安徽省池州市高中数学第一章集合与函数概念1.2.1函数的概念一学案无答案新人教A版
高中数学第一章集合与函数概念2 1函数的概念3教案新人教版必修1

函数的概念(一)教学目标1.知识与技能(1)理解函数的概念;体会随着数学的发展,函数的概念不断被精炼、深化、丰富.(2)初步了解函数的定义域、值域、对应法则的含义.2.过程与方法(1)回顾初中阶段函数的定义,通过实例深化函数的定义.(2)通过实例感知函数的定义域、值域,对应法则是构成函数的三要素,将抽象的概念通过实例具体化.3.情感、态度与价值观在函数概念深化的过程中,体会数学形成和发展的一般规律;由函数所揭示的因果关系,培养学生的辨证思想.(二)教学重点与难点重点:理解函数的概念;难点:理解函数符号y = f (x)的含义.(三)教学方法回顾旧知,通过分析探究实例,深化函数的概念;体会函数符号的含义. 在自我探索、合作交流中理解函数的概念;尝试自学辅导法.(四)教学过程h = 130t– 5t2.示例2:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空沿问题. 下图中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.示例 3 国际上常用恩格尔系数②反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高,下表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.“八五”计划以来我国城镇居民恩格尔系数变化情况时间(年) 199119921993199419951996城镇居民家庭恩格尔系数(%) 53.852.950.149.949.948.6时199199199200200师生合作交流揭示三个示例中的自变量以及自变量的变化范围,自变量与因变量之间的对应关系.究规律,形成并深化函数的概念.3.函数的表达式.课后作业 1.2第一课时习案 独立完成巩固知识备选例题例1 函数y = f (x )表示( C ) A .y 等于f 与x 的乘积 B .f (x )一定是解析式 C .y 是x 的函数D .对于不同的x ,y 值也不同 例2 下列四种说法中,不正确的是( B )A .函数值域中每一个数都有定义域中的一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域只含有一个元素,则值域也只含有一个元素例3 已知f (x ) = x 2+ 4x + 5,则f (2) = 2.7 ,f (–1) = 2 .例4 已知f (x ) = x 2 (x ∈R ),表明的“对应关系”是 平方 ,它是 R → R 的函数. 例5 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系如右图示,那么水瓶的形状是下图中的( B )〖解 析〗取水深2H h ,注水量V ′>2V,即水深为一半时,实际注水量大小水瓶总水量的一半,A 中V ′<2V ,C 、D 中V ′=2V,故排除A 、C 、D.。
函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
高中数学 第一章 集合与函数概念 1.2.1 函数的概念教案 新人教A版必修1(2021年最新整理)

高中数学第一章集合与函数概念 1.2.1 函数的概念教案新人教A版必修1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章集合与函数概念1.2.1 函数的概念教案新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章集合与函数概念 1.2.1 函数的概念教案新人教A版必修1的全部内容。
1.2.1 函数的概念1。
知识与技能(1)通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型;(2)用集合与对应的语言刻画函数;理解函数的三要素及函数符号f(x)的含义;(3)会求一些简单函数的定义域及值域。
2.过程与方法让学生通过合作探究,经历函数概念的形成过程,渗透归纳推理的数学思想,培养学生的抽象概括能力,体会数学形成和发展的一般规律,强化“形”与“数”结合并相互转化的数学思想。
3。
情感、态度与价值观(1)树立“数学源于实践,又服务于实践”的数学应用意识;(2)渗透数学思想,强化学生参与意识,培养学生严谨的学习态度;同时感受数学的抽象性和简洁美,激发学生学习数学的热情。
重点:体会函数是描述变量之间的依赖关系的重要数学模型,理解函数的概念。
难点:函数概念及函数符号y=f(x)的理解.(1)重点的突破:以学生熟知的函数及初中函数的定义为切入点,引导学生结合具体实例,分组交流讨论,归纳概括出实例的共同特点,在此基础上,结合集合知识,利用对应的观点形成函数概念的教学,整个过程通过学生的“观察→分析→比较→归纳→概括”,最终由特殊到一般,由具体到抽象,从感性认识上升到理性认识,在培养学生抽象概括能力的同时重难点也得以突破。
安徽省池州市高中数学第一章集合与函数概念1.2.1函数的概念三学案无答案新人教版

函数的概念(三)
旧知链接:1、①函数的三要素: , , ;②相等函数条件:
③用区间表示下列取值范围::31<<x :52<≤x
:93≤≤x :54≤<x
2、新知自研:自研必修1课本第16到17页的所有内容 学习目标: 认识相同函数的定义域,掌握函数定义域的求法。
二、【定向导学·互动展示·当堂反馈】
动例
【同步演练】
训练课(时段:晚自习 , 时间: 30分钟)
“日日清巩固达标训练题” 自评: 师评:
基础题:
1、求下列函数的定义域:
(1)x
x x f -++=21
1)(; (2);1
4)(2
--=
x x x f
(3)12)(--=x x x f ; (4)x x x f -+-=11)(;
发展题: 1、已知1)(2++=mx mx x f 的定义域为一切实数,则m 的取值范围;
提高题:
已知)4(2-x f 的定义域为[2,3],求)5(+x f 的定义域。
培辅课(时段:大自习 附培辅单) 1、今晚你需要培辅吗?(需要,不需要) 2、效果描述: 反思课 1、病题诊所: 2、精题入库:
【教师寄语】新课堂,我展示,我快乐,我成功………今天你展示了吗!!!。
安徽省合肥市高中数学 第一章 集合与函数概念 1.2.1 函数的概念教案 新人教A版必修1

(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域;
3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的
积极性。
修改与创新
教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示。
(1)y= ( )2;(2)y= ( );(3)y= ;(4)y=
分析:①构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)
(5)满足实际问题有意义.
巩固练习:课本练习第1题。
2、如何判断两个函数是否为同一函数
例3、下列函数中哪个与函数y=x相等?
① ② ③f(x) = +
④f(x) = ⑤
(五)归纳小结
①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念。
(六)设置问题,留下悬念
1、作业:
2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系。
(1)求函数的定义域;(2)求f(-3),f( )的值;
高中数学第一章集合与函数概念2 1函数的概念4教案新人教版必修1

函数的三要素(一)教学目标1.知识与技能(1)了解函数三要素的含义,掌握根据函数的三要素判定两个函数是否为同一个函数的方法.(2)会求简单函数的定义域和函数值.2.过程与方法通过示例分析,让学生掌握求函数定义域的基本题型及方法,进一步加深对函数概念的理解.通过求出函数的函数值,加深对应法则的认识.3.情感、态度与价值观通过动手实践研究数学问题,提高分析问题,解决问题能力;体会成功地解答数学问题的学习乐趣,培养钻研精神.(二)教学重点与难点重点:掌握函数定义域的题型及求法.难点:理解函数由定义域与对应法则确定函数这一基本原则.(三)教学方法启发式教学,在老师引导,学生在合作的状态下理解知识、应用知识,提升学生应用知识和基本技能探究解决问题的能力.(四)教学过程备选例题例1 求下列函数的定义域(1)2112y x =-+; (2)224x y x -=-;(3)1||y x x =+;(4)2y =;(5)1||3y x =-;(6)y =(a 为常数).〖解 析〗(1)x ∈R ;(2)要使函数有意义,必须使x 2– 4≠0,得原函数定义域为{x | x ∈R 且x ≠±2}; (3)要使函数有意义,必须使x + |x |≠0,得原函数定义域为{x | x >0}; (4)要使函数有意义,必须使10,40,x x -≥⎧⎨-≥⎩得原函数的定义域为{x | 1≤x ≤4};(5)要使函数有意义,必须使240,||30;x x ⎧-≥⎨-≠⎩得原函数定义域为{x | –2≤x ≤2};(6)要使函数有意义,必须使ax – 3≥0,得 当a >0时,原函数定义域为{x | x ≥3a }; 当a <0时,原函数定义域为{x | x ≤3a}; 当a = 0时,ax – 3≥0的解集为∅,故原函数定义域为∅. 例2 (1)已知函数f (x )的定义域为(0, 1),求f (x 2)的定义域. (2)已知函数f (2x + 1)的定义域为(0, 1),求f (x )的定义域.(3)已知函数f (x + 1)的定义域为〖–2, 3〗,求f (2x 2 – 2)的定义域. 〖解 析〗(1)∵f (x )的定义域为(0, 1),∴要使f (x 2)有意义,须使0<x 2<1,即–1<x <0或0<x <1,∴函数f (x 2)的定义域为{x | –1<x <0或0<x <1}.(2)∵f (2x + 1)的定义域为(0, 1),即其中的函数自变量x 的取值范围是0<x <1,令t = 2x + 1,∴1<t <3,∴f (t )的定义域为1<x <3,∴函数f (x )的定义域为{x | 1<x <3}.(3)∵f (x + 1)的定义域为–2≤x ≤3, ∴–2≤x ≤3.令t = x + 1,∴–1≤t ≤4, ∴f (t )的定义域为–1≤t ≤4.即f (x )的定义域为–1≤x ≤4,要使f (2x 2– 2)有意义,须使–1≤2x 2– 2≤4,∴≤x≤≤x.函数f (2x2– 2)的定义域为{x |≤x≤≤x}. 注意:对于以上(2)(3)中的f (t)与f (x)其实质是相同的.。
安徽省池州市高中数学第一章集合与函数概念1.2.1函数的概念一学案无答案新人教版

函数的概念(五)
旧知链接:1、求下列函数的值域①2x y =: ,②x y = : ,③x y =
: ;
④配方法适合的函数: ⑤换元法适合的函数: ; 2、新知自研:自研必修1课本第16到17页的所有内容 学习目标: 了解函数值域的定义,掌握函数值域的求法。
二、【定向导学·互动展示·当堂反馈】
·同
题解题过程,思考文后问题:1,总结例2:
(分离常数
程,预设
训练课(时段:晚自习 , 时间: 30分钟)
“日日清巩固达标训练题” 自评: 师评:
基础题:
1、求下列函数的值域:
(1);11
)(2
x
x f += (2);;12342
2--+-=x x x x y 发展题: 2、求函数6
322+++=x x x y 的值域; 提高题:
3、求函数3
274222
++-+=x x x x y 的值域;
培辅课(时段:大自习 附培辅单) 1、今晚你需要培辅吗?(需要,不需要) 2、效果描述:
反思课
1、病题诊所:
2、精题入库:
【教师寄语】新课堂,我展示,我快乐,我成功………今天你展示了吗!!!。
安徽省池州市2016_2017学年高中数学第一章集合与函数概念1.2.1函数的概念(一)学案(无答案)新人教A版必修1

函数的概念(五)
旧知链接:1、求下列函数的值域①2x y =: ,②x y = : ,③x y =: ;
④配方法适合的函数: ⑤换元法适合的函数: ; 2、新知自研:自研必修1课本第16到17页的所有内容 学习目标: 了解函数值域的定义,掌握函数值域的求法。
二、【定向导学·互动展示·当堂反馈】
·同
题解题过程,思考文后问题:1,总结例2: (分离常数
程,预设
训练课(时段:晚自习 , 时间: 30分钟)
“日日清巩固达标训练题” 自评: 师评:
基础题:
1、求下列函数的值域:
(1);11
)(2
x x f += (2);;1
23422--+-=x x x x y 发展题: 2、求函数6
32
2
+++=x x x y 的值域; 提高题:
3、求函数3
274222
++-+=x x x x y 的值域;
培辅课(时段:大自习 附培辅单) 1、今晚你需要培辅吗?(需要,不需要) 2、效果描述:
反思课
1、病题诊所:
2、精题入库:
【教师寄语】新课堂,我展示,我快乐,我成功………今天你展示了吗!!!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的概念(五)
旧知链接:1、求下列函数的值域①2x y =:,②x y = :,③x y =:; ④配方法适合的函数:⑤换元法适合的函数:;
2、新知自研:自研必修1课本第16到17页的所有内容 学习目标: 了解函数值域的定义,掌握函数值域的求法。
二、【定向导学·互动展示·当堂反馈】
·同
题解题过12:(分离常数
程,预设
训练课(时段:晚自习 , 时间: 30分钟)
“日日清巩固达标训练题” 自评: 师评: 基础题:
1、求下列函数的值域:
(1);11
)(2x x f += (2);;1
2342
2--+-=x x x x y 发展题: 2、求函数6
32
2
+++=x x x y 的值域; 提高题:
3、求函数3
274222
++-+=x x x x y 的值域;
培辅课(时段:大自习 附培辅单) 1、今晚你需要培辅吗?(需要,不需要) 2、效果描述: 反思课
1、病题诊所:
2、精题入库:
【教师寄语】新课堂,我展示,我快乐,我成功………今天你展示了吗!!!。