OS中的进程线程同步机制

OS中的进程线程同步机制
OS中的进程线程同步机制

OS中的进程/线程同步机制

1 常用并发机制

1.1 信号量(Semaphore)

用于进程间传递信号的一个整数值,在信号上只可以进行三种操作,即初始化、递减和递增,这三种操作都是原子操作。递减操作用于阻塞一个进程,递增操作用于解除一个进程的阻塞。信号量也称为计数信号量或一般信号量

1.2 二元信号量(Binary Semaphore)

只取0值和1值的信号量。

1.3 互斥量(Mutex)

类似于二元信号量。关键在于为其加锁(设定值为0)的进程和为其解锁(设定值为1)的进程必须为同一个进程。

1.4 条件变量(Cond)

一种数据类型,用于阻塞进程或线程,直到特定的条件为真。

1.5 管程(Monitor)

一种编程语言结构,它在一个抽象数据类型中封装了变量、访问过程和初始化代码。管程的变量只能由管程自身的访问过程访问,每次只能有一个进程在其中执行,访问过程即临界区。管程可以有一个等待进程队列。

1.6 事件标志(Event Sign)

用作同步机制的一个内存字。应用程序代码可为标志中的每个位关联不同的事件。通过测试相关的一个或多个位,线程可以等待一个或多个事件。在全部所需位都被设定(AND)或至少一个位被设定(OR)之前,线程会一直被阻塞。

1.7 信箱/消息(Mailbox)

两个进程间交换信息的一种方法,也可用于同步。

1.8 自旋锁(Spin Lock)

一种互斥机制,进程在一个无条件循环中执行,等待锁变量的值可用。

2 常用进程/线程同步机制介绍

2.1 Windows OS中常用进程/线程同步机制

2.1.1 临界区(Critical Section)

可用于进程和线程同步。

保证在某一时刻只有一个线程能访问数据的简便办法。在任意时刻只允许一个线程对共享资源进行访问。如果有多个线程试图同时访问临界区,那么在有一个线程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。临界区在被释放后,其他线程可以继续抢占,并以此达到用原子方式操作共享资源的目的。

临界区包含两个操作原语:

EnterCriticalSection()进入临界区

LeaveCriticalSection()离开临界区

EnterCriticalSection()语句执行后代码将进入临界区以后无论发生什么,必须确保与之匹配的LeaveCriticalSection()都能够被执行到。否则临界区保护的共享资源将永远不会被释放。虽然临界区同步速度很快,但却只能用来同步本进程内的线程,而不可用来同步多个进程中的线程。

MFC提供了很多功能完备的类,我用MFC实现了临界区。MFC为临界区提供有一个CCriticalSection类,使用该类进行线程同步处理是非常简单的。只需在线程函数中用CCriticalSection类成员函数Lock()和UnLock()标定出被保护代码片段即可。Lock()后代码用到的资源自动被视为临界区内的资源被保护。UnLock后别的线程才能访问这些资源。

2.1.2 互斥量(Mutex)

进程和线程都可用的一种同步机制。互斥量跟临界区很相似,只有拥有互斥对象的线程才具有访问资源的权限,由于互斥对象只有一个,因此就决定了任何情况下此共享资源都不会同时被多个线程所访问。当前占据资源的线程在任务处理完后应将拥有的互斥对象交出,以便其他线程在获得后得以访问资源。互斥量比临界区复杂。因为使用互斥不仅仅能够在同一应用程序不同线程中实现资源的安全共享,而且可以在不同应用程序的线程之间实现对资源的安全共享。

互斥量包含的几个操作原语:

CreateMutex()创建一个互斥量

OpenMutex()打开一个互斥量

ReleaseMutex()释放互斥量

WaitForMultipleObjects()等待互斥量对象

2.1.3 信号量(Semaphore)

进程和线程都可用的同步机制。

信号量对象对线程的同步方式与前面几种方法不同,信号允许多个线程同时使用共享资源,这与操作系统中的PV操作相同。它指出了同时访问共享资源的线程最大数目。它允许多个线程在同一时刻访问同一资源,但是需要限制在同一

时刻访问此资源的最大线程数目。在用CreateSemaphore()创建信号量时即要同时指出允许的最大资源计数和当前可用资源计数。一般是将当前可用资源计数设置为最大资源计数,每增加一个线程对共享资源的访问,当前可用资源计数就会减1,只要当前可用资源计数是大于0的,就可以发出信号量信号。但是当前可用计数减小到0时则说明当前占用资源的线程数已经达到了所允许的最大数目,不能在允许其他线程的进入,此时的信号量信号将无法发出。线程在处理完共享资源后,应在离开的同时通过ReleaseSemaphore()函数将当前可用资源计数加1。在任何时候当前可用资源计数决不可能大于最大资源计数。

PV操作及信号量的概念都是由荷兰科学家E.W.Dijkstra提出的。信号量S 是一个整数,S大于等于零时代表可供并发进程使用的资源实体数,但S小于零时则表示正在等待使用共享资源的进程数。

P操作申请资源:

(1)S减1;

(2)若S减1后仍大于等于零,则进程继续执行;

(3)若S减1后小于零,则该进程被阻塞后进入与该信号相对应的队列中,然后转入进程调度。

V操作释放资源:

(1)S加1;

(2)若相加结果大于零,则进程继续执行;

(3)若相加结果小于等于零,则从该信号的等待队列中唤醒一个等待进程,然后再返回原进程继续执行或转入进程调度。

信号量包含的几个操作原语:

CreateSemaphore()创建一个信号量

OpenSemaphore()打开一个信号量

ReleaseSemaphore()释放信号量

WaitForSingleObject()等待信号量

2.1.4 事件(Event)

事件对象也可以通过通知操作的方式来保持线程的同步。并且可以实现不同进程中的线程同步操作。

信号量包含的几个操作原语:

CreateEvent()创建一个信号量

OpenEvent()打开一个事件

SetEvent()回置事件

WaitForSingleObject()等待一个事件

WaitForMultipleObjects()等待多个事件WaitForMultipleObjects 函数原型:

WaitForMultipleObjects(

IN DWORD nCount, // 等待句柄数

IN CONST HANDLE *lpHandles, //指向句柄数组

IN BOOL bWaitAll, //是否完全等待标志

IN DWORD dwMilliseconds //等待时间

参数nCount指定了要等待的内核对象的数目,存放这些内核对象的数组由lpHandles来指向。fWaitAll对指定的这nCount个内核对象的两种等待方式进行了指定,为TRUE时当所有对象都被通知时函数才会返回,为FALSE则只要其中任何一个得到通知就可以返回。dwMilliseconds在这里的作用与在WaitForSingleObject()中的作用是完全一致的。如果等待超时,函数将返回WAIT_TIMEOUT。

2.2 Linux OS 中常用进程/线程同步机制

Linux下提供了多种方式来处理线程同步,最常用的是互斥锁、条件变量和信号量。

2.2.1 互斥锁

首先进程初始化:int pthread_mutex_init(pthread_mutex_t * mutex ,const pthread_mutex_attr_t *mutexattr)。

然后再进行加锁,加锁的时候有两种方式,一种是阻塞加锁:int pthread_mutex_lock(pthread_mutex *mutex);另一种是非阻塞加锁:int pthread_mutex_trylock( pthread_mutex_t *mutex)。阻塞加锁是当锁被占用时,进程/线程将会被挂起等待(忙等待),而非阻塞加锁则会返回一个EBUSY的信号并将进程/线程加入等待队列,等待锁的占用被解除。

当进程/线程执行完毕后,会进行解锁(前提是锁必须为lock状态,且解锁时必须由加锁进程/线程进行解锁):int pthread_mutex_unlock(pthread_mutex *mutex);

最后是销毁锁(此时锁必需unlock状态,否则返回EBUSY):int pthread_mutex_destroy(pthread_mutex *mutex);

2.2.2 条件变量

条件变量的整个执行过程和互斥锁比较像,首先是初始化条件变量:int pthread_cond_init(pthread_cond_t *cond,pthread_condattr_t *cond_attr); 注意:尽管POSIX标准中为条件变量定义了属性,但在Linux中没有实现,因此cond_attr值通常为NULL,且被忽略。

然后设置等待函数,等待函数有两类,一类是无条件等待:

int pthread_cond_wait(pthread_cond_t *cond,pthread_mutex_t *mutex);另一类是计时等待:

int pthread_cond_timewait(pthread_cond_t*cond, pthread_mutex * mutex , const timespec *abstime);

无论哪种等待方式,都必须和一个互斥锁配合,以防止多个线程同时请求(用pthread_cond_wait() 或 pthread_cond_timedwait() 请求)竞争条件(Race Condition)。mutex互斥锁必须是普通锁(PTHREAD_MUTEX_TIMED_NP)或者适应锁(PTHREAD_MUTEX_ADAPTIVE_NP),且在调用pthread_cond_wait()前必须由本线程加锁(pthread_mutex_lock()),而在更新条件等待队列以前,mutex保持锁定状态,并在线程挂起进入等待前解锁。在条件满足从而离开pthread_cond_wait()之前,mutex将被重新加锁,以与进入pthread_cond_wait()

前的加锁动作对应。

从等待队列里激活进程/线程也有两类:

(1)激活一个等待该条件的线程(存在多个等待线程时按入队顺序激活其中一个):int pthread_cond_signal(pthread_cond_t *cond);

(2)激活所有等待线程:int pthread_cond_broadcast(pthread_cond_t *cond)。

最后是销毁条件变量:int pthread_cond_destroy(pthread_cond_t *cond); 只有在没有线程在该条件变量上等待的时候才能销毁这个条件变量,否则返回EBUSY。

2.2.3 信号量

Linux OS中,线程和进程都可以使用信号量来实现同步和互斥,但其使用的基本信号量函数不同。下面介绍信号量的一般使用过程。

首先初始化信号量:

int sem_init (sem_t *sem , int pshared, unsigned int value);

参数:sem - 指定要初始化的信号量;pshared - 信号量 sem 的共享选项,linux 只支持0,表示它是当前进程的局部信号量;value - 信号量 sem 的初始值。

然后是信号量值加1,即给参数sem指定的信号量值加1:

int sem_post(sem_t *sem);

再就是信号量值减1,即给参数sem指定的信号量值减1。

int sem_wait(sem_t *sem);

如果sem所指的信号量的数值为0,函数将会等待直到有其它线程使它不再是0为止。

最后是销毁信号量,此时只销毁指定的信号量。

int sem_destroy(sem_t *sem);

2.2.4 异步信号

由于LinuxThreads是在核外使用核内轻量级进程实现的线程,所以基于内核的异步信号操作对于线程也是有效的。但同时,由于异步信号总是实际发往某个进程,所以无法实现POSIX标准所要求的"信号到达某个进程,然后再由该进程将信号分发到所有没有阻塞该信号的线程中"原语,而是只能影响到其中一个线程。

POSIX异步信号同时也是一个标准C库提供的功能,主要包括信号集管理(sigemptyset()、sigfillset()、sigaddset()、sigdelset()、sigismember()等)、信号处理函数安装(sigaction())、信号阻塞控制(sigprocmask())、被阻塞信号查询(sigpending())、信号等待(sigsuspend())等,它们与发送信号的kill()等函数配合就能实现进程间异步信号功能。LinuxThreads围绕线程封装了sigaction()何raise(),本节集中讨论LinuxThreads中扩展的异步信号函数,包括pthread_sigmask()、pthread_kill()和sigwait()三个函数。毫无疑问,所有POSIX异步信号函数对于线程都是可用的。

2.2.5 其他同步方式

除了上述讨论的同步方式以外,其他很多进程间通信手段对于

LinuxThreads也是可用的,比如基于文件系统的IPC(管道、Unix域Socket等)、消息队列(Sys.V或者Posix的)、System V的信号灯等。只有一点需要注意,LinuxThreads在核内是作为共享存储区、共享文件系统属性、共享信号处理、共享文件描述符的独立进程看待的。

3. 总结

无论是Windows OS还是Linux OS,从其不同的同步互斥机制中,我们不能总结出一个结论:要实现同步互斥,必须有一个中间媒介来协调不同进程/线程之间的工作。这个中间媒介的常用方式就是公共变量,如信号量、互斥量、条件变量等。不同的机制有其不同的优点,也有其不足,根据实际需要使用合适的同步互斥机制是明智的选择。

进程同步机制与互斥-生产者消费者问题

学习中心: 专业: 年级:年春/秋季 学号: 学生: 题目:进程同步与互斥生产者-消费者问题 1.谈谈你对本课程学习过程中的心得体会与建议? 转眼间,学习了一个学期的计算机操作系统课程即将结束。在这个学期中,通过老师的悉心教导,让我深切地体会到了计算机操作系统的一些原理和具体操作过程。在学习操作系统之前,我只是很肤浅地认为操作系统只是单纯地讲一些关于计算机方面的操作应用,并不了解其中的具体操作过程 1.1设计思路 在这次设计中定义的多个缓冲区不是环形循环的,并且不需要按序访问。其中生产者可以把产品放到某一个空缓冲区中,消费者只能消费被指定生产者生产的产品。本设计在测试用例文件中指定了所有生产和消费的需求,并规定当共享缓冲区的数据满足了所有有关它的消费需求后,此共享才可以作为空闲空间允许新的生产者使用。

本设计在为生产者分配缓冲区时各生产者之间必须互斥,此后各个生产者的具体生产活动可以并发。而消费者之间只有在对同一个产品进行消费时才需要互斥,它们在消费过程结束时需要判断该消费者对象是否已经消费完毕并释放缓冲区的空间。 1.2程序流程图 1.3基本内容 在设计程序时主要有三个主体部分、三个辅助函数和一个数据结构。 其中主体部分为一个主函数main(),用于初始化缓冲区和各个同步对象,并完成线程信息的读入,最后根据该组的线程记录启动模拟线程,并等待所有线程的运 Y

行结束后退出程序; 生产者函数Produce()和消费者函数Consume(),生产者和消费者函数运行于线程中完成对缓冲区的读、写动作,根据此处生产消费的模型的特点,生产者和消费者之间通过使用同步对象实现了生产和消费的同步与互斥,是本实验的核心所在。 另外三个辅助性函数被生产者和消费者函数调用,是上述生产和消费函数中对缓冲区进行的一系列处理。 3)在实现本程序的消费生产模型时,具体的通过如下同步对象实现互斥: ①设一个互斥量h_mutex,以实现生产者在查询和保留缓冲区内的下一个位置时进行互斥。 ②每一个生产者用一个信号量与其消费者同步,通过设置h_Semaphore[MAX_THREAD_NUM]信号量 ③数组实现,该组信号量用于相应的产品已产生。同时用一个表示空缓冲区

进程同步与通信作业习题与答案

第三章 一.选择题(50题) 1.以下_B__操作系统中的技术是用来解决进程同步的。 A.管道 B.管程 C.通道 2.以下_B__不是操作系统的进程通信手段。 A.管道 B.原语 C.套接字 D.文件映射 3.如果有3个进程共享同一程序段,而且每次最多允许两个进程进入该程序段,则信号量的初值应设置为_B__。 4.设有4个进程共享一个资源,如果每次只允许一个进程使用该资源,则用P、V操作管理时信号量S的可能取值是_C__。 ,2,1,0,-1 ,1,0,-1,-2 C. 1,0,-1,-2,-3 ,3,2,1,0 5.下面有关进程的描述,是正确的__A__。 A.进程执行的相对速度不能由进程自己来控制 B.进程利用信号量的P、V 操作可以交换大量的信息 C.并发进程在访问共享资源时,不可能出现与时间有关的错误 、V操作不是原语操作 6.信号灯可以用来实现进程之间的_B__。 A.调度 B.同步与互斥 C.同步 D.互斥 7.对于两个并发进程都想进入临界区,设互斥信号量为S,若某时S=0,表示_B__。 A.没有进程进入临界区 B.有1个进程进入了临界区 C. 有2个进程进入了临界区 D. 有1个进程进入了临界区并且另一个进程正等待进入 8. 信箱通信是一种_B__方式 A.直接通信 B.间接通信 C.低级通信 D.信号量 9.以下关于临界区的说法,是正确的_C__。

A.对于临界区,最重要的是判断哪个进程先进入 B.若进程A已进入临界区,而进程B的优先级高于进程A,则进程B可以 打断进程A而自己进入临界区 C. 信号量的初值非负,在其上只能做PV操作 D.两个互斥进程在临界区内,对共享变量的操作是相同的 10. 并发是指_C__。 A.可平行执行的进程 B.可先后执行的进程 C.可同时执行的进程 D.不可中断的进程 11. 临界区是_C__。 A.一个缓冲区 B.一段数据区 C.一段程序 D.栈 12.进程在处理机上执行,它们的关系是_C__。 A.进程之间无关,系统是封闭的 B.进程之间相互依赖相互制约 C.进程之间可能有关,也可能无关 D.以上都不对 13. 在消息缓冲通信中,消息队列是一种__A__资源。 A.临界 B.共享 C.永久 D.可剥夺 14. 以下关于P、V操作的描述正确的是__D_。 A.机器指令 B. 系统调用 C.高级通信原语 D.低级通信原语 15.当对信号量进行V源语操作之后,_C__。 A.当S<0,进程继续执行 B.当S>0,要唤醒一个就绪进程 C. 当S<= 0,要唤醒一个阻塞进程 D. 当S<=0,要唤醒一个就绪 16.对临界区的正确论述是__D_。 A.临界区是指进程中用于实现进程互斥的那段代码 B. 临界区是指进程中用于实现进程同步的那段代码 C. 临界区是指进程中用于实现进程通信的那段代码 D. 临界区是指进程中访问临界资源的那段代码 17. __A__不是进程之间的通信方式。 A.过程调用 B.消息传递 C.共享存储器 D.信箱通信 18. 同步是指进程之间逻辑上的__A__关系。

OS中的进程线程同步机制

OS中的进程/线程同步机制 1 常用并发机制 1.1 信号量(Semaphore) 用于进程间传递信号的一个整数值,在信号上只可以进行三种操作,即初始化、递减和递增,这三种操作都是原子操作。递减操作用于阻塞一个进程,递增操作用于解除一个进程的阻塞。信号量也称为计数信号量或一般信号量 1.2 二元信号量(Binary Semaphore) 只取0值和1值的信号量。 1.3 互斥量(Mutex) 类似于二元信号量。关键在于为其加锁(设定值为0)的进程和为其解锁(设定值为1)的进程必须为同一个进程。 1.4 条件变量(Cond) 一种数据类型,用于阻塞进程或线程,直到特定的条件为真。 1.5 管程(Monitor) 一种编程语言结构,它在一个抽象数据类型中封装了变量、访问过程和初始化代码。管程的变量只能由管程自身的访问过程访问,每次只能有一个进程在其中执行,访问过程即临界区。管程可以有一个等待进程队列。 1.6 事件标志(Event Sign) 用作同步机制的一个内存字。应用程序代码可为标志中的每个位关联不同的事件。通过测试相关的一个或多个位,线程可以等待一个或多个事件。在全部所需位都被设定(AND)或至少一个位被设定(OR)之前,线程会一直被阻塞。 1.7 信箱/消息(Mailbox) 两个进程间交换信息的一种方法,也可用于同步。 1.8 自旋锁(Spin Lock) 一种互斥机制,进程在一个无条件循环中执行,等待锁变量的值可用。

2 常用进程/线程同步机制介绍 2.1 Windows OS中常用进程/线程同步机制 2.1.1 临界区(Critical Section) 可用于进程和线程同步。 保证在某一时刻只有一个线程能访问数据的简便办法。在任意时刻只允许一个线程对共享资源进行访问。如果有多个线程试图同时访问临界区,那么在有一个线程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。临界区在被释放后,其他线程可以继续抢占,并以此达到用原子方式操作共享资源的目的。 临界区包含两个操作原语: EnterCriticalSection()进入临界区 LeaveCriticalSection()离开临界区 EnterCriticalSection()语句执行后代码将进入临界区以后无论发生什么,必须确保与之匹配的LeaveCriticalSection()都能够被执行到。否则临界区保护的共享资源将永远不会被释放。虽然临界区同步速度很快,但却只能用来同步本进程内的线程,而不可用来同步多个进程中的线程。 MFC提供了很多功能完备的类,我用MFC实现了临界区。MFC为临界区提供有一个CCriticalSection类,使用该类进行线程同步处理是非常简单的。只需在线程函数中用CCriticalSection类成员函数Lock()和UnLock()标定出被保护代码片段即可。Lock()后代码用到的资源自动被视为临界区内的资源被保护。UnLock后别的线程才能访问这些资源。 2.1.2 互斥量(Mutex) 进程和线程都可用的一种同步机制。互斥量跟临界区很相似,只有拥有互斥对象的线程才具有访问资源的权限,由于互斥对象只有一个,因此就决定了任何情况下此共享资源都不会同时被多个线程所访问。当前占据资源的线程在任务处理完后应将拥有的互斥对象交出,以便其他线程在获得后得以访问资源。互斥量比临界区复杂。因为使用互斥不仅仅能够在同一应用程序不同线程中实现资源的安全共享,而且可以在不同应用程序的线程之间实现对资源的安全共享。 互斥量包含的几个操作原语: CreateMutex()创建一个互斥量 OpenMutex()打开一个互斥量 ReleaseMutex()释放互斥量 WaitForMultipleObjects()等待互斥量对象 2.1.3 信号量(Semaphore) 进程和线程都可用的同步机制。 信号量对象对线程的同步方式与前面几种方法不同,信号允许多个线程同时使用共享资源,这与操作系统中的PV操作相同。它指出了同时访问共享资源的线程最大数目。它允许多个线程在同一时刻访问同一资源,但是需要限制在同一

实验2 线程同步机制

实验2 线程同步机制 一、实验目的: 通过观察共享数据资源但不受控制的两个线程的并发运行输出结果,体会同步机制的必要性和重要性。然后利用现有操作系统提供的同步机制编程实现关于该两个线程的有序控制,同时要求根据同步机制的Peterson软件解决方案尝试自己编程实现同步机制和用于同一问题的解决,并基于程序运行时间长短比较两种同步机制。 二、实验设计 I基于给定银行账户间转账操作模拟代码作为线程执行代码,在主线程中创建两个并发线程,编程实现并观察程序运行结果和予以解释说明。 II利用Windows互斥信号量操作函数解决上述线程并发问题,并分析、尝试和讨论线程执行体中有关信号量操作函数调用的正确位置。 III根据同步机制的Peterson软件解决方案尝试自己编程实现线程同步机制和用于上述线程并发问题的解决,并基于程序运行时间长短

将其与基于Windows互斥信号量的线程同步机制的效率展开比较。其间,可规定线程主体代码循环执行1000000次 三、源程序清单和说明 1未利用互斥信号量 #include #include #include int nAccount1 = 0, nAccount2 = 0; int nLoop = 0; int nTemp1, nTemp2, nRandom; DWORD WINAPI ThreadFunc(HANDLE Thread) { do { nTemp1 = nAccount1; nTemp2 = nAccount2; nRandom = rand(); nAccount1 = nTemp1 + nRandom; nAccount2 = nTemp2 - nRandom; nLoop++; } while ((nAccount1 + nAccount2) == 0); printf("循环次数为%d\n", nLoop); return 0; } int main() { HANDLE Thread[2]; Thread[0] = CreateThread(NULL,0,ThreadFunc,NULL,0,NULL); Thread[1] = CreateThread(NULL,0,ThreadFunc,NULL,0,NULL); WaitForMultipleObjects(2,Thread,TRUE,INFINITE); CloseHandle(Thread); return 0; }

进程的同步实验报告

操作系统 实验报告 哈尔滨工程大学 计算机科学与技术学院

一、实验概述 1. 实验名称 进程的同步 2. 实验目的 ⑴使用EOS的信号量,编程解决生产者 消费者问题,理解进程同步的意义。 ⑵调试跟踪EOS信号量的工作过程,理解进程同步的原理。 ⑶修改EOS的信号量算法,使之支持等待超时唤醒功能(有限等待),加深理解进程同步的原理。 3. 实验类型 验证+设计 4. 实验内容 ⑴准备实验 ⑵使用EOS的信号量解决生产者-消费者问题 ⑶调试EOS信号量的工作过程 ①创建信号量 ②等待释放信号量 ③等待信号量(不阻塞) ④释放信号量(不唤醒) ⑤等待信号量(阻塞) ⑥释放信号量(唤醒) ⑷修改EOS的信号量算法 二、实验环境 WindowsXP + EOS集成实验环境 三、实验过程 1. 设计思路和流程图

图4-1.整体试验流程图

图4-2.Main 函数流程图、生产者消费、消费者流程图 2. 算法实现 3. 需要解决的问题及解答 (1). 思考在ps/semaphore.c 文件内的PsWaitForSemaphore 和PsReleaseSemaphore 函数中,为什么要使用原子操作?

答:在执行等待信号量和释放信号量的时候,是不允许cpu响应外部中断的,如果此时cpu响应了外部中断,会产生不可预料的结果,无法正常完成原子操作。 (2). 绘制ps/semaphore.c文件内PsWaitForSemaphore和PsReleaseSemaphore函数的流程图。 (3).P143生产者在生产了13号产品后本来要继续生产14号产品,可此时生产者为什么必须等待消费者消费了4号产品后,才能生产14号产品呢?生产者和消费者是怎样使用同步对象来实现该同步过程的呢? 答:这是因为临界资源的限制。临界资源就像产品仓库,只有“产品仓库”空闲生产者才能生产东西,有权向里面放东西。所以它必须等到消费者,取走产品,“产品空间”(临界资源)空闲时,才继续生产14号产品。 (4). 根据本实验3.3.2节中设置断点和调试的方法,自己设计一个类似的调试方案来验证消费者线程在消费24号产品时会被阻塞,直到生产者线程生产了24号产品后,消费者线程才被唤醒并继续执行的过程。 答:可以按照下面的步骤进行调试 (1) 删除所有的断点。 (2) 按F5启动调试。OS Lab会首先弹出一个调试异常对话框。 (3) 在调试异常对话框中选择“是”,调试会中断。 (4) 在Consumer函数中等待Full信号量的代码行(第173行)WaitForSingleObject(FullSemaphoreHandle, INFINITE); 添加一个断点。 (5) 在“断点”窗口(按Alt+F9打开)中此断点的名称上点击右键。 (6) 在弹出的快捷菜单中选择“条件”。 (7) 在“断点条件”对话框(按F1获得帮助)的表达式编辑框中,输入表达式“i == 24”。 (8) 点击“断点条件”对话框中的“确定”按钮。 (9) 按F5继续调试。只有当消费者线程尝试消费24号产品时才会在该条件断点处中断。 4. 主要数据结构、实现代码及其说明 修改PsWaitForSemaphore函数 if (Semaphore->Count>0){ Semaphore->Count--; flag=STATUS_SUCCESS; }//如果信号量大于零,说明尚有资源,可以为线程分配 else flag=PspWait(&Semaphore->WaitListHead, Milliseconds); KeEnableInterrupts(IntState); // 原子操作完成,恢复中断。 return flag; }//否则,说明资源数量不够,不能再为线程分配资源,因此要使线程等待 修改PsReleaseSemaphore函数 if (Semaphore->Count + ReleaseCount > Semaphore->MaximumCount) {

用多线程同步方法解决生产者-消费者问题(操作系统课设)

. 题目用多线程同步方法解决生产者-消费 者问题(Producer-Consumer Problem) 学院计算机科学与技术学院 专业软件工程 班级 姓名 指导教师 年月日

目录 目录 (1) 课程设计任务书 (2) 正文 (2) 1.设计目的与要求 (2) 1.1设计目的 (2) 1.2设计要求 (2) 2.设计思想及系统平台 (2) 2.1设计思想 (2) 2.2系统平台及使用语言 (2) 3.详细算法描述 (3) 4.源程序清单 (5) 5.运行结果与运行情况 (10) 6.调试过程 (15) 7.总结 (15) 本科生课程设计成绩评定表 (16)

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:计算机科学与技术学院 题目: 用多线程同步方法解决生产者-消费者问题 (Producer-Consumer Problem) 初始条件: 1.操作系统:Linux 2.程序设计语言:C语言 3.有界缓冲区内设有20个存储单元,其初值为0。放入/取出的数据项按增序设定为1-20这20个整型数。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要 求) 1.技术要求: 1)为每个生产者/消费者产生一个线程,设计正确的同步算法 2)每个生产者和消费者对有界缓冲区进行操作后,即时显示有界缓冲区的当前全部内容、当前指针位置和生产者/消费者线程的自定义标识符。 3)生产者和消费者各有两个以上。 4)多个生产者或多个消费者之间须共享对缓冲区进行操作的函数代码。 2.设计说明书内容要求: 1)设计题目与要求 2)总的设计思想及系统平台、语言、工具等。 3)数据结构与模块说明(功能与流程图) 4)给出用户名、源程序名、目标程序名和源程序及其运行结果。(要注明存储各个程序及其运行结果的主机IP地址和目录。) 5)运行结果与运行情况 (提示: (1)有界缓冲区可用数组实现。 (2)编译命令可用:cc -lpthread -o 目标文件名源文件名 (3)多线程编程方法参见附件。) 3. 调试报告: 1)调试记录 2)自我评析和总结 上机时间安排: 18周一~ 五 08:0 - 12:00 指导教师签名:年月日

4:一个经典的多线程同步问题汇总

一个经典的多线程同步问题 程序描述: 主线程启动10个子线程并将表示子线程序号的变量地址作为参数传递给子线程。子线程接收参数 -> sleep(50) -> 全局变量++ -> sleep(0) -> 输出参数和全局变量。 要求: 1.子线程输出的线程序号不能重复。 2.全局变量的输出必须递增。 下面画了个简单的示意图: 分析下这个问题的考察点,主要考察点有二个: 1.主线程创建子线程并传入一个指向变量地址的指针作参数,由于线程启动须要花费一定的时间,所以在子线程根据这个指针访问并保存数据前,主线程应等待子线程保存完毕后才能改动该参数并启动下一个线程。这涉及到主线程与子线程之间的同步。 2.子线程之间会互斥的改动和输出全局变量。要求全局变量的输出必须递增。这涉及到各子线程间的互斥。 下面列出这个程序的基本框架,可以在此代码基础上进行修改和验证。 //经典线程同步互斥问题 #include #include #include long g_nNum; //全局资源 unsigned int__stdcall Fun(void *pPM); //线程函数 const int THREAD_NUM = 10; //子线程个数 int main() { g_nNum = 0;

HANDLE handle[THREAD_NUM]; int i = 0; while (i < THREAD_NUM) { handle[i] = (HANDLE)_beginthreadex(NULL, 0, Fun, &i, 0, NULL); i++;//等子线程接收到参数时主线程可能改变了这个i的值} //保证子线程已全部运行结束 WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE); return 0; } unsigned int__stdcall Fun(void *pPM) { //由于创建线程是要一定的开销的,所以新线程并不能第一时间执行到这来int nThreadNum = *(int *)pPM; //子线程获取参数 Sleep(50);//some work should to do g_nNum++; //处理全局资源 Sleep(0);//some work should to do printf("线程编号为%d 全局资源值为%d\n", nThreadNum, g_nNum); return 0; } 运行结果:

李建伟版实用操作系统第二版最新习题 3 进程同步与通信

李建伟版实用操作系统第二版最新习题 3 进程同步与通信 一、选择题 题号1 2 3 4 5 6 7 8 9 10 答案A D D C B C A B A A 题号11 12 答案D C 二、综合题 1、答:临界资源也称独占资源、互斥资源,它是指某段时间内只充许一个进程使用的资源。比如打印机等硬件资源,以及只能互斥使用的变量、表格、队列等软件资源。各个进程中访问临界资源的、必须互斥执行的程序代码段称为临界区,各进程中访问同一临界资源的程序代码段必须互斥执行。 为防止两个进程同时进入临界区,可采用软件解决方法或同步机构来协调它们。但是,不论是软件算法还是同步机构都应遵循下述准则: ①空闲让进。②忙则等待。③有限等待。④让权等待。 2、答:忙等待意味着一个进程正在等待满足一个没有闲置处理器的严格循环的条件。因为只有一个CPU 为多个进程服务,因此这种等待浪费了CPU 的时钟。 其他类型的等待:与忙等待需要占用处理器不同,另外一种等待则允许放弃处理器。如进程阻塞自己并且等待在合适的时间被唤醒。忙等可以采用更为有效的办法来避免。例如:执行请求(类似于中断)机制以及PV 信号量机制,均可避免“忙等待”现象的发生。 3、答: 在生产者—消费者问题中,Producer 进程中P(empty)和P(mutex)互换先后次序。先 执行P(mutex),假设成功,生产者进程获得对缓冲区的访问权,但如果此时缓冲池已满,没有空缓冲区可供其使用,后续的P(empty)原语没有通过,Producer 阻塞在信号量empty 上,而此时mutex 已被改为0,没有恢复成初值1。切换到消费者进程后,Consumer 进程执行P(full)成功,但其执行P(mutex)时由于Producer 正在访问缓冲区,所以不成功,阻塞在信号量mutex 上。生产者进程和消费者进程两者均无法继续执行,相互等待对方释放资源,会产生死锁。 在生产者和消费者进程中,V 操作的次序无关紧要,不会出现死锁现象。 4、答:

Java多线程同步机制在售票系统的实现

Java多线程同步机制在售票系统的实现 论文导读:多线程技术的思想已经使用了很长的一段时间。但其不支持相同优先级的时间片轮换。多个用户线程在并发运行过程中可能同时访问临界区的内容。在Java中定义了线程同步的概念。关键词:多线程技术,多线程优先级,时间片,同步,临界区引言:多线程技术的思想已经使用了很长的一段时间,它允许CPU处理器时间共享,即很多用户可以共享处理器,每个用户的任务都分配到一段处理器时间。多线程是现代操作系统有别于传统操作系统的重要标志之一,它有别于传统的多进程的概念。所谓线程就是程序中的一个执行流,多线程程序是指一个程序中包含有多个执行流,多线程是实现并发机制的一种有效手段。进程和线程一样,都是实现并发性的一个基本单位。1.基本概念:1.1线程与进程的主要区别:①同样作为基本的执行单元,线程的划分比进程小。②多进程每个占有独立的内存空间,而多线程共享同一内存空间,通过共享的内存空间来交换信息,切换效率远远高于多进程。③Java线程调度器支持不同优先级线程的抢占方式,但其不支持相同优先级的时间片轮换。④Java运行时系统所在的操作系统(例如:Windows XP)支持时间片的轮换,则线程调度器就支持相同优先级线程的时间片轮换。免费论文参考网。1.2Java 多线程的特点:1.2.1多线程的继承由于Java引入了包的概念,从而使类的继承更加简便,线程的创建就是一个最好的例子。Java多线程的实现有两种办法①通过Thread继承,在下面的研究中,我主要用继承自Thread类来实现Java的多线程技术。②通过Runnable接口。

1.2.2Java多线程的同步技术Java应用程序的多个线程共享同一进程的数据资源,多个用户线程在并发运行过程中可能同时访问临界区的内容,为了程序的正常运行,在Java中定义了线程同步的概念,实现对临界区共享资源的一致性的维护。1.3.3Java多线程的流程控制Java流程控制的方法有Sleep().Interrupt().Wait().Notif().Join()等。1.3.4临界区在一个多线程的程序当中,单独的并发的线程访问代码段中的同一对象,则这个代码段叫做临界区,我们需要用同步的机制对代码段进行保护,避免程序出现不确定的因素。1.3.5同步机制Java中支持线程的同步机制,它由synchronized方法实现,分为同步块和同步方法,在下面的讨论中用synchronized的同步块来解决问题。2.多线程同步机制在车票系统的实现2.1下面就以售票系统中所涉及的问题来讨论Java的多线程同步机制问题,在售票系统中由于很大一部分时间可能有多人在购买车票,所以必须开辟多个线程同时为他们服务,在这里我设有四个售票窗口,则开辟四个线程来为四个窗口服务模拟图如下:窗口 1 窗口2窗口 3 窗口4Thread1Thread2 Thread3Thread4售票窗口模拟图 2.2出错的程序代码如下:class TicketsSystem{public staticvoid main(String[] args){SellThread kt=new SellThread();new Thread(kt).start();new Thread(kt).start();new Thread(kt).start();new Thread(kt).start();}}class SellThreadextends Thread{inttickets=60;public voidrun(){while(true){if(tickets>0){System.out.println(Thread.currentThr ead().getName()+'sellticket '+tickets);tickets--;}}}}在上面的程序中为了

Windows下多线程同步机制

多线程同步机制 Critical section(临界区)用来实现“排他性占有”。适用范围是单一进程的各线程之间。它是: ·一个局部性对象,不是一个核心对象。 ·快速而有效率。 ·不能够同时有一个以上的critical section被等待。 ·无法侦测是否已被某个线程放弃。 Mutex Mutex是一个核心对象,可以在不同的线程之间实现“排他性占有”,甚至几十那些现成分属不同进程。它是: ·一个核心对象。 ·如果拥有mutex的那个线程结束,则会产生一个“abandoned”错误信息。 ·可以使用Wait…()等待一个mutex。 ·可以具名,因此可以被其他进程开启。 ·只能被拥有它的那个线程释放(released)。 Semaphore Semaphore被用来追踪有限的资源。它是: ·一个核心对象。 ·没有拥有者。 ·可以具名,因此可以被其他进程开启。 ·可以被任何一个线程释放(released)。 Ev ent Object Ev ent object通常使用于overlapped I/O,或用来设计某些自定义的同步对象。它是: ·一个核心对象。 ·完全在程序掌控之下。 ·适用于设计新的同步对象。 · “要求苏醒”的请求并不会被储存起来,可能会遗失掉。 ·可以具名,因此可以被其他进程开启。 Interlocked Variable 如果Interlocked…()函数被使用于所谓的spin-lock,那么他们只是一种同步机制。所谓spin-lock是一种busy loop,被预期在极短时间内执行,所以有最小的额外负担(overhead)。系统核心偶尔会使用他们。除此之外,interlocked variables主要用于引用技术。他们:·允许对4字节的数值有些基本的同步操作,不需动用到critical section或mutex之类。 ·在SMP(Symmetric Multi-Processors)操作系统中亦可有效运作。 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

[操作系统]经典进程同步问题题库

1、测量控制系统中的数据采集任务把所采集的数据送一单缓冲区;计算任务则从该缓冲区中取出数据并进行计算。试写出利用信号量机制实现两者共享单缓冲区的同步算法。 Var Sempty,Sfull: semaphore:= 1,0 Begin Parbegin Collection:begin repeat 采集一个数据; wait(Sempty); 数据放入缓冲区; signal(Sfull); untill false; end; Compute:begin repeat wait(Sfull); 从缓冲区取出数据; signal(Sempty); 计算; ` until false; end; Parend End 2、有一阅览室,共有100个座位。读者进入时必须先在一种登记表上登记,该表为每一座位列一个表目,包括座号和读者姓名。读者离开时要注销掉登记内容。试用wait和signal原语描述读者进程的同步问题。 var mutex, readcount :semaphore := 1,100; Begin Parbegin Process Reader:begin repeat wait(readcount); wait(mutex); <填入座号和姓名完成登记>; signal(mutex); <阅读> wait(mutex) <删除登记表中的相关表项,完成注销> signal(mutex); signal(readcount); until false; end; parend; End; 1)、桌上有一空盘,只允许放一个水果,爸爸专向盘中放苹果,妈妈专向盘中放桔子;女儿专吃盘中的苹果,儿子专吃盘中的桔子;试用wait 和signal原语实现爸爸、妈妈、女儿、儿子之间的同步问题。 var Sempty, Sapple, Sorange,: semaphore:= 1,0,0; begin parbegin Father: begin repeat wait(Sempty); ; signal(Sapple); until false; end; Mother: begin repeat wait(Sempty); ; signal(Sorange); until false; end; Son: begin repeat wait(Sorange); ; signal(Sempty); until false; end; Daughter: begin repeat wait(Sapple); ; signal(Sempty); until false; end; parend; end; 1、在4×100米接力赛中,4个运动员之间存在如下关系,运动员1跑到终点把接力棒交给运动员2;运动员2一开始处于等待状态,在接到运动员1传来的接力棒后才能往前跑,他跑完100米后交给运动员3,运动员3也只有在接到运动员2传来的棒后才能跑,他跑完100米后交给运动员4,运动员4接到棒后跑完全程。请试用信号量机制对其上过程进行分析。 var s1,s2,s3:semaphpre:=0,0,0; begin parbegin Athlete1: begin Run 100m; signal(s1); end; Athlete2: begin wait(s1); Run 100m; signal(s2); end; Athlete3: begin wait(s2); Run 100m; signal(s3); end; Athlete4: begin wait(s3); Run 100m; end; parend; end 2、在公共汽车上,司机和售票员各行其职,司机负责开车和到站停车;售票员负责售票和开、关车门;当售票员关好车门后驾驶员才能开车行驶。试用wait和signal操作实现司机和售票员的同步。

进程同步实验报告

实验三进程的同步 一、实验目的 1、了解进程同步和互斥的概念及实现方法; 2、更深一步的了解fork()的系统调用方式。 二、实验内容 1、预习操作系统进程同步的概念及实现方法。 2、编写一段源程序,用系统调用fork()创建两个子进程,当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。程序的输出是什么?分析原因。 3、阅读模拟火车站售票系统和实现进程的管道通信源代码,查阅有关进程创建、进程互斥、进程同步的系统功能调用或API,简要解释例程中用到的系统功能或API的用法,并编辑、编译、运行程序,记录程序的运行结果,尝试给出合理的解释。 4、(选做)修改问题2的代码,使得父子按顺序显示字符“a”;“b”、“c”编辑、编译、运行。记录程序运行结果。 三、设计思想 1、程序框架 (1)创建两个子进程:(2)售票系统:

(3)管道通信: 先创建子进程,然后对内容加锁,将输出语句存入缓存,并让子进程自己进入睡眠,等待别的进程将其唤醒,最后解锁;第二个子进程也执行这样的过程。父进程等待子进程后读内容并输出。 (4)修改程序(1):在子进程的输出语句前加上sleep()语句,即等待父进程执行完以后再输出。 2、用到的文件系统调用函数 (1)创建两个子进程:fork() (2)售票系统:DWORD WINAPI Fun1Proc(LPVOID lpPartameter); CreateThread(NULL,0,Fun1Proc,NULL,0,NULL); CloseHandle(hThread1); (HANDLE)CreateMutex(NULL,FALSE,NULL); Sleep(4000)(sleep调用进程进入睡眠状态(封锁), 直到被唤醒); WaitForSingleObject(hMutex,INFINITE); ReleaseMutex(hMutex); (3)管道通信:pipe(fd),fd: int fd[2],其中: fd[0] 、fd[1]文件描述符(读、写); lockf( fd,function,byte)(fd: 文件描述符;function: 1: 锁定 0:解锁;byte: 锁定的字节数,0: 从当前位置到文件尾); write(fd,buf,byte)、read(fd,buf,byte) (fd: 文件描述符;buf : 信息传送的源(目标)地址;byte: 传送的字节数); sleep(5); exit(0); read(fd[0],s,50) (4)修改程序(1):fork(); sleep(); 四、调试过程 1、测试数据设计 (1)创建两个子进程:

四种进程或线程同步互斥的控制方法

四种进程或线程同步互斥的控制方法 1、临界区:通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问。 2、互斥量:为协调共同对一个共享资源的单独访问而设计的。 3、信号量:为控制一个具有有限数量用户资源而设计。 4、事件:用来通知线程有一些事件已发生,从而启动后继任务的开始。 一临界区 临界区的使用在线程同步中应该算是比较简单,说它简单还是说它同后面讲到的其它方法相比更容易理解。举个简单的例子:比如说有一个全局变量(公共资源)两个线程都会对它进行写操作和读操作,如果我们在这里不加以控制,会产生意想不到的结果。假设线程A 正在把全局变量加1然后打印在屏幕上,但是这时切换到线程B,线程B又把全局变量加1然后又切换到线程A,这时候线程A打印的结果就不是程序想要的结果,也就产生了错误。解决的办法就是设置一个区域,让线程A在操纵全局变量的时候进行加锁,线程B如果想操纵这个全局变量就要等待线程A释放这个锁,这个也就是临界区的概念。 二互斥体 windows api中提供了一个互斥体,功能上要比临界区强大。也许你要问,这个东东和临界区有什么区别,为什么强大?它们有以下几点不一致: 1.critical section是局部对象,而mutex是核心对象。因此像waitforsingleobject是不可以等待临界区的。 2.critical section是快速高效的,而mutex同其相比要慢很多 3.critical section使用围是单一进程中的各个线程,而mutex由于可以有一个名字,因此它是可以应用于不同的进程,当然也可以应用于同一个进程中的不同线程。 4.critical section 无法检测到是否被某一个线程释放,而mutex在某一个线程结束之后会产生一个abandoned的信息。同时mutex只能被拥有它的线程释放。下面举两个应用mutex 的例子,一个是程序只能运行一个实例,也就是说同一个程序如果已经运行了,就不能再运行了;另一个是关于非常经典的哲学家吃饭问题的例子。 三事件 事件对象的特点是它可以应用在重叠I/O(overlapped I/0)上,比如说socket编程中有两种模型,一种是重叠I/0,一种是完成端口都是可以使用事件同步。它也是核心对象,因此可以被waitforsingleobje这些函数等待;事件可以有名字,因此可以被其他进程开启。 四信号量 semaphore的概念理解起来可能要比mutex还难,我先简单说一下创建信号量的函数,因为我在开始使用的时候没有很快弄清楚,可能现在还有理解不对的地方,如果有错误还是请大侠多多指教。 CreateSemaphore( LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, // SD LONG lInitialCount, // initial count LONG lMaximumCount, // maximum count LPCTSTR lpName // object name )

进程通信与进程同步机制实现

一.课程设计题目 某银行提供10个服务窗口(7个对私服务窗口,3个对公服务窗口)和100个供顾客等待的座位。顾客到达银行时,若有空座位,则到取号机上领取一个号,等待叫号。取号机每次仅允许一位顾客使用,有对公和对私两类号,美味顾客只能选取其中一个。当营业员空闲时,通过叫号选取一位顾客,并为其服务。请用P、V操作写出进程的同步算法。 二.课程设计目的 1、掌握基本的同步与互斥算法,理解银行排队系统操作模型。 2、学习使用Windows 2000/XP中基本的同步对象,掌握相关API 的使用方法。 3、了解Windows 2000/XP中多线程的并发执行机制,实现进程的同步与互斥。 三.课程设计要求 ◆学习并理解生产者/消费者模型及其同步/互斥规则; ◆学习了解Windows同步对象及其特性; ◆熟悉实验环境,掌握相关API的使用方法; ◆设计程序,实现生产者/消费者进程(线程)的同步与互斥; ◆提交实验报告。 四.需要了解的知识

1.同步对象 同步对象是指Windows中用于实现同步与互斥的实体,包括信号量(Semaphore)、互斥量(Mutex)、临界区(Critical Section)和事件(Events)等。本实验中使用到信号量、互斥量和临界区三个同步对象。 2.同步对象的使用步骤: ◆创建/初始化同步对象。 ◆请求同步对象,进入临界区(互斥量上锁)。 ◆释放同步对象(互斥量解锁)。 五.需要用到的API函数及相关函数我们利用Windows SDK提供的API编程实现实验题目要求,而VC中包含有Windows SDK的所有工具和定义。要使用这些API,需要包含堆这些函数进行说明的SDK头文件——最常见的是Windows.h(特殊的API调用还需要包含其他头文件)。 本实验使用到的API的功能和使用方法简单介绍 1、WaitForSingleObject( hSemaphoreChairs , INFINITE ); WaitForSingleObject( hMutex , INFINITE ); ●功能——使程序处于等待状态,直到信号量hHandle出现(即其值大于等于1)或超过规定的等待时间 ●格式 DWORD WaitForSingleObject(HANDLE hHandle, DWORD dwMilliseconds); ●参数说明

用多线程同步方法解决生产者-消费者问题(操作系统课设)

用多线程同步方法解决生产者-消费者问题(操作系统课设)

题目 用多线程同步方法解决生产者-消费 者问题(Producer-Consume r Problem) 学院 物理学与电子信息工程学院 专业电子信息工程班级08电信本一班姓名 指导教师 2010 年12 月日

目录 目录 0 课程设计任务书 (1) 正文 (3) 1.设计目的与要求 (3) 1.1设计目的 (3) 1.2设计要求 (3) 2.设计思想及系统平台 (3) 2.1设计思想 (3) 2.2系统平台及使用语言 (3) 3.详细算法描述 (4) 4.源程序清单 (7) 5.运行结果与运行情况 (12) 6.调试过程 (16) 7.总结 (16)

课程设计任务书 题目: 用多线程同步方法解决生产者-消费者问题 (Producer-Consumer Problem) 初始条件: 1.操作系统:Linux 2.程序设计语言:C语言 3.有界缓冲区内设有20个存储单元,其初 值为0。放入/取出的数据项按增序设定为 1-20这20个整型数。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.技术要求: 1)为每个生产者/消费者产生一个线程,设计正确的同步算法 2)每个生产者和消费者对有界缓冲区进行操作后,即时显示有界缓冲区的当前全部 内容、当前指针位置和生产者/消费者

线程的自定义标识符。 3)生产者和消费者各有两个以上。 4)多个生产者或多个消费者之间须共享对缓冲区进行操作的函数代码。 2.设计说明书内容要求: 1)设计题目与要求 2)总的设计思想及系统平台、语言、工具 等。 3)数据结构与模块说明(功能与流程图) 4)给出用户名、源程序名、目标程序名和源程序及其运行结果。(要注明存储各个 程序及其运行结果的主机IP地址和目 录。) 5)运行结果与运行情况 (提示: (1)有界缓冲区可用数组实现。 (2)编译命令可用:cc -lpthread -o 目标文件名源文件名 (3)多线程编程方法参见附件。) 3. 调试报告: 1)调试记录 2)自我评析和总结

相关文档
最新文档