅⋅⋅⋅⋅⋅,其中()0a>的极限.解设()0101,,,0,1,2,nnxaxaaaxxaxn+==+=+⋅⋅⋅=+=⋅⋅⋅.则{}nx是单调有界数列,它要有极限,设其极限为A.在1nnxax+=+两边取极限得AaA=+,即20AAa−−=.所以1142aA±+=.因为0A>,所以1142aA++=,即114lim2nnax→∞++=.(6)利用定积分求数列极限若一个数列{}na是一个和式的形式,且每一项可提出一个1n或其他形式的代数式,提出这些代数式后,剩下的可表示为一个通式,则可方便的用定积分法求解.例6求12lim1cos1cos1cosnnnnnnπππ→∞ ++++⋅⋅⋅++ .解原式1101lim1cos1cosnniixdxnnππ→∞==+=+∑∫ 1120022cos2cos22xxdxdxπππ===∫∫.(7)利用两边夹定理求数列极限当一数列极限不易直接求出时,可考虑将求极限的数列作适当的放大和缩小,使放大、缩小所得的新数列易于求极限,且两端的极限值相等,则原数列的极限值存在,且等于它们的公共值.例7求22212lim12nnnnnnnnn→∞ ++⋅⋅⋅+ ++++++ .解因为()()2222112121222nnnnnnnnnnnnnnnn+++⋅⋅⋅+++⋅⋅⋅+≥=+++++++++,()()222221*********nnnnnnnnnnnnnnn+++⋅⋅⋅+++⋅⋅⋅+≤=++++++++++.又因为()()()()2111limlim22221nnnnnnnnnn→∞→∞++==+++.所以222121lim122nnnnnnnnn→∞ ++⋅⋅⋅+= ++++++ .(8)用级数展开式求数列极限级数是一个无穷序列和的形式,其部分和就是一个序列.有时为了方便可将数列极限看作是某个级数的部分和,这样能更方便、更简捷的求出数列的极限.例8计算21lim1sinnnnn→∞ − 解由泰勒公式知:()()33sin,3!xxxoxx=−+→∞.令1xn=得,()()2111sin1,3!nnOnn −=+→∞ .则211lim1sin6nnnn→∞ −= 为所求.总之,极限的求法很多,但如果在解题过程中能根据算式的特点注意使用适当的解题方法,则可以化难为易,使问题得到圆满解决,并可提高解题效率.参参参参考考考考文文文文献献献献[1]华东师范大学数学系.数学分析(上册,第三版)[M].北京:高等教育出版社,2006.[2]黄丹妹.试论极限的计算方法数列篇[J].福建:福建省侨兴轻工学.2005(07):18-20.[3]魏立明.一类数列极限求法的研究[J].广西贺洲.梧州师范高等专科学校.2004(11):75-77.[4]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,1993.[5]孙涛.数学分析经典习题解析[M].北京:高等教育出版社,2004.[6]陈文灯.数学复习指南[M].北京:世界图书出版社,2005.[7]蔡子华.考研复习大全[M].北京:现代出版社,2004.。

相关文档
最新文档