(整理)几种求极限方法的总结

合集下载

求极限的方法,(自己总结的)

求极限的方法,(自己总结的)

求极限的常用方法1.直接代入法:对于初等函数f( )的极限, , 若f( )在0处的函数值f( 0)存在, 即。

直接代入法的本质就是只要将= 0代入函数表达式, 若有意义, 其极限就是该函数值(称为“能代则代”)。

例I: 求极限(1)(2)(3)解: (1)(2)(3)2.变型法(包括两个重要极限)通俗地说代入后无意义的极限称为不定式, (如0/0,∞/∞,∞-∞等)此时若极限存在往往要变形后才可看出。

例I: 求极限(1)(2)解: (1)(2)两个重要极限是和, 第一个重要极限过于简单且可通过等价无穷小来实现。

主要考第二个重要极限。

例I: 求极限解:例II: 求极限【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1, 再凑, 最后凑指数部分。

解:3.利用连续性定义。

例I: 求解:y= 可看作由y= 与复合而成。

因为= , 而函数y= 在点u= 连续, 所以=例II: 求解: =例III: 求解:因为 利用定理3及极限的运算法则, 便有4.利用无穷小、无穷大的关系【说明】(1)常见等价无穷小有:当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -, ()abx ax x x b ~11,21~cos 12-+- 例1: 求极限解 002ln(1)lim lim 211cos 2x x x x x x x x →→+⋅==- 例2: 求极限 解x x x x 30tan sin lim -→613lim 31cos lim sin lim 222102030-=-==-=-=→→→xx x x x x x x x x 例3因式代替规则x x x x 3sin tan lim 0-→x x x x 30)1cos 1(sin lim -=→212lim 330==→x x x 5.利用极限的性质法(如四则运算)利用极限的4则运算法则, , ,例1: 求解:先用 除分子和分母, 然后求极限, 得52123lim 232+---∞→x x x x x 020512123lim 332==+---=∞→x x x x x x 例2: 求解, 因为分母的极限 , 不能应用商的极限的运算法则, 但因 所以∞=+--→4532lim 21x x x x6.洛必达法则(求不定式极限)定理一 设(1) 当x 时, f(x)及F (x )都趋向于零;(2) 在点a 的某一去心领域内, f ’(x)及F ’(x)都存在且F ’(x)≠o ;(3) )(')('lim x F x f a x →存在(或为无穷大); 那么 )(')('lim )()(lim x F x f x F x f a x a x →→=定理二 设(1) 当x 时,∞→函数f(x)及F(x)都趋向于零;(2) 当;)都存在,且与时0('F )(')('x ≠>x x F x f N (3) 或为无穷大),存在()(')('lim x F x f x ∞→ 那么 )x F x f x F x f x (')('lim )()(lim x ∞→∞→= 例1: 求解: 原式=例2: 求 >0)解: 原式=例3: 求解: 原式=7.积分法积分求极限法:例一: 求 。

求极限的计算方法总结

求极限的计算方法总结

千里之行,始于足下。

求极限的计算方法总结极限是数学中重要的概念,它描述了函数在某一点无限接近于某个值的性质。

计算极限是数学分析中的基础内容,对于解决数学问题和理解函数的行为至关重要。

下面将总结一些计算极限的常见方法。

1.代入法:当极限的表达式中存在某个点的函数值不存在时,可以通过代入法来计算极限。

代入法即将极限的定义中与某些点不全都的部分进行代入,然后计算出相应的极限值。

2.分子分母有理化:当极限表达式中含有分数,且分母中有根式时,可以将分子分母有理化,即通过乘以分子分母的共轭形式,将根式消去。

3.利用无穷小量的性质:当极限表达式中存在无穷小量时,可以利用无穷小量的性质进行计算。

例如,常见的无穷小量的性质有:a.加减无穷小量仍旧是无穷小量;b.有界函数与无穷小量相乘仍旧是无穷小量;c.有限次幂无穷小量也是无穷小量等。

4.利用极限的四则运算法则:对于四则运算,极限也有相应的运算法则。

常见的极限运算法则有:a.加减法则:lim(f(x) ± g(x)) = lim f(x) ± lim g(x)b.乘法法则:lim(f(x) * g(x)) = lim f(x) * lim g(x)c.除法法则:lim(f(x) / g(x)) = lim f(x) / lim g(x),其中lim g(x) ≠ 0d.复合函数法则:lim(f(g(x))) = lim f(g(x)), when lim g(x) exists第1页/共2页锲而不舍,金石可镂。

5.利用夹逼定理:当极限表达式无法直接计算时,可以利用夹逼定理进行计算。

夹逼定理规定了假如存在两个函数h(x)和i(x),使得对于足够大的x,h(x) ≤ f(x) ≤i(x),且lim h(x) = lim i(x) = L,则lim f(x)也等于L。

6.利用洛必达法则:洛必达法则可用于计算形如lim(f(x)/g(x))的不定型极限,其中f(x)和g(x)在极限点四周连续可导。

极限计算的13种方法示例

极限计算的13种方法示例

极限计算的13种方法示例极限是微积分中的重要概念,它描述了函数在某一点附近的行为。

在计算极限时,我们可以利用一些常见的方法来求解。

下面将介绍13种常见的极限计算方法。

一、代入法代入法是极限计算中最简单的方法之一。

当我们需要计算一个函数在某一点的极限时,只需要将该点的横坐标代入函数中,求得纵坐标即可。

二、夹逼定理夹逼定理是一种常用的极限计算方法,它适用于那些难以直接计算的函数。

夹逼定理的核心思想是通过找到两个函数,它们在极限点附近夹住我们要求的函数,从而求得该函数的极限值。

三、无穷小量法无穷小量法是极限计算中常用的方法之一。

它利用了无穷小量的性质,将函数中的高阶无穷小量忽略不计,只考虑最高阶的无穷小量来计算极限。

四、洛必达法则洛必达法则是一种常用的极限计算方法,它适用于求解0/0型和∞/∞型的极限。

该法则的核心思想是将函数的极限转化为两个函数的导数的极限,然后通过求导计算得到极限值。

五、泰勒展开法泰勒展开法是一种常用的近似计算极限的方法。

它利用了泰勒级数展开的性质,将函数在某一点附近进行泰勒展开,然后通过截断级数来计算函数的极限。

六、换元法换元法是一种常用的极限计算方法,它适用于那些存在复杂变量关系的函数。

通过引入新的变量来替代原来的变量,可以简化函数的形式,从而更容易计算极限。

七、分子有理化分子有理化是一种常用的极限计算方法,它适用于那些含有根式的函数。

通过将根式的分子有理化,可以将原函数转化为一个分式,从而更容易计算极限。

八、分部积分法分部积分法是一种常用的极限计算方法,它适用于那些含有积分的函数。

通过将原函数进行分部积分,可以将原函数转化为一个更简单的函数,从而更容易计算极限。

九、换元积分法换元积分法是一种常用的极限计算方法,它适用于那些含有复杂变量关系的函数。

通过引入新的变量来替代原来的变量,可以简化函数的形式,从而更容易计算极限。

十、二重极限法二重极限法是一种常用的极限计算方法,它适用于那些含有多个变量的函数。

求极限的几种方法

求极限的几种方法

求极限的几种方法在数学分析中,求极限是一种重要的技巧和方法,用于研究数列、函数的收敛性和特性。

对于求极限的方法,可以总结为以下几类:代入法、夹逼法、等价无穷小代换法、洛必达法则、泰勒展开精确到n次、换元法、分数分解法、递归关系法等。

一、代入法:代入法是求函数极限的最基本的方法之一,适用于绝大多数最简单的函数。

通过将自变量值代入函数中,得到具体的函数值,看函数的值是否有限并趋于确定的值,如果有限且趋于确定的值,则可以认为该函数极限存在,并等于该确定的值。

当然,代入法只是一种相对简单和直观的方法,并不适用于复杂函数的极限计算。

二、夹逼法:夹逼法也被称为迫敛法或挤压定理,适用于数列或函数的极限计算。

当数列或函数存在上、下界,且上、下界的极限都为所求极限时,可以通过夹逼法来证明所求极限的存在并求得。

三、等价无穷小代换法:等价无穷小代换法是一种常用的得到极限的方法之一,将一个复杂的极限问题转化成一个简单的等价无穷小求极限问题。

其主要思想是将原函数与理论已知的函数进行比较,找出它们之间的等价关系,进而得到原函数的极限。

常用的等价无穷小有:指数、对数、三角函数等。

四、洛必达法则:洛必达法则是求函数极限的常用方法之一,主要用于求解0/0型或∞/∞型的极限。

其基本思想是将函数的极限转化成求导数的极限。

通常情况下,通过不断使用洛必达法则,可以通过求多次极限最终得到函数的极限。

五、泰勒展开精确到n次:对于有限次求导的函数,可以使用泰勒展开式来近似估计函数极限。

泰勒展开式是用若干项之和来逼近一个函数的方法,通过将函数展开成多项式形式,可以在一定程度上表示出原函数的性质。

通常情况下,使用泰勒展开精确到n次可以更加准确地求得函数的极限。

六、换元法:换元法也称为特殊换元法,通过选择合适的换元变量,将原来复杂的极限问题转化成更加简单的极限计算问题。

常见的换元方法有:取代法、正弦替换法、余弦替换法、平方根替换法等。

七、分数分解法:分数分解法是一种常用的计算复杂函数极限的方法,通过将极限问题利用分式相除的形式,将复杂的极限表达式化简成多个简单函数之比的极限表达式,进而进行求解。

16种求极限的方法

16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。

求极限的方法有很多种,下面将介绍16种常见的求极限方法。

1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。

2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。

例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。

3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。

4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。

5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。

反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。

6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。

利用无穷小量和无穷大量的性质,可以简化极限的求解过程。

7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。

8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。

9.取对数法:将函数取对数后,利用对数的性质进行极限计算。

10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。

11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。

12.导数法则:利用导数的性质,对函数进行极限计算。

例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。

13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。

14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。

求极限的13种方法

求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。

1.代入法:将极限中的变量代入表达式中,简化计算。

这通常适用于简单的多项式函数。

2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。

3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。

4.求导法则:使用导数的性质和规则来计算函数的极限。

这适用于涉及导数的函数。

5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。

6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。

7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。

8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。

该法则涉及对分子分母同时求导的操作。

9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。

10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。

11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。

12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。

13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。

这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。

在实际问题中,可能需要结合使用多种方法来求解复杂的极限。

几种求极限方法的总结

几种求极限方法的总结

几种求极限方法的总结求极限是数学中常见的一种运算方法,通过确定变量趋近于一些特定值时的极限值,可以得到一些重要的数学结论和性质。

在数学中,常用的求极限方法主要包括代入法、夹逼定理、换元法、洛必达法则和级数展开法等。

下面对这些方法进行总结。

1.代入法:代入法是求极限的最基本也是最常用的方法之一、该方法的基本思想是将待求极限的表达式中的变量用一些特定的值替代,然后计算得到的函数值,以此来确定极限值。

代入法特别适用于求一些基本极限,如常数的极限、指数函数的极限和三角函数的极限等。

2.夹逼定理:夹逼定理也称为两边夹定理,是一种常用的求极限方法。

它的基本思想是通过找到两个函数,使得它们的极限值分别接近于待求极限值,而且夹逼在它们之间。

这两个函数的极限值可以比较容易地求得,从而通过夹逼定理求出待求极限的值。

夹逼定理常用于求一些复杂函数的极限,如无理函数和乘积、商函数等。

3.换元法:换元法又称为代换法,是一种常用的求极限方法。

该方法的基本思想是通过对待求极限的表达式进行变量替换,将其转化为一个可以比较容易计算的形式。

通过选取合适的变量替换方式,可以使得原表达式中的一些难以计算的部分简化,从而更容易求得极限的值。

换元法特别适用于一些复杂的函数、无穷级数或指数函数等。

4.洛必达法则:洛必达法则是一种求极限的重要方法,尤其适用于求函数之商的极限。

该方法的基本思想是将待求极限转化为求两个函数的导数的极限,然后利用导数的性质来确定极限值。

通过使用洛必达法则,可以简化一些分数形式的极限,使得求解过程更加简单明了。

但需要注意的是,使用洛必达法则时,必须保证函数和导数满足一些特定的条件,如充分可导、分子分母都趋于零或无穷等。

5.级数展开法:级数展开法是一种求极限的常用方法,尤其适用于求函数的幂级数展开形式。

该方法的基本思想是将函数在一些点附近进行泰勒级数展开,然后将其转化为级数的形式。

通过截取级数中的有限项或考虑级数的收敛性,可以确定原函数的极限值。

计算极限的方法总结

计算极限的方法总结

计算极限的方法总结极限是数学中重要的概念之一,它用于描述函数或数列在无穷趋近其中一点或其中一数值时的表现。

计算极限的方法有很多种,下面将总结常用的计算极限的方法。

1.代入法:代入法是最基本也是最直接的计算极限的方法。

它适用于能够通过简单代入计算出结果的情况。

通过将极限的变量代入函数中,从而得到极限的值。

2.分式归结法:分式归结法适用于计算含有分式的极限。

通过对分子、分母同时归结或分解,简化极限计算过程。

3.推状极限法:推状极限法也称为夹逼定理,适用于计算含有复杂函数的极限。

通过找到两个函数,一个小于待求函数,一个大于待求函数,并且两个函数的极限相等,从而得到待求函数的极限。

4.极限的四则运算法则:对于已知的极限,可以利用极限的四则运算法则计算复杂函数的极限。

四则运算包括加法、减法、乘法和除法,其中除法需要注意除数不能为零。

5.极限的换元法:当函数含有复杂的表达式时,可以通过进行合适的换元来简化函数求极限的过程。

常见的换元包括三角函数换元、指数函数换元、对数函数换元等。

6.形式极限法:形式极限法适用于计算复杂函数包含无穷大、无穷小量级的极限。

将函数转化为形式极限后,可以利用已知的极限进行计算。

7.泰勒级数展开法:泰勒级数展开法适用于计算函数在特定点处的极限。

通过对函数进行泰勒级数展开,可以将函数转化为多项式的形式,从而计算出极限。

8.洛必达法则:洛必达法则适用于极限存在不确定形式,即0/0或无穷/无穷的情况。

该法则通过对函数的分子和分母分别求导,然后再计算极限的值。

9.幂次不等式法:幂次不等式法适用于计算幂函数的极限。

通过利用幂函数的大小关系,可以确定幂函数的极限。

10.斜线渐进法:斜线渐进法适用于计算函数在无穷远处的极限。

通过将函数分子和分母同时除以最高阶的幂,可以得到斜率为1的直线函数,从而计算出极限。

总结以上所述,计算极限的方法有代入法、分式归结法、推状极限法、极限的四则运算法则、极限的换元法、形式极限法、泰勒级数展开法、洛必达法则、幂次不等式法和斜线渐进法等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种求极限方法的总结摘 要 极限是数学分析中的重要概念,也是数学分析中最基础最重要的内容.通过n s 对求极限的学习和深入研究,我总结出十二种求极限的方法.关键词 定义 夹逼定理 单调有界 无穷小 洛必达 泰勒公式 数列求和定积分 定积分 数列[]1根据极限的定义:数列{n x }收敛⇔∃a,ε∀〉0,∃N N ∈+,当n 〉N 时,有n x -a 〈ε. 例1 用定义证明11lim=+∞→n nn证明:0,ε∀>要使不等式11-+n n =11n ε<+成立:解得n 11ε>-,取N=⎥⎦⎤⎢⎣⎡-11ε,于是0,ε∀>∃ N=⎥⎦⎤⎢⎣⎡-11ε,n N ∀>,有1,1n n ε-<+即11lim =+∞→n n n2利用两边夹定理求极限[]1例2 求极限⎪⎪⎭⎫ ⎝⎛+++++++∞→n n n n n n 22221312111lim 解:设=n c nn n n +++++22212111则有:2n cn n>=+同时有:21nc n<=+,于是nc<<1nn <=+>=. 有11n nnc n n<<<<=+ 已知:11lim=+∞→n n n ∴⎪⎪⎭⎫ ⎝⎛+++++++∞→n n n n n n 22221312111lim =1 3利用函数的单调有界性求极限[]1实数的连续性定理:单调有界数列必有极限.例3 设a x =1,a a x +=2, a a a x n +++= (n=1,2, )(0a >),求n n x ∞→lim解:显然{}n x 是单调增加的。

我们来证明它是有界的.易见12x a x +=,23x a x += , 1-+=n n x a x ,从而 12-+=n n x a x ,显然n x 是单调增加的,所以2n n x a x <+两段除以n x ,得 1n nax x <+ 1+≤≤⇒a x a n 这就证明了{}n x 的有界性 设l x n →,对等式12-+=n n x a x 两边去极限,则有∞→-∞→+=n n n n x a x 12l i m l i m⇒a l l +=2解得214++=a l l 4利用无穷小的性质求极限[]2关于无穷小的性质有三个,但应用最多的性质是:若函数f(x)(x )a →是无穷小,函数g(x)在U (),ηa 有界,则函数f(x)*g(x)(x )a →是无穷小. 例 求极限)cos 1(cos lim x x x -++∞→解4 )221sin()221sin(2cos 1cos xx x x x x -+++-=-+ 2)221sin(2≤++-xx 而)1(21221)221sin(0x x x x xx ++=-+≤-+≤ 而,0)1(21lim=++∞→x x x 故 02_1lim=+∞→xx n 5 应用“两个重要极限”求极限[]2e xx x x x x =+=∞→→)11(lim ,1sin lim例5求)1cos 1(sin lim xx x +∞→解2sin 1222sin 211112(sin cos )(sin cos )(1sin )xx xx xx x x x x ⎡⎤+=+=+⎢⎥⎣⎦∴原式=e xxxxx =+∞→22sin 2sin 1)2sin 1(lim6利用洛必达法则求极限[]2例6求xx x 1sin arctan 2lim -∞→π()00 解: xx n 1sin arctan 2lim -∞→π=11cos111lim 22=-+-∞→x xx n 例7 求极限xx x 3tan tan lim2π→()∞∞解 xxx 3tan tan lim2π→= 3262cos 26cos 6lim 2sin 6sin lim sin cos 63sin 3cos 6lim )(cos 3)3(cos lim )3(tan )(tan lim 222232,,2=--===--==→→→→→x x x x x x x x x x x x x x x x x πππππ7利用泰勒公式求极限[]2例8:求极限 xx x x n cos sin 1lim2-+∞→解 ∵xx x x cos sin 12-+中分子为2x ,∴将各函数展开到含2x 项。

当→x 时,222211co s0(),2x x x xxx -=+=+从而)(0)(021211)(0211)cos 1(1cos 22222x x x x x x x +⎥⎦⎤⎢⎣⎡+-+=+-=--==1-)(04122x x +)(0211)(01sin 12222x x x x x x ++=++=+ ∴原式=)(043lim)(0411)(0211lim 22222222x x x x x x x x n n +=⎥⎦⎤⎢⎣⎡+--++∞→∞→ 8利用数列求和来求极限[]2有时做一些求极限的题时,若对原函数先做一些变形,化简之后再利用极限性质去求极限过程简便些。

例9:求极限).2122321(lim 2n n n -+++∞→ []2解:令n n n s 21223212-+++= ,则143221225232121+-+++=n n n s122121212121-++++=-n n n s s -1212+-n n =,212211211*21211+---⎪⎭⎫⎝⎛-+n nn 从而n n n n s 21221121111---⎪⎭⎫ ⎝⎛-+=-,∴ 原式=3212112111lim 1=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---⎪⎭⎫ ⎝⎛-+-∞→n n n n9用定积分求和式的极限[]2例10 设函数f(x)在[]1,0上连续,且f(x)0 ,求n n n nf n n f n f n f )()1()2().1(lim -∞→ []2 解 令T=n n nnf n n f n f n f )()1()2().1(lim -∞→ 于是lnT=⎥⎦⎤⎢⎣⎡-)()1().2().1(ln 1n n f n n f n f n f n =⎥⎦⎤⎢⎣⎡+++)(ln ))2(ln )1(ln 1n n f n f n f n 而dx x f n n k f T nk n n )(ln 1).(ln lim ln lim 101⎰∑===∞→∞→ 所以 nn n nf n n f n f n f )()1()2().1(lim -∞→ =⎰1)(ln dx x f10 利用定积分求极限[]4利用定积分求极限可分为以下两种形式(1)nn n f n f n f nf n )()3()2()1(lim ++++∞→ 型. 定理1 设f(x)在[]1,0上可积,则有:n n nf n f n f n f n )()3()2()1(lim ++++∞→ =⎰10)(dx x f 例12 求nn nnn n n ++++∞→ 321lim []4 解:设f(x)=x,f(x)在[]1,0上可积。

则n n nn n n n ++++∞→ 321lim =⎰1oxdx =21 (2)n n nnf n f n f )()2()1(lim ∞→型[]4.定理2 设f(x)在[]1,0上可积,则有nn n nf n f n f )()2()1(lim ∞→=epx ⎭⎬⎫⎩⎨⎧⎰10)(ln dx x f 例13 求nn nn !lim∞→ []4 解:n n nn !lim∞→=n n nn n n 2.1lim ∞→ 令 f(x)=x,则有n n nn !lim ∞→=n n n n n n 2.1lim ∞→=exp ⎰1ln xdx =e 1-11利用数列的递推公式求极限[]3这种方法实际上包含有两种方法(1)利用递推关系求出通项公式,然后求极限。

这是基本的解法,它把极限的存在性与求极限问题一起解决.例14 设1a =1,22=a ,30412=+-++n n n a a a (1)n >,求nn a ∞→lim []3解:递推公式可化为3(=-++)12n n a a n n a a -+1 设nn n a a b -=+1,那么311=+n n b b 所以,121a a b -==1,234323231,31=-==-=a a b a a b 21131---=-=n n n n a a b将以上各式相加得 2321313131311-+++=-n n a a2131.21253113111---=--+=⇒n n n a ⇒25lim =∞→nn a (1) 如果数列极限存在设为A ,则根据递推公式求出A.令数列的第n 项记为A+n a ,利用无穷小和极限的关系,只需证明0→n a ()∞→n ,便可确定数列的极限确实存在且就为A.例15 证明数列 2,2+21,2+2121+, 极限存在并求出这个极限[]3.解:由题意知递推关系为n n a a 121+=+,若数列的极限存在并设为A ,则A=2+A1设 n n a β++=21,有递推关系得1+nn ββ+++=++211221,即nn n βββ++-=+21)21(1因为11121)21(12)21(--+-=+-+=+-=n n n n a a a β而111212n n n n a ββββ-+>⇒<⇒<≤ 但2=1+⇒+12β211-=β,所以11122n n ββ<⇒<即)(0∞→→n n β 由此推出数列的极限存在并且就为1+212 利用级数收敛的必要条件求极限[]1当计算的题目形式很复杂时,可以作一个级数,看其是否收敛.再根据收敛的必要条件计算极限.收敛的必要条件:若级数∑∞=1n n u 收敛,则)(0∞→→n u n例16 计算2lim (!)nn n n →∞解:作级数∑∞=12)! (nnnn,令2(!)nnnun=11lim111limlim1<=+=+⎪⎭⎫⎝⎛+=∞→∞→+∞→nennuunnnnnn有达朗贝尔判别法知∑∞=12)! (nnnn收敛.又有级数收敛的必要条件⇒2lim(!)nnnn→∞=0参考文献[]1陈传璋金福临朱学炎数学分析(第二版)高等教育出版社 .1983.7[]2解红霞.《浅谈求极限的几种方法》.太原教育学院学报.2001.6 第19卷第2期[]3杨曼英《极限的证明与求极限的方法》娄底师专学报 1994.第2期[]4唐守宪《几种求极限的方法》沈阳师范学院学报 2003.1第22卷第1期。

相关文档
最新文档