2015-2016学年九年级(上)开学数学试卷附答案

合集下载

2015-2016学年四川省乐山市峨眉山市博睿特外国语学校九年级(上)月考数学试卷(10月份)

2015-2016学年四川省乐山市峨眉山市博睿特外国语学校九年级(上)月考数学试卷(10月份)

2015-2016学年四川省乐山市峨眉山市博睿特外国语学校九年级(上)月考数学试卷(10月份)一、选择题:(本大题共10题,每题3分,共30分)1.(3分)(2015秋•峨眉山市校级月考)在实数范围内,有意义,则x的取值范围是()A.x≥1 B.x≥﹣1 C.x≤1 D.x≤﹣12.(3分)(2011•张家界)下列事件中,不是必然事件的是()A.对顶角相等B.内错角相等C.三角形内角和等于180° D.等腰梯形是轴对称图形3.(3分)(2013•市中区模拟)如图为正方体的一种平面展开图,各面都标有数字,则数字为1的面所对的面上的数字是()A.﹣3 B.﹣2 C.2 D.34.(3分)(2010•庆阳)如图,矩形ABOC的面积为3,反比例函数y=的图象过点A,则k=()A.3 B.﹣1.5 C.﹣3 D.﹣65.(3分)(2013•市中区模拟)若方程(m2﹣1)x2﹣mx﹣x+2=0是关于x的一元一次方程,则代数式|m﹣1|的值为()A.0 B.2 C.0或2 D.﹣26.(3分)(2015秋•峨眉山市校级月考)如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=θ,那么AB等于()A.a•sinθB.a•tanθC.a•cosθD.7.(3分)(2013•市中区模拟)如图,一条流水生产线上L1、L2、L3、L4、L5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P,使五人到供应站P的距离总和最小,这个供应站设置的位置是()A.L2处B.L3处C.L4处 D.生产线上任何地方都一样8.(3分)(2013•市中区模拟)关于抛物线y=﹣(x+1)2﹣1,下列结论错误的是()A.顶点坐标为(﹣1,﹣1)B.当x=﹣1时,函数值y的最大值为﹣1C.当x<﹣1时,函数值y随x值的增大而减小D.将抛物线向上移1个单位,再向右移1个单位,所得抛物线的解析式为y=﹣x29.(3分)(2016•河南模拟)如图,在▱ABCD中,AB=4,AD=3,过点A作AE⊥BC于E,且AE=3,连结DE,若F为线段DE上一点,满足∠AFE=∠B,则AF=()A.2 B.C.6 D.210.(3分)(2013•市中区模拟)如图,已知A、B两点的坐标分别为(8,0)、(0,﹣6),⊙C的圆心坐标为(0,7),半径为5.若P是⊙C上的一个动点,线段PB与x轴交于点D,则△ABD面积的最大值是()A.63 B.31C.32 D.30二、填空题:(本大题共6题.每题3分,共18分)11.(3分)(2015•庆阳)的平方根是______.12.(3分)(2013•市中区模拟)课外活动中一些学生分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少2组,这些学生共有______人.13.(3分)(2015春•路桥区期末)如图,在▱ABCD中,AC与BD交于点O,点E是BC 边的中点,OE=1,则AB的长是______.14.(3分)(2013•市中区模拟)已知α、β是一元二次方程x2﹣2x﹣2=0的两实数根,则代数式(α﹣2)(β﹣2)=______.15.(3分)(2009•陕西)如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.16.(3分)(2010•南宁)如图所示,点A1,A2,A3在x轴上,且OA1=A1A2=A2A3,分别过点A1,A2,A3作y轴的平行线,与反比例函数y=(x>0)的图象分别交于点B1,B2,B3,分别过点B1,B2,B3作x轴的平行线,分别于y轴交于点C1,C2,C3,连接OB1,OB2,OB3,那么图中阴影部分的面积之和为______.三、(本大题共3题.每题9分,共27分)17.(9分)(2015秋•峨眉山市校级月考)计算:.18.(9分)(2015秋•峨眉山市校级月考)先化简,再求值:,其中x的值是方程x2+x=0的根.19.(9分)(2013•市中区模拟)已知:如图,∠BAC=∠ABD,AC=BD,点O是AD、BC 的交点,点E是AB的中点.证明:OE⊥AB.四、(本大题共3题.每题10分,共30分)20.(10分)(2015秋•峨眉山市校级月考)青岛国际帆船中心要修建一处公共服务设施,使它到三所运动员公寓A、B、C的距离相等.(不写作法,但要保留作图痕迹)(1)若三所运动员公寓A、B、C的位置如图所示,请你在图中确定这处公共服务设施(用点P表示)的位置;(2)若∠BAC=66°,求∠BPC.21.(10分)(2014•拱墅区二模)在一个不透明的盒子里,装有四个分别标有数字﹣1,﹣2,﹣3,﹣4的小球,它们的形状、大小、质地等完全相同.小强先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小强、小华各取一次小球所确定的点(x,y)落在一次函数y=x﹣1的图象上的概率;(3)求小强、小华各取一次小球所确定的数x、y满足y>x﹣1的概率.[选做题]从22、23两题中选做一题,如果两题都做,只以22题计分22.(10分)(2016•湖北模拟)如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)23.(2015秋•峨眉山市校级月考)已知关于x的一元二次方程x2﹣2kx+k2+2=2(1﹣x)有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两实根x1,x2满足|x1+x2|=x1x2﹣1,求k的值.五、(本大题共2题.每题10分,共20分)24.(10分)(2013•市中区模拟)如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,D是PQ上一点,且DC=DQ.(1)求证:DC是⊙O的切线;(2)如果CD=AB,求BP:PO的值.25.(10分)(2016•井研县一模)如图,点A(﹣2,n),B(1,﹣2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;(3)若C是x轴上一动点,设t=CB﹣CA,求t的最大值,并求出此时点C的坐标.六、(本大题共2题.26题12分,27题13分,共25分)26.(12分)(2013•市中区模拟)如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.(3)已知抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.27.(13分)(2015秋•峨眉山市校级月考)如图,矩形ABCD中,AB=6,BC=,点O 是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.2015-2016学年四川省乐山市峨眉山市博睿特外国语学校九年级(上)月考数学试卷(10月份)参考答案一、选择题:(本大题共10题,每题3分,共30分)1.B;2.B;3.A;4.C;5.A;6.B;7.B;8.C;9.D;10.B;二、填空题:(本大题共6题.每题3分,共18分)11.±2;12.48;13.2;14.-2;15.4;16.;三、(本大题共3题.每题9分,共27分)17.;18.;19.;四、(本大题共3题.每题10分,共30分)20.;21.;[选做题]从22、23两题中选做一题,如果两题都做,只以22题计分22.;23.;五、(本大题共2题.每题10分,共20分)24.;25.;六、(本大题共2题.26题12分,27题13分,共25分)26.;27.;。

九年级数学上学期阶段性学业水平测试试题苏科版

九年级数学上学期阶段性学业水平测试试题苏科版

2015—2016学年度第一学期阶段性学业水平测试九年级数学试卷(本卷满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号写在答题纸相应位置.......上)1.下列图形中不一定是相似图形的是【▲】A.两个等边三角形B.两个等腰直角三角形 C.两个长方形D.两个正方形2.反比例函数1yx=的图象是【▲】A.线段 B.直线C.抛物线 D.双曲线3.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是【▲】A.2:3 B.: C.4:9 D.8:274.在反比例函数1kyx-=的每一条曲线上,y都随着x的增大而减小,则k的值可以是【▲】A.﹣1 B.1 C.2 D.35.如图,已知AB∥CD,AD与BC相交于点O,AO:DO=1:2,那么下列式子正确的是【▲】A.BO:BC=1:2 B.CD:AB=2:1 C.CO:BC=1:2 D.AD:DO=3:1(第5题图) (第7题图)(第8题图)6.已知反比例函数2yx=-,下列结论不正确的是【▲】A.图象必经过点(﹣1,2) B.y随x的增大而增大C.图象分布在第二、四象限内 D.若x>1,则﹣2<y<0 7.如图,下列条件不能判定△ADB∽△ABC的是【▲】A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.AD AB AB BC=8.如图,A、B两点在双曲线4yx=上,分别经过A、B两点向x轴,y轴作垂线段,若图中阴影部分的面积为1,则S1+S2=【▲】A.3 B.4 C.5 D.69.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是【▲】A.124xyx=--B.21xyx=--C.31xyx=--D.84xyx=--(第9题图) (第10题图)(第12题图)10.如图,点A在双曲线3yx=上,点B在双曲线kyx=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为【▲】A.6 B.9 C.10 D.12二、填空题:(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答.题纸相应位置......上)11.已知反比例函数kyx=经过点(1,5),则k= ▲ .12.如图,△ABC∽△ACP,若∠A=75°,∠APC=65°,则∠B的大小为▲ 度.13.点(﹣1,1y),(2,2y),(3,3y)均在函数6yx=的图象上,则1y,2y,3y的大小关系是▲ .14.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则AODO等于▲ .(第14题图)(第16题图)(第17题图)15.若函数4y x=与1yx=的图象有一个交点是(,2),则另一个交点坐标是▲ .16.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是▲ 米.17.如图,已知A(,1y),B(2,2y)为反比例函数1yx=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是▲ .18.如图,矩形ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣2),反比例函数kyx=的图象经过顶点C,AD边交y轴于点E,若四边形BCDE的面积等于△ABE面积的5倍,则k的值等于▲ .(第18题图)三、解答题:(本大题共10小题,共96分,请在答题纸指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分10分)如图所示,四边形ABCD∽四边形A′B′C′D′,求未知边x的长度和α的大小.20.(本小题满分10分)如图,已知反比例函数kyx的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.21.(本小题满分10分)如图,△ABC中,CD是边AB上的高,且AD CD CD BD=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.22.(本小题满分8分)去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y与等待时间x(分)之间存在如下的关系:100yx=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数100yx=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?23.(本小题满分8分)在平面直角坐标系中△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.24.(本小题满分10分)如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数myx的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式kx+b﹣mx<0的解集(请直接写出答案).25.(本小题满分8分)如图,互相垂直的两条公路AM、AN旁有一矩形花园ABCD,其中AB=30米,AD=20米.现欲将其扩建成一个三角形花园APQ,要求P在射线AM上,Q在射线AN上,且PQ经过点C.(1)DQ=10米时,求△APQ的面积.(2)当DQ的长为多少米时,△APQ的面积为1600平方米.26.(本小题满分8分)阅读理解:对于任意正实数a,b,∵(2(a b≥0,∴a﹣ab+b≥0,∴a+b ab,只有当a=b时,等号成立.结论:在a+b ab(a,b均为正实数)中,若ab为定值P,则a+b P当a=b,a+b有最小值P根据上述内容,回答下列问题:(1)若x>0,4xx+的最小值为▲ .(2)探索应用:如图,已知A(﹣2,0),B(0,﹣3),点P为双曲线6yx=(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD 的形状.27.(本小题满分12分)在平面直角坐标系中,函数1y =12x(x >0),2y =3x-(x <0)的图象如图所示,点A ,B 分别是1y =12x(x >0),2y =3x-(x <0)图象上的点,连接OA ,OB .(1)若OA 与x 轴所成的角为45°,求点A 的坐标; (2)如图1,当∠AOB =90°,求OA OB的值;(3)设函数3k y x=(x >0)的图象与1y =12x(x >0)的图象关于x 轴对称,点B 的横坐标为﹣2,过点B 作BE ⊥x 轴,点F 是y 轴负半轴上的一个动点,函数3k y x=(x >0)的图象上是否存在一点G ,使以点O 、F 、G 为顶点的三角形与△OBE 相似?如果存在,求出点F 的坐标,如果不存在,请说明理由.28.(本小题满分12分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C 时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.初三数学阶段性测试参考答案与试题解析一.选择题(共10小题)1.下列图形中不一定是相似图形的是()A.两个等边三角形B.两个等腰直角三角形C.两个长方形D.两个正方形【考点】相似图形.【分析】根据相似图形的定义对各选项分析判断后利用排除法求解.【解答】解:A、两个等边三角形对应边成比例,对应角相等,一定相似,故本选项错误;B、两个等腰直角三角形,顶角都是直角相等,夹边成比例,一定相似,故本选项错误;C、两个长方形,四个角都是直角相等,但对应边不一定成比例,不一定相似,故本选项正确;D、两个正方形对应边成比例,对应角相等,一定相似,故本选项错误.故选C.【点评】本题考查了相似图形的概念,注意从对应边成比例,对应角相等两个方面考虑.2.反比例函数y=的图象是()A.线段 B.直线 C.抛物线D.双曲线【考点】反比例函数的性质.【分析】根据反比例函数的性质可直接得到答案.【解答】解:∵y=是反比例函数,∴图象是双曲线.故选:D.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.3.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.在反比例函数的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.﹣1 B.1 C.2 D.3【考点】反比例函数的性质.【分析】利用反比例函数的增减性,y随x的增大而减小,则求解不等式1﹣k>0即可.【解答】解:∵反比例函数图象的每一条曲线上,y随x的增大而减小,∴1﹣k>0,解得k<1.故选A.【点评】本题主要考查反比例函数的性质的知识点,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.5.如图,已知AB∥CD,AD与BC相交于点O,AO:DO=1:2,那么下列式子正确的是()A.BO:BC=1:2 B.CD:AB=2:1 C.CO:BC=1:2 D.AD:DO=3:1【考点】平行线分线段成比例.【分析】证明△AOB∽△DOC,得到AB:CD=AO:DO=1:2,即可解决问题.【解答】解:∵AB∥CD,∴△AOB∽△DOC,∴AB:CD=AO:DO=1:2,∴CD:AB=2:1,故选B.【点评】该题主要考查了平行线分线段成比例定理及其应用问题;解题的关键是判断出△AOB∽△DOC.6.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象分布在第二、四象限内 D.若x>1,则﹣2<y<0【考点】反比例函数的性质.【分析】根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.【解答】解:A、(﹣1,2)满足函数的解析式,则图象必经过点(﹣1,2);B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;C、命题正确;D、命题正确.故选B.【点评】本题考查了反比例函数的性质,对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.7.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=【考点】相似三角形的判定.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【点评】本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.8.如图,A、B两点在双曲线y=上,分别经过A、B两点向x轴,y轴作垂线段,若图中阴影部分的面积为1,则S1+S2=()A.3 B.4 C.5 D.6【考点】反比例函数系数k的几何意义.【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选D.【点评】本题考查了反比例函数系数k的几何意义,以及反比例函数的图象和性质及任一点坐标的意义,有一定的难度.9.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【考点】相似三角形的判定与性质;函数关系式;全等三角形的判定与性质.【分析】作FG⊥BC于G,依据已知条件求得△DBE≌△EGF,得出FG=BE=x,EG=DB=2x,然后根据平行线的性质即可求得.【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠DBE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中,,∴△DBE≌△EGF(AAS),∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选A.【点评】本题考查了三角形全等的判定和性质,以及平行线的性质,辅助线的做法是解题的关键.10.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12【考点】反比例函数图象上点的坐标特征.【分析】过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOD是矩形,四边形OEBF 是矩形,得出S矩形AFOD=3,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OD,即OE=3OD,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.【解答】解:过点B作BE⊥x轴于E,延长线段BA,交y轴于F,∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y=上,∴S矩形AFOD=3,同理S矩形OEBF=k,∵AB∥OD,∴==,∴AB=2OD,∴DE=2OD,∴S矩形OEBF=3S矩形AFOD=9,∴k=9,故选B.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,矩形的判定和性质,平行线分线段成比例定理,作出辅助线,构建矩形是解题的关键.二.填空题(共8小题)11.已知反比例函数y=经过点(1,5),则k= 5 .【考点】反比例函数图象上点的坐标特征.【分析】把点(1,5)代入反比例函数y=中,可直接求k的值.【解答】解:依题意,得x=1时,y=5,所以,k=xy=5.故答案为:5【点评】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特点.关键是设函数关系式,根据已知条件求函数关系式.12.如图,△ABC∽△ACP,若∠A=75°,∠APC=65°,则∠B的大小为40 度.【考点】相似三角形的性质.【分析】根据三角形的内角和得到∠ACP=40,然后根据相似三角形的性质即可得到结论.【解答】解:∵∠A=75°,∠APC=65°,∴∠ACP=40,∵△ABC∽△ACP,∴∠B=∠ACP=40°,故答案为:40.【点评】本题考查了相似三角形三角形的内角和,熟记相似三角形的性质是解题的关键.13.点(﹣1,y1),(2,y2),(3,y3)均在函数y=的图象上,则y1,y2,y3的大小关系是y1<y3<y2.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣1,y1),(2,y2),(3,y3)代入函数y=,求出y1,y2,y3的值,并比较出其大小即可.【解答】解:∵点(﹣1,y1),(2,y2),(3,y3)均在函数y=的图象上,∴y1==﹣6,y2==3,y3==2,∵﹣6<2<3,∴y1<y3<y2.故答案为:y1<y3<y2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于.【考点】相似三角形的判定与性质;正方形的性质.【专题】数形结合.【分析】利用两角对应相等易得△AOD∽△EAD,那么=.【解答】解:∵∠ADO=∠ADO,∠DOA=∠DAE=90°,∴△AOD∽△EAD,∴==.故答案为:.【点评】本题考查了相似三角形的判定与应用;把所求的线段的比进行相应的转移是解决本题的关键.15.若函数y=4x与y=的图象有一个交点是(,2),则另一个交点坐标是(﹣,﹣2).【考点】反比例函数图象的对称性.【专题】计算题.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:正比例函数y=4x与反比例函数y=的图象均关于原点对称,则其交点也关于原点对称,那么(,2)关于原点的对称点为:(﹣,﹣2).故答案为:(﹣,﹣2).【点评】本题考查反比例函数图象的中心对称性,较为简单,容易掌握.16.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是8 米.【考点】相似三角形的应用.【分析】首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.【解答】解:由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=12米,∴=,CD=8米,故答案为:8.【点评】此题主要考查了相似三角形的应用,关键是掌握相似三角形对应边成比例.17.如图,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是(,0).【考点】反比例函数图象上点的坐标特征.【分析】先求出A、B的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP﹣BP|<AB,延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【解答】解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,).在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0)把A、B的坐标代入得:,解得:,∴直线AB的解析式是y=﹣x+,当y=0时,x=,即P(,0);故答案为:(,0).【点评】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度18.如图,矩形ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣2),反比例函数y=的图象经过顶点C,AD边交y轴于点E,若四边形BCDE的面积等于△ABE面积的5倍,则k的值等于﹣.【考点】反比例函数系数k的几何意义.【分析】首先得出△AEB≌△GBE,再利用四边形BCDE的面积等于△ABE面积的5倍,进而得出AE与BC之间的关系,由△BCF∽△EAO,得出C点坐标,进而求出k的值.【解答】解:如图,作CF⊥y轴于F,作EG⊥BC于G,∵∠EGB=∠EAB=∠ABG=90°,∴四边形ABGE是矩形,在△AEB和△GBE中,,∴△AEB≌△GBE(SSS),∵A、B的坐标分别是A(﹣1,0)、B(0,﹣2),∴AB直线解析式为:y=kx+b,故将两点代入得出:,解得:,故直线AB解析式为:y=﹣2x﹣2,∵AD⊥AB,AO⊥BE,∴OA2=OE•OB,即12=OE×2,∴OE=,∴E(0,)∵S四边形BCDE=5S△AEB∴S四边形BCDE=5S△GBE∴S四边形CDEG=4S△GBE∴CG=2BG=2AE=2=,∴BG=,∵∠AEO=∠CBF,∠EOA=∠CFB=90°,∴△BCF∽△EAO,∴==,∵AE=BG=,BC=BG+CG=+=∴∴===3,∴BF=3EO=,CF=3AO=3,∴OF=OB﹣BF=2﹣=,设C的坐标为(x,y)则x=3,y=﹣.故k=xy=3×(﹣)=﹣.故答案为:﹣.【点评】本题考查了反比例函数的综合运用,通过作辅助线,将图形分割,寻找全等三角形,利用边的关系设双曲线上点的坐标是解题关键.三.解答题(共10小题)19.如图所示,四边形ABCD∽四边形A′B′C′D′,求未知边x的长度和α的大小.【考点】相似多边形的性质.【专题】计算题.【分析】由相似多边形的性质可得,AD:AB=A′D′:A′B′,∠C=∠C′,根据图中表明的数字求解即可.【解答】解:由题意得:,∴x=18,∵∠C′=360°﹣(63°+129°+78°)=90°,四边形ABCD∽四边形A′B′C′D′,∴∠C=∠C′=90°,即α=90°.【点评】本题考查相似多边形的性质:相似多边形的对应角相等,对应边成比例.20.如图,已知反比例函数y=的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征.【分析】(1)根据待定系数法即可求得;(2)根据反比例函数的性质先判定图象在一、三象限,y随x的增大而减小,根据0<1<3,可以确定B(1,m)、C(3,n)两个点在第一象限,从而判定m,n的大小关系.【解答】解:(1)因为反比例函数y=的图象经过点A(﹣3,﹣2),把x=﹣3,y=﹣2代入解析式可得:k=6,所以解析式为:y=;(2)∵k=6>0,∴图象在一、三象限,y随x的增大而减小,又∵0<1<3,∴B(1,m)、C(3,n)两个点在第一象限,∴m>n.【点评】本题考查了待定系数法求解析式,反比例函数的性质等,熟练掌握反比例函数的性质是解题的关键.21.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【考点】相似三角形的判定与性质.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.22.去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y与等待时间x(分)之间存在如下的关系:y=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数y=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?【考点】反比例函数的应用.【专题】应用题.【分析】函数关系式y=中,y代表舒适度指数,x(分)代表等待时间.(1)是已知x=5,代入函数解析式求得y.(2)是已知y≥10,就可以得到关于x的不等式求的x的范围.【解答】解:(1)当x=5时,舒适度y===20;(2)舒适度指数不低于10时,由图象y≥10时,0<x≤10所以作为食堂的管理员,让每个在窗口买菜的同学最多等待10分钟.【点评】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是根据函数关系及题目的已知条件,分别求解,要注意自变量和函数代表的实际意义.23.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.【考点】作图-位似变换;作图-轴对称变换.【专题】作图题.【分析】(1)利用轴对称图形的性质进而得出对应点位置进而画出图形即可;(2)利用位似图形的性质得出对应点位置进而画出图形即可.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了轴对称变换以及位似变换,根据题意得出对应点位置是解题关键.24.如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式kx+b﹣<0的解集(请直接写出答案).【考点】反比例函数与一次函数的交点问题.【专题】数形结合.【分析】(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.【解答】解:(1)∵反比例函数y=(m≠0)过点B(1,﹣4),∴m=1×(﹣4)=﹣4,∴y=﹣,将x=﹣4,y=n代入反比例解析式得:n=1,∴A(﹣4,1),∴将A与B坐标代入一次函数解析式得:,解得:,∴y=﹣x﹣3;(2)在直线y=﹣x﹣3中,当y=0时,x=﹣3,∴C(﹣3,0),即OC=3,∴S△AOB=S△AOC+S△COB=(3×1+3×4)=;(3)不等式kx+b﹣<0的解集是﹣4<x<0或x>1.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,一次函数与坐标轴的交点,坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.25.如图,互相垂直的两条公路AM、AN旁有一矩形花园ABCD,其中AB=30米,AD=20米.现欲将其扩建成一个三角形花园APQ,要求P在射线AM上,Q在射线AN上,且PQ经过点C.(1)DQ=10米时,求△APQ的面积.(2)当DQ的长为多少米时,△APQ的面积为1600平方米.【考点】平行线分线段成比例;一元二次方程的应用.【分析】(1)由DC∥AP,得到=,代入数据求得AP=90,于是得到结论;(2)设DQ=x米,则AQ=x+20,根据平行线分线段成比例定理得到=,得到方程=,求出AP=,解一元二次方程即可得到结论.【解答】解:(1)∵DC∥AP,∴=,∴=,∴AP=90,∴S△APQ=AQ•AP=1350米2;(2)设DQ=x米,则AQ=x+20,∵DC∥AP,∴=,∴=,∴AP=,由题意得××(x+20)=1600,化简得3x2﹣200 x+1200=0,解x=60或.经检验:x=60或是原方程的根,∴DQ的长应设计为60或米.【点评】本题考查了平行线分线段成比例,求三角形的面积,一元二次方程的应用,熟练掌握平行线分线段成比例定理是解题的关键.26.阅读理解:对于任意正实数a,b,∵(﹣)2≥0,∴a﹣2+b≥0,∴a+b≥2,只有当a=b时,等号成立.结论:在a+b≥2(a,b均为正实数)中,若ab为定值P,则a+b≥2,当a=b,a+b有最小值2.根据上述内容,回答下列问题:(1)若x>0,x+的最小值为 4 .(2)探索应用:如图,已知A(﹣2,0),B(0,﹣3),点P为双曲线y=(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD 的形状.【考点】反比例函数综合题.【专题】综合题.【分析】(1)利用在a+b≥2得到x+≥2,即可得到x+的最小值;(2)设p(x,),则C(x,0),D(0,),则可表示出四边形ABCD面积S=AC•DB=(x+2)(+3),变形得S=(x+)+6,利用前面的结论可得四边形ABCD面积的最小值为12.此时x=,则x=2,得到OA=OC=2,OD=OB=3,利用平行四边形的判定定理可得四边形ABCD是平行四边形,而AC⊥BD,再根据菱形的判定定理得到四边形ABCD是菱形.【解答】解:(1)4;(2)设P(x,),则C(x,0),D(0,),∴四边形ABCD面积S=AC•DB=(x+2)(+3)=(x+)+6,由(1)得若x>0,x+的最小值为4,∴四边形ABCD面积S≥×4+6=12,∴四边形ABCD面积的最小值为12.此时x=,则x=2,∴C(2,0),D(0,3),∴OA=OC=2,OD=OB=3,∴四边形ABCD是平行四边形.又AC⊥BD,∴四边形ABCD是菱形.【点评】本题考查了阅读理解题的解题方法:利用题目中给的方法或结论解决问题.也考查了利用坐标表示线段长以及平行四边形和菱形的判定方法.27.在平面直角坐标系中,函数y1=(x>0),y2=(x<0)的图象如图所示,点A,B分别是y1=(x>0),y2=(x<0)图象上的点,连接OA,OB.(1)若OA与x轴所成的角为45°,求点A的坐标;(2)如图1,当∠AO B=90°,求的值;(3)设函数y3=(x>0)的图象与y1=(x>0)的图象关于x轴对称,点B的横坐标为﹣2,过点B作BE⊥x轴,点F是y轴负半轴上的一个动点,函数y3=(x>0)的图象上是否存在一点G,使以点O、F、G为顶点的三角形与△OBE相似?如果存在,求出点F的坐标,如果不存在,请说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)设A(a,b),根据反比例函数图象上点的坐标特征,得出ab=12,进而得出a=b=2,就可求得A的坐标;(2)过A、B分别作y轴的垂线,垂足为C、D,通过证得△AOC∽△OBD,然后根据相似三角形的性质即可求得;(3)分四种情况分别讨论求得.【解答】解:(1)设A(a,b),∵OA与x轴所成的角为45°,∴a=b,∵点A在y1=(x>0)图象上,∴ab=12,。

2016年北京西城初三上学期期末数学试题及答案

2016年北京西城初三上学期期末数学试题及答案

2016年北京西城初三上学期期末数学试题及答案年北京西城初三上学期期末数学试题及答案北京市西城区2015— 2016学年度第一学期期末试卷九年级数学 2016.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.二次函数()257y x =-+的最小值是的最小值是 A .7- B .7C .5-D .52.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,则cos A 的值为的值为 A .35 B .53C .45 D .343.如图,⊙C 与∠AOB 的两边分别相切,其中OA 边与⊙C 相切于点P .若∠AOB =90°,OP =6,则OC 的长为的长为 A .12 B .122 C .62 D .634.将二次函数265y x x =-+用配方法化成2()y x h k =-+的形式,下列结果中正确的是的形式,下列结果中正确的是A .2(6)5y x =-+B .2(3)5y x =-+C .2(3)4y x =-- D .2(3)9y x =+-5.若一个扇形的半径是18cm ,且它的弧长是12π cm ,则此扇形的圆心角等于,则此扇形的圆心角等于 A .30° B .60° C .90° D .120°6.如图,在平面直角坐标系xOy 中,点A 的坐标为(1-,2), AB ⊥x 轴于点B .以原点O 为位似中心,将△OAB 放大为放大为 原来的2倍,得到△OA 1B 1,且点A 1在第二象限,则点A 1 的坐标为的坐标为A .(2-,4)B .(12-,1)C .(2,4-)D .(2,4)7.如图,一艘海轮位于灯塔P 的南偏东37°方向,距离方向,距离 灯塔40 海里的A 处,它沿正北方向航行一段时间后, 到达位于灯塔P 的正东方向上的B 处.这时,B 处与处与 灯塔P 的距离BP 的长可以表示为A .40海里海里B .40tan37°海里C .40cos37°海里海里D .40sin37°海里海里8.如图,A ,B ,C 三点在已知的圆上,在△ABC 中,中,∠ABC =70°,∠ACB =30°,D 是的中点,的中点, 连接DB ,DC ,则∠DBC 的度数为的度数为A .30°B .45°C .50°D .70°9.某商品现在的售价为每件60元,元,每星期可卖出每星期可卖出300件.件.市场调查反映,市场调查反映,市场调查反映,如果调整商品售如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则y 与x 的关系式为的关系式为A .60(30020)y x =+B .(60)(30020)y x x =-+C .300(6020)y x =-D .(60)(30020)y x x =--10.二次函数228y x x m =-+满足以下条件:当21x -<<-时,它的图象位于x 轴的下方;当67x <<时,它的图象位于x 轴的上方,则m 的值为的值为 A .8 B .10- C .42- D .24-二、填空题(本题共18分,每小题3分) 11.若34a b =,则a bb +的值为的值为 .12.点A (3-,1y ),B (2,2y )在抛物线25y x x =-上,则1y 2y .(填“>”,“<”或“=”)13.△ABC 的三边长分别为5,12,13,与它相似的△DEF 的最小边长为15,则△DEF 的周长为周长为 .BAC14.如图,线段AB 和射线AC 交于点A ,∠A =30°,AB =20.点D 在射线AC 上,且∠ADB 是钝角,写出一个满足条件是钝角,写出一个满足条件 的AD 的长度值:AD = .15.程大位所著程大位所著《算法统宗》《算法统宗》《算法统宗》是一部中国传统数学重要的著作.是一部中国传统数学重要的著作.是一部中国传统数学重要的著作.在在《算法统宗》《算法统宗》中记载:中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?” 【注释】1步=5尺.译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?” 如图,假设秋千的绳索长始终保持直线状态,OA 是秋千的静止状态,A 是踏板,CD 是地面,点B 是推动两步后踏板的位置,弧AB 是踏板移动的轨迹.已知AC =1尺,CD =EB =10尺,人的身高BD =5尺.设绳索长OA =OB =x 尺,则可列方程为尺,则可列方程为 .16.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:小敏的作法如下:老师认为小敏的作法正确.请回答:连接OA ,OB 后,可证∠OAP =∠OBP =90°,其依据是;由此可证明直线P A ,PB 都是⊙O 的切线,其依据是 .尺规作图:过圆外一点作圆的切线. 已知:P 为⊙O 外一点. 求作:经过点P 的⊙O 的切线.PO如图,(1)连接OP ,作线段OP 的垂直平分线MN交OP 于点C ;(2)以点C 为圆心,CO 的长为半径作圆, 交⊙O 于A ,B 两点; (3)作直线P A ,PB .所以直线P A ,PB 就是所求作的切线.三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:24cos30tan60sin 45︒⋅︒-︒.18.如图,△ABC 中,AB =12,BC =15,AD ⊥BC 于点D ,∠BAD =30°. 求tan C 的值.的值.19.已知抛物线223y x x =-++与x 轴交于A ,B 两点,点A 在点B 的左侧.的左侧.(1)求A ,B 两点的坐标和此抛物线的对称轴;两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C ,点D 与点C 关于x 轴对称,求四边形ACBD 的面积.的面积.20.如图,四边形ABCD 中,AD ∥BC ,∠A =∠BDC . (1)求证:△ABD ∽△DCB ;(2)若AB =12,AD =8,CD =15,求DB 的长.的长.21.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x 米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?平方米,人行通道的宽度应是多少米?22.已知抛物线1C :2124y x x k =-+与x 轴只有一个公共点.轴只有一个公共点. (1)求k 的值;的值;(2)怎样平移抛物线1C 就可以得到抛物线2C :222(1)4y x k =+-?请写出具体的平移方法;方法;(3)若点A (1,t )和点B (m ,n )都在抛物线2C :222(1)4y x k =+-上,且n t <,直接写出m 的取值范围.的取值范围.23.如图,AB 是⊙O 的一条弦,且AB =43.点C ,E 分别在⊙O 上,且OC ⊥AB 于点D ,∠E =30°,连接OA . (1)求OA 的长;的长;(2)若AF 是⊙O 的另一条弦,且点O 到AF 的距离为22,直接写出∠BAF 的度数.的度数.24.奥林匹克公园观光塔.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B 处测得最高塔塔顶A 的仰角为45°,然后向最高塔的塔基直行90米到达C 处,再次测得最高塔塔顶A 的仰角为58°.请帮助他们计算出最高塔的高度AD 约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)25.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径.PC 是⊙O 的切线,C 为切点,PD ⊥AB于点D ,交AC 于点E . (1)求证:∠PCE =∠PEC ; (2)若AB =10,ED =32,sin A =35,求PC 的长.的长.26.阅读下面材料:如图1,在平面直角坐标系xOy 中,直线1y ax b =+与 双曲线2ky x=交于A (1,3)和B (3-,1-)两点. 观察图象可知:①当3x =-或1时,12y y =; ②当30x -<<或1x >时,12y y >,即通过观察函 数的图象,可以得到不等式kax b x+>的解集. 有这样一个问题:求不等式32440x x x +-->的解集.的解集.某同学根据学习以上知识的经验,对求不等式32440x x x +-->的解集进行了探究. 下面是他的探究过程,请将(2)、(3)、(4)补充完整: (1)将不等式按条件进行转化)将不等式按条件进行转化 当0x =时,原不等式不成立;时,原不等式不成立;当0x >时,原不等式可以转化为2441x x x+->; 图1当0x <时,原不等式可以转化为2441x x x+-<; (2)构造函数,画出图象)构造函数,画出图象设2341y x x =+-,44y x=,在同一坐标系,在同一坐标系中分别画出这两个函数的图象.中分别画出这两个函数的图象.双曲线44y x=如图2所示,请在此坐标系中所示,请在此坐标系中 画出抛物线.....2341y x x =+-;(不用列表)(不用列表)(3)确定两个函数图象公共点的横坐标)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足34y y =的所有x 的值为的值为 ; (4)借助图象,写出解集)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式32440x x x +-->的解集为解集为 .27.如图,在平面直角坐标系xOy 中,二次函数212y x bx c =-++的图象经过点A (1,0),且当0x =和5x =时所对应的函数值相等.一次函数3y x =-+与二次函数212y x bx c =-++的图象分别交于B ,C 两点,点B 在第一象限.在第一象限.(1)求二次函数212y x bx c =-++的表达式;的表达式; (2)连接AB ,求AB 的长;的长;(3)连接AC ,M 是线段AC 的中点,将点B 绕点M 旋转180180°°得到点N ,连接AN ,CN ,判断四边形ABCN 的形状,并证明你的结论.图228.在△ABC中,∠ACB=90°,AC=BC= 4,M为AB的中点.D是射线BC上一个动点,连中,∠接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接AN,MN.(1)如图1,当BD=2时,AN=_______,NM与AB的位置关系是____________;时,(2)当4<BD<8时,①依题意补全图2;②判断(1)中NM与AB的位置关系是否发生变化,并证明你的结论;的位置关系是否发生变化,并证明你的结论;(3)连接ME,在点D运动的过程中,当BD的长为何值时,ME的长最小?最小值是多少?请直接写出结果.备用图图1 图2 备用图29.在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.光线和反射光线.光线在⊙C外反射的示意图如图1所示,其中∠1=∠2.图1 图2 图3 (1)自⊙C内一点出发的入射光线经⊙C第一次反射后的示意图如图2所示,P1是第1个反射点.请在图2中作出光线经⊙C第二次反射后的反射光线;第二次反射后的反射光线;(2)当⊙O的半径为1时,如图3,①第一象限内的一条入射光线平行于x轴,且自⊙O的外部照射在其上点P处,此光线经⊙O反射后,反射光线与y轴平行,则反射光线与切线l的夹角为__________°;°;②自点A(1 ,0)出发的入射光线,在⊙O内不断地反射.若第1个反射点P1在第二象限,且第12个反射点P12与点A重合,则第1个反射点P1的坐标为______________;(3)如图4,点M的坐标为(0,2),⊙M的半径为1.第一象限内自点O出发的入射光线经⊙M反射后,反射光线与坐标轴无公共点,求反射点P的纵坐标的取值范围.围.图4北京市西城区2015— 2016学年度第一学期期末试卷九年级数学参考答案 2016.1一、选择题(本题共30分,每小题3分)题号题号 12 3 4 5 6 7 8 9 10 答案答案BACCDADCBD二、填空题(本题共18分,每小题3分)11. . 12.>. 13.90. 14.满足 即可,如:AD =10. 15. .16.直径所对的圆周角是直角;经过半径外端并且垂直于这条半径的直线是圆的切线..直径所对的圆周角是直角;经过半径外端并且垂直于这条半径的直线是圆的切线.三、解答题(本题共72分,第17﹣26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=23243()22⨯⨯-………………………………………………………3分 =162-=112. …………………………………………………………………………5分 18.解:∵AD ⊥BC 于点D , ∴∠ADB=∠ADC =90°.∵在Rt △ABD 中,AB =12,∠BAD =30°, ∴BD =12AB =6, …………………………………1分 AD =AB ·cos ∠BAD = 12·cos30cos30°°=63. ……………………………………2分∵BC =15,∴CD = BC-BD =15-6=9. ………………………………………………………3分 ∴在Rt △ADC 中,tan C =ADCD……………………………………………………4分 =639=233. ………………………………………5分 19.解:(1)令0=y ,则2230x x -++=.774222(4)10x x -+=3100<<AD解得解得 11-=x ,32=x . ………………………………………………………1分∵点A 在点B 的左侧,的左侧, ∴A (1-,0),B (3,0). …………………………………………………2分 对称轴为直线1=x . …………………………………………………………3分 (2)∵当1x =时,4=y , ∴顶点C 的坐标为的坐标为((1,4). …………………………………………………4分 ∵点C ,D 关于x 轴对称,轴对称, ∴点D 的坐标为(1,4-).∵AB =4,∴=ACB DCB ACBDSS S ∆∆+四边形1442162=⨯⨯⨯=. ………………………………5分20.(1)证明:∵AD ∥BC ,∴∠ADB=∠DBC . ……………………1分 ∵∠A =∠BDC ,∴△ABD ∽△DCB . ……………………3分(2)解:∵△ABD ∽△DCB ,∴AB AD DC DB=. …………………………………………………………4分 ∵AB =12,AD =8,CD =15,∴12815DB=.∴DB =10. ………………………………………………………………5分21.解:根据题意,得.解:根据题意,得 (213)(82)60x x --=. …………………………………………2分整理得整理得 211180x x -+=.解得解得 12x =,29x =. …………………………………………………………3分 ∵9x =不符合题意,舍去,不符合题意,舍去,∴2x =. ……………………………………………………………………………4分答:人行通道的宽度是2米.米. ……………………………………………………5分22.解:(1)∵抛物线1C :2124y x x k =-+与x 轴有且只有一个公共点,轴有且只有一个公共点,∴方程2240x x k -+=有两个相等的实数根.有两个相等的实数根.∴2(4)420k ∆=--⨯=. ……………………………………………………1分 解得解得 2k =. …………………………………………………………………2分(2)∵抛物线1C :21242y x x =-+22(1)x =-,顶点坐标为(1,0),抛物线2C :222(1)8y x =+-的顶点坐标为(的顶点坐标为(--1,-8), ………………3分∴将抛物线1C 向左平移2个单位长度,再向下平移8个单位长度就可以得到抛物线2C . …………………………………………………………………4分(3)31m -<<. ……………………………………………………………………5分23.解:(1)∵OC ⊥AB 于点D ,∴AD =DB , ……………………………………1分∠ADO =90°.∵AB =43, ∴AD =23.∵∠AOD =2∠E ,∠E =30°,∴∠AOD =60°. ………………………………………………………………2分 ∵在Rt △AOD 中,sin ∠AOD=OAAD ,∴OA =︒=∠60sin 32sin AOD AD =4. ………………………………………………3分 (2)∠BAF =75°或15°. ……………………………………………………………5分24.解:(1)∵在Rt △ADB 中,∠ADB =90°,∠B =45°,∴∠BAD =90°—∠B =45°. ∴∠BAD =∠B .∴AD =DB . ……………………………1分 设AD =x ,∵在Rt △ADC 中,tan ∠ACD =ADDC,∠ACD =58°, ∴DC =tan58xo. ………………………………………………………………3分 ∵DB = DC + CB =AD ,CB =90,∴tan58x o+90=x . ……………………………………………………………4分将tan58°≈1.60代入方程,代入方程,解得x ≈240. …………………………………………………………………5分答:最高塔的高度AD 约为240米.米.25.(1)证明:连接OC ,如图1. ∵ PC 是⊙O 的切线,C 为切点,为切点,∴OC ⊥PC . ……………………………1分 ∴∠PCO =∠1+∠2=92=90°0°. ∵PD ⊥AB 于点D , ∴∠EDA =9=90°0°. ∴∠A +∠3=93=90°0°. ∵OA =OC , ∴∠A =∠1. ∴∠2=∠3. ∵∠3=∠4, ∴∠2=∠4.即∠PCE =∠PEC . …………………………………………………………2分(2)解:作PF ⊥EC 于点F ,如图2.∵AB 是⊙O 的直径,的直径, ∴∠ACB =90°.∵在Rt △ABC 中,AB =10,3sin 5A =,∴BC =AB ·sin A =6.∴AC =22BC AB -=8.………………………………………………………3分 ∵在Rt △AED 中,ED =32, ∴AE =sin ED A =52. ∴EC=AC -AE =112. ∵∠2=∠4, ∴PE=PC . ∵PF ⊥EC 于点F , ∴FC=12EC=114, ……………………………………………………………4分 ∠PFC =90°.图1图2∴∠2+∠5=90°.∵∠A +∠2=∠1+∠2=90°. ∴∠A =∠5. ∴sin ∠5 =35. ∴在Rt △PFC 中,PC =sin 5FC∠=1255. ……………………………………5分26.解:(2)抛物线如图所示;)抛物线如图所示; ……………………1分(3)x =4-,1-或1; ……………………3分 (4)41x -<<-或1x >. ……………………5分27.解:(1)∵二次函数212y x bx c =-++, 当0x =和5x =时所对应的函数值相等,时所对应的函数值相等,∴二次函数212y x bx c =-++的图象的对称的图象的对称轴是直线52x =.∵二次函数212y x bx c =-++的图象经过点A (1,0),∴10,25.2b c b ⎧=-++⎪⎪⎨⎪=⎪⎩……………………………………………………………1分 解得解得 2,5.2c b =-⎧⎪⎨=⎪⎩∴二次函数的表达式为215222y x x =-+-. ………………………………2分(2)过点B 作BD ⊥x 轴于点D ,如图1.∵一次函数3y x =-+与二次函数212y x bx c =-++的图象分别交于B ,C 两点,点,∴2153222x x x -+=-+-. 解得解得 12x =,25x =. ………………3分 ∴交点坐标为(2,1),(5,2-).∵点B 在第一象限,在第一象限,∴点B 的坐标为(2,1).∴点D 的坐标为(2,0). 在Rt △ABD 中,AD =1,BD =1,∴AB =22AD BD +=2. …………………………………………………4分 (3)结论:)结论:四边形四边形ABCN 的形状是矩形. ………………………………………5分证明:设一次函数3y x =-+的图象与x 轴交于点E ,连接MB ,MN ,如图2.∵点B 绕点M 旋转180180°°得到点N ,∴M 是线段BN 的中点.的中点.∴MB = MN .∵M 是线段AC 的中点,的中点, ∴MA = MC .∴四边形ABCN 是平行四边形. ……6分∵一次函数3y x =-+的图象与x 轴交于点E , 当0y =时,3x =. ∴点E 的坐标为(3,0). ∴DE =1= DB .∴在Rt △BDE 中,∠DBE =∠DEB =45°. 同理∠DAB =∠DBA =45°. ∴∠ABE =∠DBA +∠DBE =90°.∴四边形ABCN 是矩形. ……………………………………………7分28.解:(1)10,垂直;,垂直; …………………………2分 (2)①补全图形如图所示;)①补全图形如图所示; ………………3分 ②结论:②结论:(1)中NM 与AB 的位置关系不变.的位置关系不变.证明:∵证明:∵∠∠ACB =90°,AC =BC , ∴∠CAB =∠B =45°. ∴∠CAN +∠NAM =45°.∵AD 绕点A 逆时针旋转90°得到线段AE ,图2∴AD =AE ,∠DAE =90=90°°. ∵N 为ED 的中点,∴∠DAN =12∠DAE =45°, AN ⊥DE .∴∠CAN +∠DAC =45°, ∠AND =90=90°°. ∴∠NAM =∠DAC . ………………………………………………4分在Rt △AND 中,ANAD =cos ∠DAN = cos 45°=22. 在Rt △ACB 中,ACAB =cos ∠CAB = cos 45°=22. ∵M 为AB 的中点,∴AB =2AM . ∴222AC AC AB AM ==.∴22AM AC =. ∴AN AD =AMAC. ∴△ANM ∽△ADC . ∴∠AMN =∠ACD .∵点D 在线段BC 的延长线上,的延长线上, ∴∠ACD =180°-∠ACB =90°. ∴∠AMN =90°.∴NM ⊥AB . ………………………………………………………5分 (3)当BD 的长为的长为 6 时,ME 的长的最小值为的长的最小值为 2 . ……………………………7分29.解:(1)所得图形,如图1所示.所示. ……………………1分(2)①4545°°; ………………………………………3分②(32-,12)或(12-,32); ……………5分 (3)①如图2,直线OQ 与⊙M 相切于点Q ,点Q 在第一象限,在第一象限,连接MQ ,过点Q 作QH ⊥x 轴于点H . ∵直线OQ 与⊙M 相切于点Q , ∴MQ ⊥OQ . ∴∠MQO =90°. ∵MO =2,MQ =1,∴在Rt △MQO 中,sin ∠MOQ=21=MO MQ . ∴∠MOQ =30°.图1MQ3=MF MOMO MD=,∴12212x x+=+.3334-±=.333-+=.∴MOMFPD PE =.MO ⋅==12x +⋅图3=15338-.…………………………………………………………7分.可知,当反射点P从②中的位置开始,在⊙M上沿逆时针方向运动,到与①中的点Q重合之前,都满足反射光线与坐标轴无公共点,所以反射点P的纵坐标的取值范围是1533382Py-<≤.………………………………8分。

2015-2016学年第一学期期末教学质量监测九年级数学试题附答案

2015-2016学年第一学期期末教学质量监测九年级数学试题附答案

2015-2016 学年第一学期期末教学质量监测九年级数学试题2016.1亲爱的考生:欢迎参加考试!请你认真审题,积极思考,仔细答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共 6 页,满分 150 分,考试时间 120 分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效. 3.答题前,请认真阅读答题纸上的《注意事项》 按规定答题. 4.本次考试不得使用计算器,请耐心解答.祝你成功!一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.下列函数的图象是双曲线的是( ▲ )A . y = 2 x - 1B . y =1C . y = xD . y = x 2x2.下列事件是随机事件的是( ▲ )A .火车开到月球上;B .抛出的石子会下落;C .明天临海会下雨;D .早晨的太阳从东方升起.3.二次函数 y =x 2+4x -5 的图象的对称轴为( ▲ )A .x =4B .x =﹣4C .x =2D .x =﹣24.如图,⊙O 是△ABC 的内切圆,D ,E ,F 是切点,∠A =50°,∠C =60°,则∠DOE =( ▲ )A .70°B .110°C .120°D .130°C B ′ CC ′E F OBD(第 4 题)A B(第 5 题)A△5.如图,把 ABC 绕着点 A 顺时针方向旋转 34°,得到△AB ′C ′,点 C 刚好落在边 B ′C ′上.则∠C ′=( ▲ )A .56°B .62°C .68°D .73°6.将抛物线 y =3x 2 先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为( ▲ )A .y =3(x +1)2+1B .y =3(x +1)2-1C .y =3(x -1)2+1D .y =3(x -1)2-17.小洋用一张半径为 24 cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计), 如果做成的圆锥形小丑帽子的底面半径为 10 cm ,那么这张扇形纸板的面积是( ▲ )A .120 π cm 2B .240 π cm 2C .260 π cm 2D .480 π cm 224 cmy A nA 4 A 3 A 2 A 1…B nB 4C 3C 2B 3B 2C 1B 1O(第 10 题)x4 (1 + k )2 = 1 B . k + k 2 = 1 4 4 (1 + k )2 = 1(x - 1)2 = ( 2 ) ,所以 x8.用锤子以均匀的力敲击铁钉入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的 k 倍(0<k <1).已知一个钉子受击 3 次后恰好全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的 4 7,设铁钉的长度为 1,那么符合这一事实的方程是( ▲ )A .4 4 7 7 74 4 4 C . + k + k 2 = 1 D . + 7 7 7 7 79.利用平方根去根号可以构造一个整系数方程.例如: x =2 + 1 时,移项得 x - 1 = 2 ,两边平方得22 - 2 x + 1 = 2 ,即 x 2 - 2 x - 1 = 0 .仿照上述构造方法,当 x =6 - 1 2时,可以构造出一个整系数方程是( ▲ )A . 4 x 2 + 4 x + 5 = 0B . 4 x 2 + 4 x - 5 = 0C . x 2 + x + 1 = 0D . x 2 + x - 1 = 010.如图,在 y 轴正半轴上依次截取 OA 1=A 1A 2=A 2A 3=…=A n-1A n (n 为正整数),过 A 1,A 2,A 3,…,A n 分别作 x 轴的平行线,与反比例函数 y =2 x(x >0)交于点 B 1,B 2,B 3,…,B n ,如图所示的 Rt △B 1C 1B 2,△Rt B 2C 2B 3,△Rt B 3C 3B 4,…,△Rt B n-1C n-1B n 面积分别记为 S 1,S 2,S 3,…,S n-1,则 S 1+S 2+S 3+…+S n-1=( ▲ )A .1B .2C .1﹣1 1D .2﹣n n二、填空题(本大题共 6 小题,每小题 5 分,共 30 分)11.点 A (1,19)与点 B 关于原点中心对称,则点 B 的坐标为▲ .12.如果反比例函数 y = m - 3x的图象在 x <0 的范围内,y 随 x 的增大而减小,那么 m 的取值范围是 ▲13.如图,点 O 是正五边形 ABCDE 的中心,则∠BAO 的度数为▲ .AyD CPBOEH GAOBC D(第 13 题)A E O FB x(第 15 题) (第 16 题)14.一个盒子中装有大小、形状一模一样的白色弹珠和黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是13.如果盒子中白色弹珠有4颗,则盒中有黑色弹珠▲颗.15.如图,正方形ABCD的顶点A,B与正方形EFGH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD的边长为4,则正方形EFGH的边长为▲.2-1-c-n-j-y16.如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=▲秒时,点P与点C中心对称,且对称中心在直径AB上.三、解答题(本大题共8小题,第17题10分,第18题7分,第19题8分,第20题9分,第21题10分,第22题10分,第23题12分,第24题14分,共80分)17.解方程:(1)4x2-20=0;(2)x2+3x-1=0.18.动手画一画,请把下图补成以A为对称中心的中心对称图形.A19.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.D CB EOA20.已知关于x的一元二次方程x2+2(k-1)x+k2-1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)x=0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.同时从袋中各随机摸出 1 个球,并计算摸出的这 2 个小球上数字之和,记录后都将小球放回袋中搅匀,进行重21.一只不透明的袋子中装有 4 个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x .甲、乙两人每次..复试验.实验数据如下表:摸球总次数“和为 8”出现的频数102 2010 3013 6024 9030 12037 18058 24082 330110 450150“和为 8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为 8”的频率将稳定在它的概率附近.估计出现“和为 8” 的概率是▲;(2)当 x =7 时,请用列表法或树状图法计算“和为 8”的概率;并判断 x =7 是否可能.22.如图是一种新型娱乐设施的示意图,x 轴所在位置记为地面,平台 AB ∥x 轴,OA =6 米,AB =2 米, BC 是反比例函数 y = k x的图象的一部分,CD 是二次函数 y =﹣x 2+mx +n 图象的一部分,连接点 C 为抛物线的顶点,且 C点到地面的距离为 2 米, D 点是娱乐设施与地面的一个接触点.(1)试求 k ,m ,n 的值;(2)试求点 B 与点 D 的水平距离.yA BCOD x23.如图 1,正方形 ABCD 与正方形 AEFG 的边 AB ,AE (AB <AE )在一条直线上,正方形 AEFG 以点 A 为旋转中心逆时针旋转,设旋转角为 α.在旋转过程中,两个正方形只有点 A 重合,其它顶点均不重合,连接 BE ,DG .(1)当正方形 AEFG 旋转至如图 2 所示的位置时,求证:BE =DG ;(2)如图 3,如果 α=45°,AB =2,AE =3 2 .①求 BE 的长;②求点 A 到 BE 的距离;(3)当点 C 落在直线 BE 上时,连接 FC ,直接写出∠FCD 的度数.GGADGADB CBCFABDCFE(图 1)FE(图 2)E(图 3)24.定义:把一个半圆与抛物线的一部分组成的封闭图形称为“蛋圆”.如图,抛物线 y =x 2-2x -3 与 x 轴交于点 A ,B ,与 y 轴交于点 D ,以 AB 为直径,在 x 轴上方作半圆交 y 轴于点 C ,半圆的圆心记为 M ,此时这个半圆与这条抛物线 x 轴下方部分组成的图形就称为“蛋圆”.(1)直接写出点 A ,B ,C 的坐标及“蛋圆”弦 CD 的长;A▲ ,B ▲ ,C ▲ , CD = ▲ ;(2)如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.①求经过点 C 的“蛋圆”切线的解析式;②求经过点 D 的“蛋圆”切线的解析式;(3)由(2)求得过点 D 的“蛋圆”切线与 x 轴交点记为 E ,点 F 是“蛋圆”上一动点,试问是否存在 S △CDE =△S CDF ,若存在请求出点 F 的坐标;若不存在,请说明理由;(4)点 P 是“蛋圆”外一点,且满足∠BPC =60°,当 BP 最大时,请直接写出点 P 的坐标.yC yCAO M B x A O M B xDD(备用图)9数学参考答案2016.1一、选择题(每小题4分,共40分)题号答案1B2C3D4B5D6A7B8C9B10C二、填空题(每小题 5 分,共 30 分)11.(﹣1,﹣19)12.m >3 13.54° 14.815. 2 5 - 216. 4914 22 32或 或 或9 9三、解答题(共 80 分)17.(10 分,每小题 5 分)(1)4x 2-20=0;(2)x 2+3x -1=0.4x 2=20a =1,b =3,c =﹣1x 2=5△=32-4×1×(﹣1)=13x = ± 5x =- 3 ± 13 218.(7 分)略(图形基本形状差不多就给分)19.(8 分)(1)∵AB 是⊙O 的直径∴∠C =90°∵OD ⊥BC∴∠OEB =∠C =90°∴OD ∥AC………4 分(2)令⊙O 的半径为 r ,根据垂径定理可得:r 2=42+(r -3)2,解得:r = 25 25,所以⊙O 的直径为 . ………8 分6 320.(9 分)(△1) =[2(k -1)]2-4(k 2-1)=﹣8k +8∵方程有两个不相等的实数根,∴﹣8k +8>0,解得:k <1.………4 分(2)把 x =0 代入方程得:k 2-1=0,解得:k =±1∵k <1 ∴k=﹣1 ∴x=0 可能是方程的一个根∴原方程为:x 2-4x =0 解得:x 1=0,x 2=4 ∴方程的另一个根为 4.………9 分21.(10 分)(1)13(或者 0.33) ………3 分(2)列表略,可得:P 和为 8= 2 1 1= ≠ ,所以 x 的值不可以取 7.………10 分12 6 322.(10 分)(1)把 B (2,6)代入 y =k 12,可得 y = . x x把 y =2 代入 y =12x, 可得 x =6,即 C 点坐标为(6,2).23.(12 分)(1)由题意可得: ⎨∠BAE = ∠DAG = a ⎪ A B = AD ⎩ y = x 2 - 2x - 3得: x 2-(2 +k)x =∵二次函数 y =﹣x 2+mx +n 的顶点为 C ,∴y =﹣(x -6)2+2,∴y =﹣x 2+12x -34. AE∴k =12,m =12,n =﹣34.………6 分C(2)把 y =0 代入 y =﹣(x -6)2+2,解得:x 1=6+ 2 ,x 2=6- 2 .点 B 与点 D 的距离为 6+ 2 -2=4+ 2 .………10 分ODB⎧ A E = AG ⎪⎩∴△ABE ≌△ADG (SAS )G∴BE =DG………4 分(2)①作 BN ⊥AE 于点 NANDF在△ABN 中可求得 AN =BN = 2 .在△BEN 中可求得 BE = 10 .………7 分MBCE(图 3)②作 AM ⊥BE 于点 M .S △ABE = 1 1⨯ AE ⨯ BN = ⨯ 3 2 ⨯ 2 =32 2又∵S △ABE = 1 1⨯ BE ⨯ AM = ⨯ 10 ⨯ AM2 21 3∴ ⨯ 10 ⨯ AM =3 ∴AM = 2 510即点 A 到 BE 的距离 3 510 .………10 分(3)∠FCD 的度数为 45°或 135°.………12 分(注:可以构造三垂直的基本图形求两个角度,也可用四点共圆求两个角度)24.(14 分)(1)A (﹣1,0),B (3,0),C (0,3 ),CD = 3+ 3………4 分(2)①如图 1,NC ⊥CM ,可求得 N (﹣3,0)yCN E A O M B x3∴经过点 C 的“蛋圆”切线的解析式为: y =x + 3 …7 分 3A②过点 D 的“蛋圆”切线的解析式为:y =kx -3D⎧ y = kx - 3 由 ⎨ ∵直线与抛物线只有一个交点,∴k =﹣2,(图 1) yCF 1∴经过点 D 的“蛋圆”切线的解析式为: y = -2 x - 3 .………10 分A EO M Q B x(3)如图 2∵经过点 D 的“蛋圆”切线的解析式为: y = -2 x - 3ADF 2,),F 2(, -).………12 分∴E 点坐标为( -∵S △CDE =S △CDF3 2,0),∴F 点的横坐标为 3 2,在 △Rt MQF 1 中可求得 F 1Q = 15 2,把 x = 3 15 代入 y =x 2-2x -3,可求得 y = - .2 4∴F 1( 3 2 2 2 4(4)如图 3,考虑到∠BPC =60°保持不变,因此点 P 在一圆弧上运动.yP此圆是以 K 为圆心(K 在 BC 的垂直 平分线上,且∠BKC =120°),BK 为半径. 当 BP 为直径时,BP 最大.在 △Rt PCR 中可求得 PR =1,RC = 3 . RC KA OM B x所以点 P 的坐标为(1,2 3 ).………14 分AD(图 3)。

2015-2016学年深圳南山区九年级上数学期末模拟卷含答案

2015-2016学年深圳南山区九年级上数学期末模拟卷含答案

的价格如图所
17.(6 分)计算:
1 2 2
1
4 x2 1

x 1
2 x

1.
3 (
2014 1) 2 tan 60
0
28 . 18.(6 分)解方程:
19.(7 分)为积极响应南山区“我的中国梦”征文活动,我校在八,九年级开展征文活动,校学生会对这两个 年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图. (1)求扇形统计图中投稿篇数为 2 所对应的扇形的圆心角的度数: (2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整. (3)在投稿篇数为 9 篇的两个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市 的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.
A. 2a + 3b = 5ab
B.3x 2 y - 2x 2 y = 1
C. (2a 2 )3 = 6a 6


D.5x ÷ x = 5x
5.纳米是非常小的长度单位,1 纳米=109 米. 某种病菌的长度约为 50 纳米,用科学3 记数2法表示该病菌的长
度,结果正确的是


A. 51010 米
23.(9 分)如图,在平面直角坐标系 xOy 中,抛物线 y=ax2+bx+3 的顶点为 M(2,-1),交 x 轴于 A、B 两
点,交 y 轴于点 C,其中点 B 的坐标为(3,0).
(1)求该抛物线的解析式; (2)设经过点 C 的直线与该抛物线的另一个交点为 D,且直线 CD 和直线 CA 关于直线 BC 对称,求直线 CD
的解析式;
(3)点 E 为线段 BC 上的动点

九年级上册数学试卷附答案

九年级上册数学试卷附答案

九年级上册数学试卷附答案题目一:选择题1. 设集合A={x | 5 ≤ x ≤ 10},则A中元素的个数等于()A. 4B. 5C. 6D. 7答案:C. 62. 下列等价变形是()A. 1.6千克=1600克B. 5千米=500米C. 9百=900D. 1/2小时=30分钟答案:D. 1/2小时=30分钟3. 平方根的定义域一定是()A. 自然数B. 整数C. 有理数D. 实数答案:D. 实数4. 设AB的长度为15厘米,AC的长度是AB长度的3倍,BD的长度是AB长度的2倍,则BD的长度是()厘米。

A. 15B. 30C. 45D. 60答案:B. 305. 已知a,b,c都是非零实数,且abc=1,则下列说法正确的是()A. a+b+c>0B. a+b+c<0C. a+b+c=1D. a+b+c=-1答案:B. a+b+c<0题目二:填空题1. 在 x + 3=7 的两边同时减去3,可得x=______。

答案:42. 如果直线l垂直于直线m,则直线m与直线l相交时的夹角为______度。

答案:903. 下列各数中,是整数,但不是自然数的是______。

答案:04. 如果二次方程 x^2+bx+12=0 的根为2和-3,则b的值为______。

答案:15. 设集合A={x | x为偶数},则A的元素个数是______。

答案:无穷多个题目三:计算题1. 计算:2.3 * (4.5 + 6.7)答案:33.042. 计算:(7 - 4) *3.8答案:11.43. 计算:(2^3 ÷ 4) + (√16 - 2)答案:54. 计算:18 ÷ (9 - 3) + 4 × 2答案:125. 计算:(2^3 + 4 × 5) ÷ 3答案:10题目四:解答题1. 某商品原价为150元,现进行8折优惠,请计算打完折后的价格是多少元?答案:120元2. 在一组数据中,平均数为45,如果将其中一个数减少10,则平均数变为43,请计算原来的那个数是多少?答案:553. 如图所示,矩形ABCD中,AB=15cm,BC=3cm,通过顶点C和边AB做垂线CE,垂足为E。

初中九年级下学期入学数学试卷(附答案,解析)

初中九年级下学期入学数学试卷(附答案,解析)

2015-2016学年九年级(下)入学数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案.其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在,﹣1,0,2这四个数中,属于负数的是()A.B.﹣1 C.0 D.22.计算2a3•(﹣a5)的结果是()A.2a8B.﹣2a8C.2a15D.﹣2a153.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.函数中,自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤35.下列调查中,调查方式选择正确的是()A.为了了解某品牌手机的屏幕是否耐摔,选择全面调查B.为了了解玉兔号月球车的零部件质量,选择抽样调查C.为了了解南开步行街平均每天的人流量,选择抽样调查D.为了了解中秋节期间重庆市场上的月饼质量,选择全面调查6.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是()A.10°B.20°C.30°D.40°7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数8.在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为()A.米B.米C.米D.米9.如图,AB是⊙O的直径,点C、点D在⊙O上,连结AC、BC、AD、CD,若∠BAC=50°,则∠ADC 的度数等于()A.30°B.35°C.40°D.45°10.张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A.B.C.D.11.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是()A.﹣110 B.110 C.﹣111 D.11112.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.二、填空题(本大题6个小题,每小题3分,共24分),请将答案直接填在题后的横线上.13.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为.14.计算:2×(﹣π)0﹣12016+的值为.15.若△ABC∽△DEF,且周长比为2:3,则相似比为.16.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为cm2.17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为.18.如图,直角三角形ABC中,∠ACB=90°,BC=3,AC=6,E为BC延长线上一点,且EC=,过点E作EF⊥AB交AB于F,将△ABC沿AB翻折,得到△ABD,将△ABD绕点B旋转,在旋转过程中,记旋转中△ABD为△A′B′D′.设直线A′D′与射线EF交于点M,与射线EB交于点N,当△EMN是以∠MEN 为底角的等腰三角形时,EN=.三、解答题:(本大题2个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.(1)解方程:(2)解方程组:.20.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AB=DE.求证:AC∥DF.四、解答题:(本大题4个小题,每小题0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2014•万州区校级模拟)先化简,再求值:,其中a是不等式组的整数解.22.(2016春•重庆校级月考)创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).23.(2016春•重庆校级月考)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.24.(2016春•重庆校级月考)若整数a能被整数b整除,则一定存在整数n,使得,即a=bn.例如若整数a能被整数3整除,则一定存在整数n,使得,即a=3n.(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除.例如:将数字306371分解为306和371,因为371﹣306=65,65是13的倍数,所以306371能被13整除.请你证明任意一个四位数都满足上述规律.(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,…,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(2015•重庆校级二模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E 在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.26.(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N 是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2015-2016学年九年级(下)入学数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案.其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在,﹣1,0,2这四个数中,属于负数的是()A.B.﹣1 C.0 D.2【分析】根据负数是小于0的数,可得答案.【解答】解:A、不是负数,故A错误;B、﹣1是负数,故B正确;C、0不是负数,故C错误;D、是正数,故D错误;故选:B2.计算2a3•(﹣a5)的结果是()A.2a8B.﹣2a8C.2a15D.﹣2a15【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2a3•(﹣a5)=﹣2a8.故选:B.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.4.函数中,自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤3【分析】根据二次根式的性质的意义,被开方数大于等于0,列不等式求解.【解答】解:依题意,得3﹣x≥0,解得x≤3,故选D.5.下列调查中,调查方式选择正确的是()A.为了了解某品牌手机的屏幕是否耐摔,选择全面调查B.为了了解玉兔号月球车的零部件质量,选择抽样调查C.为了了解南开步行街平均每天的人流量,选择抽样调查D.为了了解中秋节期间重庆市场上的月饼质量,选择全面调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、为了了解某品牌手机的屏幕是否耐摔,宜选择抽样调查,故A错误;B、为了了解玉兔号月球车的零部件质量,精确度要求高,故已选择全面调查,故B错误;C、为了了解南开步行街平均每天的人流量,选择抽样调查,故C正确;D、为了了解中秋节期间重庆市场上的月饼质量,宜选择抽样调查,故D错误;故选:C.6.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是()A.10°B.20°C.30°D.40°【分析】根据两直线平行,内错角相等可得∠1=∠B,根据垂直的定义可得∠AEB=90°,然后根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠1=∠B=60°,∵BE⊥AF,∴∠AEB=90°,∴∠DEF=180°﹣∠1﹣∠AEB=180°﹣60°﹣90°=30°.故选C.7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.8.在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为()A.米B.米C.米D.米【分析】利用所给角的正切函数求得线段BC的长即可.【解答】解:由题意得:AC=1500米,tan∠B=,∴在Rt△ACB中,BC===2500米,故选D.9.如图,AB是⊙O的直径,点C、点D在⊙O上,连结AC、BC、AD、CD,若∠BAC=50°,则∠ADC 的度数等于()A.30°B.35°C.40°D.45°【分析】先由直径所对的圆周角为90°,可得:∠ACB=90°,然后由∠BAC=50°,根据三角形内角和定理可得:∠B=40°,然后根据同弧所对的圆周角相等,即可求出∠ADC的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=40°,∴∠ADC=∠B=40°.故选C.10.张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A.B.C.D.【分析】根据老师在校车上时S为零,打出租车返回路程变化快,乘车追赶时路程变化慢,可得答案.【解答】解:老师乘校车时路程为零,打车返回学校时两车行驶方向相反路程变化快,乘车追赶路程变化慢,故B符合题意.故选:B.11.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是()A.﹣110 B.110 C.﹣111 D.111【分析】首先观察已知数列中,绝对值为奇数的符号为“﹣”,绝对值为偶数的符号为“+”,其次观察数列排列中,每一行的第一个数的绝对值,与所在行数的关系:第n行的第一个数的绝对值为:(n﹣1)2+1,由此即可进行判断.【解答】解:观察数列排列中,第n行的第一个数的绝对值为:(n﹣1)2+1,所以第11行的第一个数的绝对值为:(11﹣1)2+1=101,第11行中从左边数第10个数的绝对值是:101+(10﹣1)=110,观察已知数列中,绝对值为奇数的符号为“﹣”,绝对值为偶数的符号为“+”,所以:第11行中从左边数第10个数是:110.故选B.12.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,﹣x),根据正方形的性质求得对角线解得F的坐标,根据直线OB的解析式设出直线AC 的解析式为:y=﹣x+b,代入交点坐标求得解析式,然后把A,C的坐标代入即可求得k的值.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵点B的坐标为(1,4),∴OB==,直线OB为:y=4x,∵AC和OB互相垂直平分,∴它们的交点F的坐标为(,2),设直线AC的解析式为:y=﹣x+b,代入(,2)得,2=﹣×+b,解得b=,直线AC的解析式为:y=﹣x+,把A(x,),C(,﹣x)代入得,解得k=﹣.故选C.二、填空题(本大题6个小题,每小题3分,共24分),请将答案直接填在题后的横线上.13.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故答案为:6.75×104.14.计算:2×(﹣π)0﹣12016+的值为2.【分析】原式利用零指数幂法则,乘方的意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=2﹣1+3=4﹣2=2,故答案为:215.若△ABC∽△DEF,且周长比为2:3,则相似比为2:3.【分析】由△ABC∽△DEF,且周长比为2:3,根据相似三角形的周长比等于相似比,即可求得答案.【解答】解:∵△ABC∽△DEF,且周长比为2:3,∴相似比为:2:3.故答案为:2:3.16.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为1cm2.【分析】连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出阴影部分的面积=S△AOD,故可得出结论.【解答】解:连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S阴影=S△AOD=×2×1=1.故答案为:1.17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为.【分析】首先利用分式方程的知识求得当k=﹣3,﹣2,﹣1,3,使得关于x的分式方程=k﹣2有解,再利用一次函数的性质,求得当k=﹣1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,再利用概率公式即可求得答案.【解答】解:∵方程两边同乘以(x+1),∴k﹣1=(k﹣2)(x+1),∴当k=2或k=1时,关于x的分式方程=k﹣2无解,∴当k=﹣3,﹣2,﹣1,3,使得关于x的分式方程=k﹣2有解;∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,∴k>﹣,∴当k=﹣1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,∴得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的有﹣1,3;∴使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为:=.故答案为:.18.如图,直角三角形ABC中,∠ACB=90°,BC=3,AC=6,E为BC延长线上一点,且EC=,过点E作EF⊥AB交AB于F,将△ABC沿AB翻折,得到△ABD,将△ABD绕点B旋转,在旋转过程中,记旋转中△ABD为△A′B′D′.设直线A′D′与射线EF交于点M,与射线EB交于点N,当△EMN是以∠MEN为底角的等腰三角形时,EN=13或+3.【分析】情形1:如图1中,当∠BEF=∠NME时,易证BN=NA′,设BN=NA′=x,在RT△BND′利用勾股定理即可解决问题.情形2:如图2中,当∠MEN=∠MNE时,证明BN=BA′即可解决问题.【解答】解:如图1中,当∠BEF=∠NME时,∵∠BEF+∠ABC=90°,∠A+∠ABC=90°,∴∠BEF=∠A=∠BA′D′=∠NME,∴BA′∥EM,∴∠NBA′=∠BEF=∠BA′N,∴NB=NA′,设BN=NA′=x,在RT△BND′中,∵BD′2+ND′2=BN2,∴32+(6﹣x)2=x2,x=,∴EN=EB+BN=EC+BC+BN=+3+=13,如图2中,当∠MEN=∠MNE时,∵∠MEN=∠BAC=∠BA′N=∠A′NE,∴BA′=BN=AB===3,∴EN=EC+BC+BN=+3=3=+3.故答案为13或+3.三、解答题:(本大题2个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.(1)解方程:(2)解方程组:.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程组利用代入消元法求出解即可.【解答】解:(1)去分母得:x2+2x﹣x2+4=1,解得:x=﹣1.5,经检验x=﹣1.5是分式方程的解;(2),把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.20.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AB=DE.求证:AC∥DF.【分析】首先由BE=CF可以得到BC=EF,然后利用边边边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵BE=CF,∴BE+EC=CF+EC即BC=EF,∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)∴∠ACB=∠F,∴AC∥DF.四、解答题:(本大题4个小题,每小题0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2014•万州区校级模拟)先化简,再求值:,其中a是不等式组的整数解.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,计算即可得到结果,求出不等式组解集确定出a的值,代入计算即可求出值.【解答】解:原式=+•﹣3=+﹣3==﹣,由不等式组得到<a<3,∵a为整数,∴a=1或2,又∵a≠1,∴a=2,当a=2时,原式=﹣2.22.(2016春•重庆校级月考)创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共12件,其中B班征集到作品3件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).【分析】(1)用C的度数除以360度求出所占的百分比,由C的件数除以所占的百分比即可得到调查的总件数;进而求出B的件数;(2)画树状图得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)张老师所调查的4个班征集到作品有:=12(件),其中B班征集到作品数为:12﹣2﹣5﹣2=3(件),补全图形如下:(2)画树状图如下:所有等可能的情况有12种,其中一男一女有8种,则P==;故答案为:(1)12,3.23.(2016春•重庆校级月考)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.【分析】(1)过E点作EH⊥BC于H点,在RT△BEH中利用三角函数求得BH的长,然后在直角△EAH 中,利用三角函数求得AH的长,根据AB=AH﹣BH即可求解;(2)根据机器的总生产量等于机器数与每台生产的产品数即可列方程求解.【解答】解:(1)过E点作EH⊥BC于H点,由题:∠AEH=52°,∠BEH=45°,EH=12m,在RT△BEH中,∵∠BEH=45°∴BH=EH=12m在Rt△EAH中,AH=EH•tan52°=15.36m∴AB=AH﹣BH≈3.4m(2)由题意得:40000(1+10%)=400(1﹣1.25a%)•100(1+2.4a%),解得:a1=25,a2=.∵20<a<30,∴a=25.答:a的值为25.24.(2016春•重庆校级月考)若整数a能被整数b整除,则一定存在整数n,使得,即a=bn.例如若整数a能被整数3整除,则一定存在整数n,使得,即a=3n.(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除.例如:将数字306371分解为306和371,因为371﹣306=65,65是13的倍数,所以306371能被13整除.请你证明任意一个四位数都满足上述规律.(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,…,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除.【分析】(1)设一个四位数的末三位数为B,末三位数以前的数为A,根据题意可得A=13n+B,即这个四位数是1000(13n+B)+B=13(1000n+77B),可得;(2)设任意一个6位摆动数的十位数字为a、个位数字为b,表示出末三位数为100b+10a+b,末三位数以前的数为100a+10b+a,将二者相减分解出因数13可得.【解答】解:(1)设一个四位数的末三位数为B,末三位数以前的数为A,则这个四位数为:1000A+B,由题意:A﹣B=13n(n为整数),∴A=13n+B,从而1000A+B=1000(13n+B)+B=13000n+1001B=13(1000n+77B),∴这个四位数能被13整除∴任意一个四位数都满足上述规律;(2)设任意一个6位摆动数的十位数字为a,个位数字为b,所以这个6位摆动数的末三位数为:100b+10a+b,末三位数以前的数为:100a+10b+a,∵100a+10b+a﹣(100b+10a+b)=91a﹣91b=13(7a﹣7b)∴这个6位摆动数的末三位数以前的数与末三位数之差能被13整除,∴任意一个6位摆动数能被13整除.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(2015•重庆校级二模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E 在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.【分析】(1)由AE=DE,∠AED=90°,AD=3,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是线段BD的中点,所以EF=BD=2.5;(2)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=EF;(3)思路同(1).连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,要证明EF=FG,需要证明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此得出结论.【解答】解:(1)∵∠AED=90°,AE=DE,AD=3,∴AE=DE=3,在Rt△BDE中,∵DE=3,BE=4,∴BD=5,又∵F是线段BD的中点,∴EF=BD=2.5;(2)如图1,连接CF,线段CE与FE之间的数量关系是CE=FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=EF.解法2:∵∠BED=∠AED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,∴∠DFE=2∠ABD,同理∠CFD=2∠CBD,∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,即∠CFE=90°,∴CE=EF.(2)(1)中的结论仍然成立.解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,在△EDF和△GBF中,,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=FE;解法2:如图2﹣2,连结CF、AF,∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又∵点F是BD的中点,∴FA=FB=FD,在△ACF和△BCF中,,∴△ACF≌△BCF,∴∠ACF=∠BCF=∠ACB=45°,∵FA=FB,CA=CB,∴CF所在的直线垂直平分线段AB,同理,EF所在的直线垂直平分线段AD,又∵DA⊥BA,∴EF⊥CF,∴△CEF为等腰直角三角形,∴CE=EF.26.(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N 是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式,进而求出顶点D的坐标;(2)由平移性质,可知重叠部分为一平行四边形.如答图2,作辅助线,利用相似比例式求出平行四边形的边长和高,从而求得其面积的表达式;然后利用二次函数的性质求出最值;(3)本问涉及两个动点,解题关键是利用平行四边形的判定与性质,区分点N在x轴上方、下方两种情况,分类讨论,避免漏解.设M(t,0),利用全等三角形求出点N的坐标,代入抛物线W′的解析式求出t的值,从而求得点M的坐标.【解答】方法一:解:(1)设抛物线W的解析式为W=ax2+bx+c,∵抛物线W经过O(0,0)、A(4,0)、C(﹣2,3)三点,∴,解得:∴抛物线W的解析式为W=x2﹣x.∵W=x2﹣x=(x﹣2)2﹣1,∴顶点D的坐标为(2,﹣1).(2)由▱OABC得,CB∥OA,CB=OA=4.又∵C点坐标为(﹣2,3),∴B点的坐标为(2,3).如答图2,过点B作BE⊥x轴于点E,由平移可知,点C′在BE上,且BC′=m.。

2015—2016学年度第一学期九年级数学参考答案

2015—2016学年度第一学期九年级数学参考答案

2015—2016学年度第一学期观澜二中期中考试九年级数学试题参考答案一、选择题:CBADC ADACD BD二、填空题:13、–5 14、1米 15、22 16、222- 三、解答题: 17、(本题5分)解:原方程可化为:(x + 2)(x –4) = 0……………………………………(2分) 即:(x + 2) = 0或(x –4) = 0……………………………………………………(3分) 解得:21-=x ,42=x ………………………………………………………(5分) 说明:利用配方法或公式法同样按步骤给分。

18、(本题6分)(1)4 (2,2) …………………………………………………(2分) (2)解:根据题意可知D (1,4);(B (2,4);E (2,2);A (0,2)。

所以,S △ADO =2412121=⨯⨯=⋅AO AD ;…………………………………………(3分) S △DBE = 1212121=⨯⨯=⋅BE DB ……………………………………………………(4分)S △OEC = 2222121=⨯⨯=⋅CE OC …………………………………………………(5分)所以:S △ODE = S 矩形AOCB - S △ADO – S △DBE –S △OEC=8 – 2–1–2=3…………………………………………………………………………(6分)19、(本题8分)(1)412分)(2)解:列表如下:……………………………………………………(5分)由此可知,共有12种结果,其中符合题意的结果有8种。

所以,P (选派一男一女两闪同学参赛)=32128 ………………………………………………………(8分) 说明:利用树状图同样得分。

20、(本题7分)(1)4 …………………………………………………………………(2分) (2)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,又∵F 是DC 延长线上的点, ∴AB ∥CF ,∴∠BAE=EFC ,∠ABE=BCF 又∵点DB 的中点,∴BE=CE ∴△BAE ≌△CFE (AAS )∴AB=CF ,即四边形ABFC 是平行四边形………………………………………(5分) ∴BE=CE ,AE=EF ,∵∠AEC=120°,∠ABC=60°, ∵∠ABE=60° ∴△ABE 是等边三角形 ∴AE=BE ,∵∠BAE=EFC ∴∠BAE=∠EFC=60°∠CEF=60,∴△CEF 是等边三角形∴AF=BC ,所以,平行四边形ABFC 是矩形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年九年级(上)开学数学试卷一、选择题:1.(2014•枣庄)2014年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000美元,用于修建和翻新12个体育场,升级联邦、各州和各市的基础设施,以及为32支队伍和预计约60万名观众提供安保.将14000000000用科学记数法表示为()A.140×108B.14.0×109C.1.4×1010D.1.4×1011 2.(2011•黔南州)的平方根是()A.3 B.±3 C.D.±3.(2014•潍坊)下列实数中是无理数的是()A.B.2﹣2C.5.D.sin45°4.(2014•下城区一模)分解因式a4﹣2a2+1的结果是()A.(a2+1)2B.(a2﹣1)2C.a2(a2﹣2)D.(a+1)2(a﹣1)25.(2014•宁波)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.6.(2014•台州)将分式方程1﹣=去分母,得到正确的整式方程是()A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=37.(2013•衢州)抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x﹣1)2﹣4,则b、c的值为()A.b=2,c=﹣6 B.b=2,c=0 C.b=﹣6,c=8 D.b=﹣6,c=28.(2013•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四的值为()边形BCEDA.1:3 B.2:3 C.1:4 D.2:59.(2013•深圳)如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()A.B.C.D.10.(2013•黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A.B.C.D.二、填空题:11.(2014•十堰)计算:+(π﹣2)0﹣()﹣1=.12.(2013•杭州)把7的平方根和立方根按从小到大的顺序排列为.13.(2013•广东)若实数a、b满足|a+2|,则=.14.(2014•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.15.(2014•荆州)我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.16.(2014秋•平顶山期末)如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述四个判断中正确的是(填正确结论的序号).三、解答题:17.(2014秋•杭州校级月考)先化简,再求值:5xy﹣[x2+4xy﹣y2﹣(x2+2xy﹣2y2)],其中x=﹣,y=﹣.18.(2014•杭州)设y=kx,是否存在实数k,使得代数式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.19.(2014春•邗江区校级期中)若关于x的分式方程=﹣2的解是非负数,求a的取值范围.20.(2014•海珠区一模)如图,已知抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D,点E为y轴上一动点,CE的垂直平分线交抛物线于P,Q两点(点P在第三象限)(1)求抛物线的函数表达式和直线BC的函数表达式;(2)当△CDE是直角三角形,且∠CDE=90°时,求出点P的坐标;(3)当△PBC的面积为时,求点E的坐标.数学试卷参考答案与试题解析一、选择题:1.(2014•枣庄)2014年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000美元,用于修建和翻新12个体育场,升级联邦、各州和各市的基础设施,以及为32支队伍和预计约60万名观众提供安保.将14000000000用科学记数法表示为()A.140×108B.14.0×109C.1.4×1010D.1.4×1011考点:科学记数法—表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.解答:解:14 000 000 000=1.4×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.(2011•黔南州)的平方根是()A.3 B.±3 C.D.±考点:算术平方根;平方根.分析:首先根据平方根概念求出=3,然后求3的平方根即可.解答:解:∵=3,∴的平方根是±.故选:D.点评:本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a的平方根.若a>0,则它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根;若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.3.(2014•潍坊)下列实数中是无理数的是()A.B.2﹣2C.5.D.sin45°考点:无理数.专题:常规题型.分析:根据无理数是无限不循环小数,可得答案.解答:解:A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D.点评:本题考查了无理数,无理数是无限不循环小数.4.(2014•下城区一模)分解因式a4﹣2a2+1的结果是()A.(a2+1)2B.(a2﹣1)2C.a2(a2﹣2)D.(a+1)2(a﹣1)2考点:因式分解-运用公式法.分析:首先利用完全平方公式进行分解,再利用平方差公式进行分解即可.解答:解:a4﹣2a2+1=(a2﹣1)2=[(a+1)(a﹣1)]2=(a+1)2(a﹣1)2.故选:D.点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2.5.(2014•宁波)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.考点:概率公式.专题:网格型.分析:找到可以组成直角三角形的点,根据概率公式解答即可.解答:解:如图,C1,C2,C3,C4均可与点A和B组成直角三角形.P=,故选:D.点评:本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.6.(2014•台州)将分式方程1﹣=去分母,得到正确的整式方程是()A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=3考点:解分式方程.专题:计算题.分析:分式方程两边乘以最简公分母x﹣1,即可得到结果.解答:解:分式方程去分母得:x﹣1﹣2x=3,故选:B.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(2013•衢州)抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x﹣1)2﹣4,则b、c的值为()A.b=2,c=﹣6 B.b=2,c=0 C.b=﹣6,c=8 D.b=﹣6,c=2考点:二次函数图象与几何变换.分析:先确定出平移后的抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出平移前的抛物线的顶点坐标,然后写出平移前的抛物线的顶点式形式,然后整理成一般形式,即可得到b、c的值.解答:解:函数y=(x﹣1)2﹣4的顶点坐标为(1,﹣4),∵是向右平移2个单位,再向下平移3个单位得到,∴1﹣2=﹣1,﹣4+3=﹣1,∴平移前的抛物线的顶点坐标为(﹣1,﹣1),∴平移前的抛物线为y=(x+1)2﹣1,即y=x2+2x,∴b=2,c=0.故选:B.点评:本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减,利用顶点的变化确定函数解析式可以使计算更加简便.8.(2013•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四的值为()边形BCEDA . 1:3B . 2:3C . 1:4D . 2:5考点: 相似三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理.分析: 先利用SAS 证明△ADE ≌△CFE (SAS ),得出S △ADE =S △CFE ,再由DE 为中位线,判断△ADE ∽△ABC ,且相似比为1:2,利用相似三角形的面积比等于相似比,得到S △ADE :S △ABC =1:4,则S △ADE :S 四边形BCED =1:3,进而得出S △CEF :S 四边形BCED =1:3. 解答: 解:∵DE 为△ABC 的中位线, ∴AE=CE .在△ADE 与△CFE 中,,∴△ADE ≌△CFE (SAS ),∴S △ADE =S △CFE .∵DE 为△ABC 的中位线,∴△ADE ∽△ABC ,且相似比为1:2,∴S △ADE :S △ABC =1:4,∵S △ADE +S 四边形BCED =S △ABC , ∴S △ADE :S 四边形BCED =1:3, ∴S △CEF :S 四边形BCED =1:3. 故选:A . 点评: 本题考查了全等三角形、相似三角形的判定与性质,三角形中位线定理.关键是利用中位线判断相似三角形及相似比.9.(2013•深圳)如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等,若等腰直角△ABC 的三个顶点分别在这三条平行直线上,则sin α的值是( )A .B .C .D .考点: 全等三角形的判定与性质;平行线之间的距离;等腰直角三角形;锐角三角函数的定义. 专题: 压轴题.分析:过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,再根据等腰直角三角形斜边等于直角边的倍求出AB,然后利用锐角的正弦等于对边比斜边列式计算即可得解.解答:解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,在Rt△ACD中,AC===,在等腰直角△ABC中,AB=AC=×=,∴sinα==.故选:D.点评:本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.10.(2013•黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A.B.C.D.考点:垂径定理;勾股定理.专题:探究型.分析:先根据勾股定理求出AB的长,过C作CM⊥AB,交AB于点M,由垂径定理可知M为AD 的中点,由三角形的面积可求出CM的长,在Rt△ACM中,根据勾股定理可求出AM的长,进而可得出结论.解答:解:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB===5,过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AD=2AM=.故选C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题:11.(2014•十堰)计算:+(π﹣2)0﹣()﹣1=1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及零指数幂、负指数幂、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2+1﹣=3﹣2=1.故答案为:1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、负指数幂、二次根式化简等考点的运算.12.(2013•杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(2013•广东)若实数a、b满足|a+2|,则=1.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解答:解:根据题意得:,解得:,则原式==1.故答案是:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.(2014•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.考点:二元一次方程组的解;因式分解-运用公式法.专题:计算题.分析:根据解二元一次方程组的方法,可得二元一次方程组的解,根据代数式求值的方法,可得答案.解答:解:,①×2﹣②得﹣8y=1,y=﹣,把y=﹣代入②得2x﹣=5,x=,x2﹣4y2=()=,故答案为:.点评:本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求代数式的值.15.(2014•荆州)我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.考点:一元一次方程的应用.专题:方程思想.分析:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.解答:解:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,99x=45解方程得:x==.故答案为:.点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.16.(2014秋•平顶山期末)如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述四个判断中正确的是①④(填正确结论的序号).考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;二次函数与不等式(组).分析:根据抛物线与x轴有两个交点可得b2﹣4ac>0,进而判断①正确;根据题中条件不能得出x=﹣2时y的正负,因而不能得出②正确;如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,由此判断③错误;先根据抛物线的对称性可知x=﹣2与x=4时的函数值相等,再根据二次函数的增减性即可判断④正确.解答:解:①∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故①正确;②x=﹣2时,y=4a﹣2b+c,而题中条件不能判断此时y的正负,即4a﹣2b+c可能大于0,可能等于0,也可能小于0,故②错误;③如果设ax2+bx+c=0的两根为α、β(α<β),那么根据图象可知不等式ax2+bx+c>0的解集是x<α或x>β,故③错误;④∵二次函数y=ax2+bx+c的对称轴是直线x=1,∴x=﹣2与x=4时的函数值相等,∵4<5,∴当抛物线开口向上时,在对称轴的右边,y随x的增大而增大,∴y1<y2,故④正确.故答案为:①④.点评:此题考查图象二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,以及二次函数与不等式的关系,根的判别式的熟练运用.三、解答题:17.(2014秋•杭州校级月考)先化简,再求值:5xy﹣[x2+4xy﹣y2﹣(x2+2xy﹣2y2)],其中x=﹣,y=﹣.考点:整式的加减—化简求值.分析:利用去括号,合并同类项化简,再把x=﹣,y=﹣代入求解.解答:解:5xy﹣[x2+4xy﹣y2﹣(x2+2xy﹣2y2)]=5xy﹣[x2+4xy﹣y2﹣x2﹣2xy+2y2],=5xy﹣[2xy+y2],=5xy﹣2xy﹣y2,=3xy﹣y2,当x=﹣,y=﹣时,原式=3×(﹣)(﹣)﹣(﹣)2=﹣=.点评:本题主要考查了整式的化简求值,解题的关键是正确的化简.18.(2014•杭州)设y=kx,是否存在实数k,使得代数式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.考点:因式分解的应用.专题:计算题;因式分解.分析:先利用因式分解得到原式=(4x2﹣y2)(x2﹣y2+3x2)=(4x2﹣y2)2,再把当y=kx代入得到原式=(4x2﹣k2x2)2=(4﹣k2)x4,所以当4﹣k2=1满足条件,然后解关于k的方程即可.解答:解:能;(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)=(4x2﹣y2)(x2﹣y2+3x2)=(4x2﹣y2)2,当y=kx,原式=(4x2﹣k2x2)2=(4﹣k2)2x4,令(4﹣k2)2=1,解得k=±或±,即当k=±或±时,原代数式可化简为x4.点评:本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.19.(2014春•邗江区校级期中)若关于x的分式方程=﹣2的解是非负数,求a的取值范围.考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据x为非负数求出a的范围即可.解答:解:分式方程去分母得:2x=3a﹣4x+4,解得:x=,根据题意得:≥0,且≠1,解得:a≥﹣,且a≠.点评:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.20.(2014•海珠区一模)如图,已知抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D,点E为y轴上一动点,CE的垂直平分线交抛物线于P,Q两点(点P在第三象限)(1)求抛物线的函数表达式和直线BC的函数表达式;(2)当△CDE是直角三角形,且∠CDE=90°时,求出点P的坐标;(3)当△PBC的面积为时,求点E的坐标.考点:二次函数综合题.分析:(1)用对称轴公式即可得出b的值,再利用抛物线与y轴交于点C(0,﹣3),求出抛物线解析式即可;由抛物线的解析式可求出B的坐标,进而可求出线BC的函数表达式;(2)当∠CDE=90°时,则CE为斜边,则DG2=CG•GE,即1=(OC﹣OG)•(2﹣a),求出a的值,进而得出P点坐标;(3)当△PBC的面积为时,过P作PK∥x 轴,交直线BC于点K,设P(m,n),则n=m2﹣2m ﹣3,由已知条件可得:S△PBC=S△PKC+S△PKB=,进而可求出P的坐标,又因为点P在CE垂直平分线上,所以E的坐标可求出.解答:解:(1)∵抛物线的对称轴为直线x=1,∴﹣﹣=1,∴b=﹣2∵抛物线与y轴交于点C(0,﹣3),∴c=﹣3,∴抛物线的函数表达式为:y=x2﹣2x﹣3;∵抛物线与x轴交于A、B两点,当y=0时,x2﹣2x﹣3=0.∴x1=﹣1,x2=3.∵A点在B点左侧,∴A(﹣1,0),B(3,0)设过点B(3,0)、C(0,﹣3)的直线的函数表达式为y=kx+m,则,∴∴直线BC的函数表达式为y=x﹣3;(2)∵Rt△CDE 中∠CDE=90°,直线BC的解析式为y=x﹣3,∴∠OCB=45°,∵点D在对称轴x=1与直线y=x﹣3交点上,∴D坐标为(1,﹣2 )Rt△CDE为等腰直角三角形易得E的坐标(0,﹣1),∵点P在CE垂直平分线上,∴点P纵坐标为﹣2,∵点P在y=x2﹣2x﹣3上,∴x2﹣2x﹣3=﹣2,解得:x=1±,∵P在第三象限,∴P的坐标为(1﹣,﹣2);(3)过P作PK∥x轴,交直线BC于点K,设P(m,n),则n=m2﹣2m﹣3∵直线BC的解析式为y=x﹣3,∴K的坐标为(n+3,n),∴PK=n+3﹣m=m2﹣3m,∵S△PBC=S△PKC+S△PKB=,∴×3KP=∴m2﹣3m=,解得:m=﹣或,∵P在第三象限,∴P的坐标为(﹣,﹣)∵点P在CE垂直平分线上,∴E的坐标为(0,﹣)点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法以及用待定系数法求一次函数的解析式和等腰直角三角形的性质,在求有关动点问题时要注意分析题意分情况讨论结果.。

相关文档
最新文档