结构设计原理课后题问题详解(叶见曙主编)
混凝土结构设计原理 叶见曙 答案

============================================================================================第一章1-1 配置在混凝土截面受拉区钢筋的作用是什么?答:当荷载超过了素混凝土的梁的破坏荷载时,受拉区混凝土开裂,此时,受拉区混凝土虽退出工作,但配置在受拉区的钢筋将承担几乎全部的拉力,能继续承担荷载,直到受拉钢筋的应力达到屈服强度,继而截面受压区的混凝土也被压碎破坏。
1-2 试解释一下名词:混凝土立方体抗压强度;混凝土轴心抗压强度;混凝土抗拉强度;混凝土劈裂抗拉强度。
答:混凝土立方体抗压强度:我国国家标准《普通混凝土力学性能试验方法标准》(GB/T 50081-2002)规定以每边边长为150mm 的立方体为标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d ,依照标准制作方法和试验方法测得的抗压强度值(以MPa 为单位)作为混凝土的立方体抗压强度,用符号cu f 表示。
混凝土轴心抗压强度:我国国家标准《普通混凝土力学性能试验方法标准》(GB/T 50081-2002)规定以150mm ×150mm ×300mm 的棱柱体为标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d ,依照标准制作方法和试验方法测得的抗压强度值(以MPa 为单位)称为混凝土轴心抗压强度,用符号c f 表示。
混凝土劈裂抗拉强度:我国交通部部颁标准《公路工程水泥混凝土试验规程》(JTJ 053-94)规定,采用150mm 立方体作为标准试件进行混凝土劈裂抗拉强度测定,按照规定的试验方法操作,则混凝土劈裂抗拉强度ts f 按下式计算:20.637ts F F f A ==πA 。
混凝土抗拉强度:采用100×100×500mm 混凝土棱柱体轴心受拉试验,破坏时试件在没有钢筋的中部截面被拉断,其平均拉应力即为混凝土的轴心抗拉强度,目前国内外常采用立方体或圆柱体的劈裂试验测得的混凝土劈裂抗拉强度值换算成轴心抗拉强度,换算时应乘以换算系数0.9,即0.9t ts f f =。
结构设计原理-叶见曙版-课后习题第7-9(附答案)

第七章7-2试简述钢筋混凝土偏心受压构件的破坏形态和破坏类型。
答:破坏形态:(1)受拉破坏—大偏心受压破坏,当偏心距较大时,且受拉钢筋配筋率不高时,偏心受压构件的破坏是受拉钢筋先达到屈服强度,然后受压混凝土压坏,临近破坏时有明显的预兆,裂缝显著开展,构件的承载能力取决于受拉钢筋的强度和数量。
(2)受压破坏—小偏心受压破坏,小偏心受压构件的破坏一般是受压区边缘混凝土的应变达到极限压应变,受压区混凝土被压碎;同一侧的钢筋压应力达到屈服强度,破坏前钢筋的横向变形无明显急剧增长,正截面承载力取决于受压区混凝土的抗压强度和受拉钢筋强度。
破坏类型:1)短柱破坏;2)长柱破坏;3)细长柱破坏7-3由式(7-2)偏心距增大系数与哪些因素有关?由公式212000)/e 140011ζζη⎪⎭⎫⎝⎛+=h l h (可知,偏心距增大系数与构件的计算长度,偏心距,截面的有效高度,截面高度,荷载偏心率对截面曲率的影响系数,构件长细比对截面曲率的影响系数。
7-4钢筋混凝土矩形截面偏心受压构件的截面设计和截面复核中,如何判断是大偏心受压还是小偏心受压?答:截面设计时,当003.0h e ≤η时,按小偏心受压构件设计,003.0h e >η时,按大偏心受压构件设计。
截面复核时,当b ξξ≤时,为大偏心受压,b ξξ>时,为小偏心受压.7-5写出矩形截面偏心受压构件非对称配筋的计算流程图和截面复核的计算流程图注意是流程图7-6解: 查表得:.1,280',5.110====γMPa f f MPa f sd sd cd m kN M M kN N N d d •=⨯=•==⨯=•=6.3260.16.326,8.5420.18.54200γγ偏心距mm N M e 6028.5426.3260===,弯矩作用平面内的长细比51060060000>==h l ,故应考虑偏心距增大系数。
设mm a a s s 40'==,则mm a h h s 5600=-=0.1,15606027.22.07.22.01001=>⨯+=+=ζζ取h e 0.1,105.1600600001.015.101.015.1202=>=⨯-=-=ζζ取h l 所以偏心距增大系数07.11110560/602140011)(140011221200=⨯⨯⨯⨯+=+=ζζηh l h e (1)大小偏心受压的初步判断003.064460207.1h mm e >=⨯=η,故可先按照大偏心受压来进行配筋计算。
06287-结构设计原理(二)

课程代码:06287 结构设计原理(二)课程自学辅导材料●配套教材:《结构设计原理》●主编:叶见曙●出版社:人民交通●版次:2012年7月第2版●适应层次:本科内部教学使用目录第一部分自学指导第一篇钢筋混凝土结构 (1)第二篇预应力混凝土结构 (2)第三篇圬工结构 (2)第四篇钢结构 (3)第五篇钢—混凝土组合构件 (3)第二部分复习思考题一.单选题 (5)二.填空题 (25)三.判断题 (30)四.名词解释题 (34)五.简答题 (36)六.计算题 (39)第三部分参考答案一.单选题 (42)二.填空题 (42)三.判断题 (43)四.名词解释题 (43)五.简答题 (46)六.计算题 (53)第一部分自学指导第一篇钢筋混凝工结构一.主要内容本篇主要介绍钢筋混凝土结构的基本概念;混凝土、钢筋的强度与变形性能;钢筋与混凝土间的粘结性能;结构可靠度概念;极限状态法设计计算原则;承载力极限状态、正常使用极限状态设计表达式;受弯构件正截面抗弯受力性能、承载力计算(单筋、双筋矩形截面梁、T 形截面梁);受弯构件斜截面抗剪受力性能、抗剪承载力计算、斜截面抗弯承载力;受扭构件的受力性能、承载力计算;轴心受压构件的受力性能、承载力计算;偏心受压构件正截面受力性能、承载力计算;受拉构件正截面受力性能、承载力计算;钢筋混凝土受弯构件的应力、裂缝和变形性能、计算;混凝土结构耐久性;局部承压;深受弯构件。
二.重点混凝土的强度、变形性能和各项强度指标;钢筋的强度指标与变形指标;钢筋与混凝土间的粘结能力及其影响因素;材料强度的标准值和设计值;承载力极限状态、正常使用极限状态设计表达式;受弯构件正截面破坏形态、破坏过程;受弯构件正截面承载力计算(单筋、双筋矩形截面梁、T形截面梁);受弯构件斜截面破坏形态及斜截面承载力的主要影响因素;纯扭构件的破坏形态、破坏过程;轴心受压构件的破坏过程和正截面承载力计算;偏心受压构件正截面破坏形态、破坏过程和承载力计算;钢筋混凝土受弯构件的裂缝、变形的起因、影响及控制。
关于课后习题答案(叶见曙主编结构设计原理1-9章)

结构设计原理课后答案第一章1-1 配置在混凝土截面受拉区钢筋的作用是什么?答:当荷载超过了素混凝土的梁的破坏荷载时,受拉区混凝土开裂,此时,受拉区混凝土虽退出工作,但配置在受拉区的钢筋将承担几乎全部的拉力,能继续承担荷载,直到受拉钢筋的应力达到屈服强度,继而截面受压区的混凝土也被压碎破坏。
1-2 试解释一下名词:混凝土立方体抗压强度;混凝土轴心抗压强度;混凝土抗拉强度;混凝土劈裂抗拉强度。
答:混凝土立方体抗压强度:我国国家标准《普通混凝土力学性能试验方法标准》(GB/T 50081-2002)规定以每边边长为150mm 的立方体为标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d ,依照标准制作方法和试验方法测得的抗压强度值(以MPa 为单位)作为混凝土的立方体抗压强度,用符号cu f 表示。
混凝土轴心抗压强度:我国国家标准《普通混凝土力学性能试验方法标准》(GB/T 50081-2002)规定以150mm ×150mm ×300mm 的棱柱体为标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d ,依照标准制作方法和试验方法测得的抗压强度值(以MPa 为单位)称为混凝土轴心抗压强度,用符号c f 表示。
混凝土劈裂抗拉强度:我国交通部部颁标准《公路工程水泥混凝土试验规程》(JTJ 053-94)规定,采用150mm 立方体作为标准试件进行混凝土劈裂抗拉强度测定,按照规定的试验方法操作,则混凝土劈裂抗拉强度ts f 按下式计算:20.637ts F F f A ==πA 。
混凝土抗拉强度:采用100×100×500mm 混凝土棱柱体轴心受拉试验,破坏时试件在没有钢筋的中部截面被拉断,其平均拉应力即为混凝土的轴心抗拉强度,目前国内外常采用立方体或圆柱体的劈裂试验测得的混凝土劈裂抗拉强度值换算成轴心抗拉强度,换算时应乘以换算系数0.9,即0.9t ts f f =。
结构设计原理第四版课后答案叶见曙

结构设计原理第四版课后答案叶见曙目录第一章 (1)第二章 (3)第三章 (5)第四、五章 (13)第六章...........16 第七、八章.......18 第九章.. (26)第一章1-1 配置在混凝土截面受拉区钢筋的作用是什么?答:当荷载超过了素混凝土的梁的破坏荷载时,受拉区混凝土开裂,此时,受拉区混凝土虽退出工作,但配置在受拉区的钢筋将承担几乎全部的拉力,能继续承担荷载,直到受拉钢筋的应力达到屈服强度,继而截面受压区的混凝土也被压碎破坏。
1-2 试解释一下名词:混凝土立方体抗压强度;混凝土轴心抗压强度;混凝土抗拉强度;混凝土劈裂抗拉强度。
答:混凝土立方体抗压强度:我国国家标准《普通混凝土力学性能试验方法标准》(GB/T 50081-2002)规定以每边边长为150mm 的立方体为标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d ,依照标准制作方法和试验方法测得的抗压强度值(以MPa 为单位)作为混凝土的立方体抗压强度,用符号cu f 表示。
混凝土轴心抗压强度:我国国家标准《普通混凝土力学性能试验方法标准》(GB/T 50081-2002)规定以150mm ×150mm ×300mm 的棱柱体为标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d ,依照标准制作方法和试验方法测得的抗压强度值(以MPa 为单位)称为混凝土轴心抗压强度,用符号c f 表示。
混凝土劈裂抗拉强度:我国交通部部颁标准《公路工程水泥混凝土试验规程》(JTJ 053-94)规定,采用150mm 立方体作为标准试件进行混凝土劈裂抗拉强度测定,按照规定的试验方法操作,则混凝土劈裂抗拉强度ts f 按下式计算:20.637ts F F f A ==πA 。
混凝土抗拉强度:采用100×100×500mm 混凝土棱柱体轴心受拉试验,破坏时试件在没有钢筋的中部截面被拉断,其平均拉应力即为混凝土的轴心抗拉强度,目前国内外常采用立方体或圆柱体的劈裂试验测得的混凝土劈裂抗拉强度值换算成轴心抗拉强度,换算时应乘以换算系数0.9,即0.9t ts f f =。
《结构设计原理》叶见曙版21章课后习题英文版答案

21-11 solution:Known: main truss, bottom chord, H-shape cross section, wedding, geometrical length of bottom chord is l=8m. Q235 steel, high-strength bolts, d0=24mm. Variable axial force, N1=3319.4kN (tension), N2=772kN (tension). Fatigue loading model I: N1f=1399kN (tension), N2f=425kN (tension)Unknown: check the strength and fatigue.Solve: by looking up table, the design value of strength of steel: f d =275 kN.1.Determine the dimension of cross section of bottom chord.1).The required gross area A m and net area A n2).Determine the dimension of thickness of web.Selecting t w=16mm, thickness of flange t f=20mm, width of web b w=440mm, width of flange h=460mm. the gross area actually isOK. Single face friction n f=1, µ=0.35, pre-tension P f=190MPa.Shearing capacity per high-strength bolt:Number of bolts.Selecting n=64, arrange 32 bolts line by line per flange, 4lines.The net area actually isOK2.Check the strength.OK3.Check the stiffness.Inertia moment of x-axis and y-axisThe corresponding gyration radiusThe corresponding slenderness ratioDissatisfyOK4.Check the fatigue limit state.Normal stress amplitudeOKConclusion:21-12 solution:a) Known: H-shape cross section, wedding, axial compression, l ox=l oy=8m. Q345 steel, N=2650kN (compression).Unknown: check the strength, stiffness and stability of steel member.Solve: by looking up table, the design value of strength of steel: f d =275 kN.1.Check the strength.1).flange: flange with 3 simply-supported edges and one free edge, elastic buckling coefficientK f =0.425.The impact of local buckling need considering.The effective width of flange2). web: web with 4 simply-supported edges, elastic buckling coefficient K f=4. The impact of local buckling need considering.The effective width of webThe effective areaOK2.Check the global stability.Inertia moment of x-axis and y-axisThe reduction factor of global stabilityOK3.Check the local stability.For flange:DissatisfyFor web:OK4.Check the stiffnessOKb) Known: H-shape cross section, wedding, axial compression, l ox=l oy=8m. Q345 steel, N=2650kN (compression).Unknown: check the strength, stiffness and stability of steel member.Solve: by looking up table, the design value of strength of steel: f d =275 kN.1.Check the strength.1).flange: flange with 3 simply-supported edges and one free edge, elastic buckling coefficientK f =0.425.The impact of local buckling need considering.The effective width of flange2). web: web with 4 simply-supported edges, elastic buckling coefficient K f=4.The impact of local buckling need considering.The effective width of webThe effective areaOK2.Check the global stability.Inertia moment of x-axis and y-axisThe reduction factor of global stabilityDissatisfy3.Check the local stability.For flange:DissatisfyFor web:Dissatisfy4.Check the stiffnessOK21-13 solution:Known: T-shape cross section, wedding, axial compression, horizontal joints system, l ox=l oy=3m. Q235 steel, γ0=1.0.Unknown: the axial compressive capacity of steel member.Solve:1.Calculations of section properties.Area:Gravity center:Inertia moment of x-axis and y-axisThe corresponding gyration radiusThe corresponding slenderness ratioType c cross section, random buckling direction, α=0.5The corresponding relatively slenderness ratioThe reduction factor of global stability2.Check the stiffnessOK3.Calculation of effective area.1).flange: flange with 3 simply-supported edges and one free edge, elastic buckling coefficient K f =0.425.The impact of local buckling need considering.The effective width of flange2). web: web with 3 simply-supported edges and one free edge, elastic buckling coefficientK f =0.425.The impact of local buckling need considering.The effective width of webThe effective area4.The axial compressive capacity of steel member.Inertia moment of x-axis and y-axis21-14 solution:Known: portal frame (diagonal web at end), geometrical length is l=8m, H-shape cross section, wedding, Q345 steel, high-strength bolts, d0=24mm. Variable axial force, N1=870kN (tension), N2=-400kN (compression). Fatigue loading model I: N1f=480kN (tension), N2f=-140kN (compression).Unknown: check the portal frame.Solve: by looking up table, the design value of strength of steel: f d =275 kN.1.Check the dimension of portal frame.1).The required gross area A m and net area A n2). Check the dimension.The gross area actually isOK. Single face friction n f=1, µ=0.35, pre-tension P f=190MPa.Shearing capacity per high-strength bolt:Number of bolts.Selecting n=16, arrange 8 bolts line by line per flange, 4lines.The net area actually isOK 2.Check the strength.1) Tensile strengthOK2) Compressive strengthi) Flange: flange with 3 simply-supported edges and one free edge.The elastic buckling coefficient, K f =0.425.The impact of local buckling need considering.The effective width of flangeii) Web: web with 4 simply-supported edges.elastic buckling coefficient, K f =4.The impact of local buckling need considering.The effective width of webThe effective areaOK3.Check the stiffness.Inertia moment of x-axis and y-axisThe corresponding gyration radiusThe corresponding slenderness ratioDissatisfyOK4.Check the global stability.The impact of local buckling need considering.Global stability reduction coefficientOK5.Check the global stability.For flange:DissatisfyFor web:Dissatisfy6.Check the fatigue limit state.Normal stress amplitudeOK21-15 solution:a) Known: 2[20a cross section, batten plate, slenderness of single leg 1=35, width of column is 320mm, l ox=7m, l oy=3.5m. Q235steel, γ0=1.0.Unknown: compressive capacity of steel member.Solve:1.According to the global stability of x-axis.Looking up table, f d =180kN, f vd =105 kN, []=100.As for 2[20a cross section, A1=2883mm2, i x=78.6mm, i1=21.1mm, I1=128*104mm4, b1=73mm(width of flange).1). stiffness of x-axis:OK2).check the global stability.Type C cross section, αx=0.5.The impact of local buckling need considering.2.According to the global stability of y-axis.=35,1Spacing between 2 flanges: 320-2*73=174mm>100mm. OK1). stiffness of y-axis:OK2).check the global stability.The impact of local buckling need considering.2).check the local stability.=35<oy=42.86, and 1=35< 40. OK1Known: 2[20a cross section, batten plate, slenderness of single leg 1=35, width of column is 320mm, l ox=7m, l oy=3.5m. Q235steel, γ0=1.0.Unknown: compressive capacity of steel member.Solve:1.According to the global stability of x-axis.Looking up table, f d =180kN, f vd =105 kN, []=100.As for 2[20a cross section, A1=2883mm2, i x=78.6mm, i1=21.1mm, I1=128*104mm4,b1=73mm(width of flange).1). stiffness of x-axis:OK2).check the global stability.Type C cross section, αx=0.5.The impact of local buckling need considering.2.According to the global stability of y-axis.=35,1Spacing between 2 flanges: 320-2*73=174mm>100mm. OK 1). stiffness of y-axis:OK 2).check the global stability.The impact of local buckling need considering.2).check the local stability.=35<oy=47.47, and 1=35< 40. OK121-16 solution:Known: tension-bending member, Q235 steel, 2L140*90*8, BOLT, thickness of gasset plate is 10mm, high-strength bolts, d0=21.5mm, l ox=l oy=3m.Unknown: check the cross section.Solve: by looking up table, the design value of strength of steel: f d =190 kN.1.Geometrical properties of section.Calculating length in-plane l ox= 3m, width of flange is 140mm.The equivalent length of flange width with considering shear lag effect,So, the impact of shear lag is neglected, ρs=1The gross areaArrange 2 lines of bolts for 2 flanges, so the actual net area isInertia moment of x-axis (gross section)The corresponding gyration radiusInertia moment of x-axis (net section)Inertia moment of y-axis (gross section)The corresponding gyration radius2.Check the strength.Stress of tensile edge in net sectionisDissatisfy3.Check the stiffnessOKOK21-17 solution:Known: tension-bending member, Q235 steel, I-shape cross section, high-strength bolt, high-strength bolts, d0=24mm, N=2500kN, M x=21.6 kN﹒mUnknown: check the cross section.Solve: by looking up table, the design value of strength of steel: f d =190 kN.1.Geometrical properties of section.Calculating length in-plane l ox= 3m, width of flange is 55mm.The equivalent length of flange width with considering shear lag effect,So, the impact of shear lag is neglected, ρs=1The gross areaThe actual net area isInertia moment of y-axis (gross section)The corresponding gyration radiusInertia moment of x-axis (gross section)The corresponding gyration radiusInertia moment of x-axis (net section)2.Check the strength.Stress of tensile edge in net section isDissatisfy 3.Check the stiffnessOKDissatisfy21-18 solution:Known: l ox=7.2m, l oy=8m. Q345 steel, N=2940kN, M y=420.5 kN﹒mUnknown: check the cross section.Solve: by looking up table, the design value of strength of steel: f d =270 kN.1.Geometrical properties of section.Calculating length in-plane loy= 8m, width of flange is 500mm.The equivalent length of flange width with considering shear lag effect,So, the impact of shear lag is neglected, ρs=1Top flange, K=4ρ=12.Check the strength3.Check the overall stability in-plane4.Out-of-plane overall stability.The calculating length of compressive flange is 7.2m, b=500mm. G=79230MPa for Q345,Relative slenderness ratio of x-axisOK5.local stabilityFor flange:OKFor web:OK6.Check the stiffnessOK。
《结构设计原理》第三版叶见曙复习第章详解

青海大学 结构设计原理
偶然状况 定义:桥涵使用过程中偶然出现的状况,如地震、车/ 船撞击等,出现概率极小。 设计要求:只需进行承载能力极限状态设计,保证主 要承重结构不至于因为非主要承重结构破坏或自身局部损 伤而丧失承载能力或发生连续倒塌。
青海大学 结构设计原理
2.3 我国公路桥涵设计规范的计算原则
取值原则: 同一座桥梁只宜取一设计安全等级; 对个别构件允许在必要时作安全等级的调整,但调整后 同一座桥梁内各构件安全等级的级差不应超过一个等级。
青海大学 结构设计原理
2.3 我国公路桥涵设计规范的计算原则
1、三种设计工况 2、承载能力极限状态计算表达式 3、持久状况正常使用极限状态计算表达式
青海大学 结构设计原理
对于正常使用极限状态设计时,公路工程结构的目标可 靠指标可根据不同类型结构的特点和工程经验确定。
青海大学 结构设计原理
2.3 我国公路桥涵设计规范的计算原则
1、三种设计工况 2、承载能力极限状态计算表达式 3、持久状况正常使用极限状态计算表达式
青海大学 结构设计原理
1、三种设计工况 持久状况 定义:桥涵建成后承受自重、车辆荷载等作用持续时 间很长的状况。 设计要求:必须同时进行承载能力极限状态和正常使 用极限状态的设计 短暂状况 定义:桥涵施工过程中承受临时性荷载/作用的状况。 设计要求:一般只进行承载能力极限状态设计,必要 时进行正常使用极限状态的设计
青海大学 结构设计原理
截 面 形 式 和 钢 筋 布 置
青海大学 结构设计原理
工程实例
青海大学 结构设计原理
梁的截面尺寸与构造要求: 分为现浇梁和预制梁 梁的截面尺寸先根据梁的跨度和荷载、工程经验初步 确定,然后通过计算确定。 尺寸选用原则: (1)钢筋混凝土现浇矩形截面梁,梁宽一般采用 120mm、150mm、180mm、200mm、220mm、250mm 等尺寸,其后梁高h≤800mm时可按50mm一级增加,梁高 h>800mm时可按100mm一级增加。 整体现浇矩形截面梁的高宽比h/b一般取2.0~2.5 矩形梁的高度一般可取梁跨度(即高跨比)的1/10~ 1/18
《结构设计原理》第三版_叶见曙_复习课件-第1-7章

青海大学 结构设计原理
青海大学 结构设计原理
青海大学 结构设计原理
青海大学 结构设计原理
2.5 作用的代表值和作用效应组合
1、作用分类 按时间特性来分类: 永久作用:结构使用期间,其量值不随时间变化,或 其变化值与平均值相比可以忽略不计的作用 可变作用:结构使用期间,其量值随时间变化,且其 变化值与平均值相比不可忽视的作用 偶然作用:结构使用期间出现的概率很小,一旦出现 ,其值很大且持续时间很短的作用
对于正常使用极限状态设计时,公路工程结构的目标可 靠指标可根据不同类型结构的特点和工程经验确定。
青海大学 结构设计原理
2.3 我国公路桥涵设计规范的计算原则
1、三种设计工况 2、承载能力极限状态计算表达式 3、持久状况正常使用极限状态计算表达式
青海大学 结构设计原理
1、三种设计工况 持久状况 定义:桥涵建成后承受自重、车辆荷载等作用持续时 间很长的状况。 设计要求:必须同时进行承载能力极限状态和正常使 用极限状态的设计 短暂状况 定义:桥涵施工过程中承受临时性荷载/作用的状况。 设计要求:一般只进行承载能力极限状态设计,必要 时进行正常使用极限状态的设计
青海大学 结构设计原理
6、结构的极限状态 可靠状态:结构能够满足各项功能要求而良好工作的 状态 失效状态:可靠状态以外的其他工作状态 极限状态:上述两者的临界/边际状态 分三类: 承载能力极限状态:对应于安全功能要求,失去平衡 ,结构构件或连接处因超过材料强度而破坏,失稳,结构 转变成机动体系 ; 正常使用极限状态:对应于适用和耐久功能要求,变 形,局部损坏,振动,沉降过大等; 破坏-安全极限状态:对应于偶然、特殊作用下的安全 功能要求,允许局部损伤,避免整体倒塌
青海大学 结构设计原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章1-1 配置在混凝土截面受拉区钢筋的作用是什么?答:当荷载超过了素混凝土的梁的破坏荷载时,受拉区混凝土开裂,此时,受拉区混凝土虽退出工作,但配置在受拉区的钢筋将承担几乎全部的拉力,能继续承担荷载,直到受拉钢筋的应力达到屈服强度,继而截面受压区的混凝土也被压碎破坏。
1-2 试解释一下名词:混凝土立方体抗压强度;混凝土轴心抗压强度;混凝土抗拉强度;混凝土劈裂抗拉强度。
答:混凝土立方体抗压强度:我国国家标准《普通混凝土力学性能试验方法标准》(GB/T 50081-2002)规定以每边边长为150mm 的立方体为标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d ,依照标准制作方法和试验方法测得的抗压强度值(以MPa 为单位)作为混凝土的立方体抗压强度,用符号cu f 表示。
混凝土轴心抗压强度:我国国家标准《普通混凝土力学性能试验方法标准》(GB/T 50081-2002)规定以150mm ×150mm ×300mm 的棱柱体为标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d ,依照标准制作方法和试验方法测得的抗压强度值(以MPa 为单位)称为混凝土轴心抗压强度,用符号c f 表示。
混凝土劈裂抗拉强度:我国交通部部颁标准《公路工程水泥混凝土试验规程》(JTJ -94)规定,采用150mm 立方体作为标准试件进行混凝土劈裂抗拉强度测定,按照规定的试验方法操作,则混凝土劈裂抗拉强度ts f 按下式计算:20.637ts F F f A ==πA 。
混凝土抗拉强度:采用100×100×500mm 混凝土棱柱体轴心受拉试验,破坏时试件在没有钢筋的中部截面被拉断,其平均拉应力即为混凝土的轴心抗拉强度,目前国外常采用立方体或圆柱体的劈裂试验测得的混凝土劈裂抗拉强度值换算成轴心抗拉强度,换算时应乘以换算系数0.9,即0.9t ts f f =。
1-3 混凝土轴心受压的应力—应变曲线有何特点?影响混凝土轴心受压应力—应变曲线有哪几个因素?答:完整的混凝土轴心受拉曲线由上升段OC 、下降段CD 和收敛段DE 三个阶段组成。
上升段:当压应力0.3c f σ<左右时,应力——应变关系接近直线变化(OA 段),混凝土处于弹性阶段工作。
在压应力0.3cfσ≥后,随着压应力的增大,应力——应变关系愈来愈偏离直线,任一点的应变ε可分为弹性应变和塑性应变两部分,原有的混凝土部微裂缝发展,并在孔隙等薄弱处产生新的个别裂缝。
当应力达到0.8cf(B点)左右后,混凝土塑性变形显著增大,部裂缝不断延伸拓展,并有几条贯通,应力——应变曲线斜率急剧减小,如果不继续加载,裂缝也会发展,即部裂缝处于非稳定发展阶段。
当应力达到最大应力c fσ=时(C点),应力应变曲线的斜率已接近于水平,试件表面出现不连续的可见裂缝。
下降段:到达峰值应力点C后,混凝土的强度并不完全消失,随着应力σ的减小(卸载),应变仍然增加,曲线下降坡度较陡,混凝土表面裂缝逐渐贯通。
收敛段:在反弯点D点之后,应力下降的速率减慢,趋于残余应力。
表面纵缝把混凝土棱柱体分为若干个小柱,外载力由裂缝处的摩擦咬合力及小柱体的残余强度所承受。
影响混凝土轴心受压应力应变曲线的主要因素:混凝土强度、应变速率、测试技术和试验条件。
1-4 什么叫混凝土的徐变?影响徐变有哪些主要原因?答:在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象称为混凝土的徐变。
主要影响因素:(1)混凝土在长期荷载作用下产生的应力大小;(2)加荷时混凝土的龄期;(3)混凝土的组成成分和配合比;(4)养护及使用条件下的温度与湿度。
1-5 混凝土的徐变和收缩变形都是随时间而增长的变形,两者有和不同之处?答:徐变变形是在持久作用下混凝土结构随时间推移而增加的应变;收缩变形是混凝土在凝结和硬化的物理化学过程中体积随时间推移而减小的现象,是一种不受力情况下的自由变形。
1-7 什么是钢筋和混凝土之间粘结应力和粘结强度?为保证钢筋和混凝土之间有足够的粘结力要采取哪些措施?答:(1)粘结应力:变形差(相对滑移)沿钢筋与混凝土接触面上产生的剪应力;(2)粘结强度:实际工程中,通常以拔出试验中粘结失效(钢筋被拔出,或者混凝土被劈裂)时的最大平均粘结应力作为钢筋和混凝土的粘结强度;(3)主要措施:①光圆钢筋及变形钢筋的粘结强度均随混凝土等级的提高而提高,所以可以通过提高混凝土强度等级来增加粘结力;②水平位置钢筋比竖位钢筋的粘结强度低,所以可通过调整钢筋布置来增强粘结力;③多根钢筋并排时,可调整钢筋之间的净距来增强粘结力;④增大混凝土保护层厚度⑤采用带肋钢筋。
第二章2-1 桥梁结构的功能包括哪几方面的容?何谓结构的可靠性?答:①桥梁结构的功能由其使用要求决定的,具体有如下四个方面:(1)桥梁结构应能承受在正常施工和正常使用期间可能出现的各种荷载、外加变形、约束变形等的作用;(2)桥梁结构在正常使用条件下具有良好的工作性能,例如,不发生影响正常使用的过大变形和局部损坏;(3)桥梁结构在正常使用和正常维护条件下,在规定的时间,具有足够的耐久性,例如,不出现过大的裂缝宽度,不发生由于混凝土保护层碳化导致钢筋的修饰;(4)在偶然荷载(如地震、强风)作用下或偶然事件(如爆炸)发生时和发生后,桥梁结构仍能保持整体稳定性,不发生倒塌。
②结构的可靠性:指结构的安全性、适用性和耐久性。
2-2 结构的设计基准期和使用寿命有何区别?答:设计基准期是指对结构进行可靠度分析时,结合结构使用期,考虑各种基本变量与时间的关系所取用的基准时间参数,设计基准期可参考结构使用寿命的要求适当选定,但二者不完全等同。
当结构的使用年限超过设计基准期,表面它的失效概率可能会增大,不能保证其目标可靠指标,但不等于结构丧失了所要求的基本功能甚至报废。
一般来说,使用寿命长,设计基准期也可以长一些,使用寿命短,设计基准期应短一些。
通常设计基准期应该小于寿命期。
2-3 什么叫极限状态?我国《公路桥规》规定了哪两类结构的极限状态?答:①极限状态当整个结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,此特定状态成为该功能的极限状态。
②承载能力极限状态和正常使用极限状态。
2-4 试解释一下名词:作用、直接作用、间接作用、抗力。
作用:是指使结构产生力、变形、应力和应变的所有原因;直接作用:是指施加在结构上的集中力和分布力;间接作用:是指引起结构外加变形和约束变形的原因;抗力:是指结构构件承受力和变形的能力。
2-5我国《公路桥规》规定了结构设计哪三种状况?答:持久状况、短暂状况和偶然状况。
2-6结构承载能力极限状态和正常使用极限状态设计计算原则是什么?我国《公路桥规》采用的是近似概率极限状态设计法。
①承载能力极限状态的计算以塑性理论为基础,设计的原则是作用效应最不利组合(基本组合)的设计值必须小于或等于结构抗力设计值,即0d S R γ≤。
②正常使用状态是以结构弹性理论或弹塑性理论为基础,采用作用(或荷载)的短期效应组合、长期效应组合或短期效应组合并考虑长期效应组合的影响,对构建的抗裂、裂缝宽度和挠度进行验算,并使各项计算值不超过《公路桥规》规定的各相应限值。
设计表达式为1S C ≤.2-7什么叫材料强度的标准值和设计值?①材料强度标准值:是由标准试件按标准试验方法经数理统计以概率分布的0.05分位值确定强度值,即取值原则是在符合规定质量的材料强度实测值的总体中,材料的强度的标准值应具有不小于95%的保证率。
②材料强度设计值:是材料强度标准值除以材料性能分项系数后的值。
2-8作用分为几类?什么叫作用的标准值,可变作用的准永久值可变作用的频遇值?答:作用分为永久作用(恒载)、可变作用和偶然作用三类;作用的标准值:是结构和结构构件设计时,采用的各种作用的基本代表值。
可变作用的准永久值:指在设计基准期间,可变作用超越的总时间约为设计基准期一半的作用值。
可变作用频遇值:在设计基准期间,可变作用超越的总时间为规定的较小比率或超越次数为规定次数的作用。
它是指结构上较频繁出现的且量值较大的荷载作用取值。
2-9钢筋混凝土梁的支点截面处,结构重力产生的剪力标准值187.01Gk V kN =;汽车荷载产生的剪力标准值1261.76Q k V kN =;冲击系数(1) 1.19μ+=;人群荷载产生的剪力标准值257.2Q k V kN =;温度梯度作用产生的剪力标准值341.5Q k V kN =,参照例题2-3,试进行正常使用极限状态设计时的作用效应组合计算。
解:①作用短期效应组合汽车荷载不计冲击系数的汽车荷载剪力标准值为:11'261.76/1.19219.971Q kQ k V V kN μ===+111187.010.7219.97 1.057.20.841.5m nsd Gik j Qjk i j S S S φ===+•=+⨯+⨯+⨯∑∑=431.39kN①作用长期效应组合211187.010.4219.970.457.20.841.5m nld Gik j Qjk i j S S S φ===+•=+⨯+⨯+⨯∑∑=331.08kN第三章3.1、试比较图3-4和3-5,说明钢筋混凝土板和钢筋混凝土梁钢筋布置的特点。
答:板:单向板主钢筋沿板的跨度方向布置在板的受拉区,钢筋数量由计算决定。
受力主钢筋的直径不宜小于10mm (行车道板)或8mm (人行道板)。
近梁肋处的板主钢筋,可沿板高中心纵轴线的(1/4~1/6)计算跨径处按(30°~45°)弯起,但通过支承而不弯起的主钢筋,每米板宽不应少于3根,并不少于主钢筋截面积的1/4。
在简支板的跨中和连续梁的支点处,板主钢筋间距不大于200mm 。
行车道板受力钢筋的最小混凝土保护层厚度c 应不小于钢筋的公称直径且同时满足附表1-8的要求。
在板应设置垂直于板受力钢筋的分布钢筋,分布钢筋是在主筋上按一定间距设置的横向钢筋,属于构造配置钢筋,即其数量不通过计算,而是按照设计规规定选择的。
梁:梁的钢筋常常采用骨架形式,一般分为绑扎钢筋骨架和焊接钢筋骨架两种形式。
梁纵向受拉钢筋的数量由数量决定。
可选择的钢筋数量直径一般为(12~32)mm ,通常不得超过40mm 。
在同一根梁主钢筋宜用相同直径的钢筋,当采用两种以上直径的钢筋时,为了便于施工识别,直径间应相差2mm 以上。
3-2什么叫受弯构件纵向受拉钢筋的配筋率?配筋率的表达式中,0h 含义是什么?答: 配筋率是指所配置的钢筋截面面积与规定的混凝土截面面积的比值(化为百分数表达)。