Visual C++线程同步技术剖析临界区,时间,信号量,互斥量

Visual C++线程同步技术剖析临界区,时间,信号量,互斥量
Visual C++线程同步技术剖析临界区,时间,信号量,互斥量

Visual C++线程同步技术剖析:临界区,时间,信号量,互斥量

摘要:多线程同步技术是计算机软件开发的重要技术,本文对多线程的各种同步技术的原理和实现进行了初步探讨。

关键词:VC++6.0;线程同步;临界区;事件;互斥;信号量;

正文

使线程同步

在程序中使用多线程时,一般很少有多个线程能在其生命期内进行完全独立的操作。更多的情况是一些线程进行某些处理操作,而其他的线程必须对其处理结果进行了解。正常情况下对这种处理结果的了解应当在其处理任务完成后进行。

如果不采取适当的措施,其他线程往往会在线程处理任务结束前就去访问处理结果,这就很有可能得到有关处理结果的错误了解。例如,多个线程同时访问同一个全局变量,如果都是读取操作,则不会出现问题。如果一个线程负责改变此变量的值,而其他线程负责同时读取变量内容,则不能保证读取到的数据是经过写线程修改后的。

为了确保读线程读取到的是经过修改的变量,就必须在向变量写入数据时禁止其他线程对其的任何访问,直至赋值过程结束后再解除对其他线程的访问限制。象这种保证线程能了解其他线程任务处理结束后的处理结果而采取的保护措施即为线程同步。

线程同步是一个非常大的话题,包括方方面面的内容。从大的方面讲,线程的同步可分用户模式的线程同步和内核对象的线程同步两大类。用户模式中线程的同步方法主要有原子访问和临界区等方法。其特点是同步速度特别快,适合于

对线程运行速度有严格要求的场合。

内核对象的线程同步则主要由事件、等待定时器、信号量以及信号灯等内核对象构成。由于这种同步机制使用了内核对象,使用时必须将线程从用户模式切换到内核模式,而这种转换一般要耗费近千个CPU周期,因此同步速度较慢,但在适用性上却要远优于用户模式的线程同步方式。

临界区

临界区(Critical Section)是一段独占对某些共享资源访问的代码,在任意时刻只允许一个线程对共享资源进行访问。如果有多个线程试图同时访问临界区,那么在有一个线程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。临界区在被释放后,其他线程可以继续抢占,并以此达到用原子方式操作共享资源的目的。

临界区在使用时以CRITICAL_SECTION结构对象保护共享资源,并分别用EnterCriticalSection()和LeaveCriticalSection()函数去标识和释放一个临界区。所用到的CRITICAL_SECTION结构对象必须经过InitializeCriticalSection()的初始化后才能使用,而且必须确保所有线程中的任何试图访问此共享资源的代码都处在此临界区的保护之下。否则临界区将不会起到应有的作用,共享资源依然有被破坏的可能。

图1 使用临界区保持线程同步

下面通过一段代码展示了临界区在保护多线程访问的共享资源中的作用。通过两个线程来分别对全局变量g_cArray[10]进行写入操作,用临界区结构对象

g_cs来保持线程的同步,并在开启线程前对其进行初始化。为了使实验效果更加明显,体现出临界区的作用,在线程函数对共享资源g_cArray[10]的写入时,以Sleep()函数延迟1毫秒,使其他线程同其抢占CPU的可能性增大。如果不使

用临界区对其进行保护,则共享资源数据将被破坏(参见图1(a)所示计算结果),而使用临界区对线程保持同步后则可以得到正确的结果(参见图1(b)所示计算结果)。代码实现清单附下:

// 临界区结构对象

CRITICAL_SECTION g_cs;

// 共享资源

char g_cArray[10];

UINT ThreadProc10(LPVOID pParam)

{

// 进入临界区

EnterCriticalSection(&g_cs);

// 对共享资源进行写入操作

for (int i = 0; i < 10; i++)

{

g_cArray[i] = 'a';

Sleep(1);

}

// 离开临界区

LeaveCriticalSection(&g_cs);

return 0;

}

UINT ThreadProc11(LPVOID pParam)

{

// 进入临界区

EnterCriticalSection(&g_cs);

// 对共享资源进行写入操作

for (int i = 0; i < 10; i++)

{

g_cArray[10 - i - 1] = 'b';

Sleep(1);

}

// 离开临界区

LeaveCriticalSection(&g_cs);

return 0;

}

……

void CSample08View::OnCriticalSection()

{

// 初始化临界区

InitializeCriticalSection(&g_cs);

// 启动线程

AfxBeginThread(ThreadProc10, NULL);

AfxBeginThread(ThreadProc11, NULL);

// 等待计算完毕

Sleep(300);

// 报告计算结果

CString sResult = CString(g_cArray);

AfxMessageBox(sResult);

}

在使用临界区时,一般不允许其运行时间过长,只要进入临界区的线程还没有离开,其他所有试图进入此临界区的线程都会被挂起而进入到等待状态,并会在一定程度上影响。程序的运行性能。尤其需要注意的是不要将等待用户输入或是其他一些外界干预的操作包含到临界区。如果进入了临界区却一直没有释放,同样也会引起其他线程的长时间等待。换句话说,在执行了EnterCriticalSection ()语句进入临界区后无论发生什么,必须确保与之匹配的LeaveCriticalSection ()都能够被执行到。可以通过添加结构化异常处理代码来确保LeaveCriticalSection()语句的执行。虽然临界区同步速度很快,但却只能用来

同步本进程内的线程,而不可用来同步多个进程中的线程。

MFC为临界区提供有一个CCriticalSection类,使用该类进行线程同步处理是非常简单的,只需在线程函数中用CCriticalSection类成员函数Lock()和UnLock()标定出被保护代码片段即可。对于上述代码,可通过CCriticalSection 类将其改写如下:

// MFC临界区类对象

CCriticalSection g_clsCriticalSection;

// 共享资源

char g_cArray[10];

UINT ThreadProc20(LPVOID pParam)

{

// 进入临界区

g_clsCriticalSection.Lock();

// 对共享资源进行写入操作

for (int i = 0; i < 10; i++)

{

g_cArray[i] = 'a';

Sleep(1);

}

// 离开临界区

g_clsCriticalSection.Unlock();

return 0;

}

UINT ThreadProc21(LPVOID pParam)

{

// 进入临界区

g_clsCriticalSection.Lock();

// 对共享资源进行写入操作

// 共享资源

char g_cArray[10];

……

UINT ThreadProc12(LPVOID pParam) {

// 等待事件置位

WaitForSingleObject(hEvent, INFINITE); // 对共享资源进行写入操作

for (int i = 0; i < 10; i++)

{

g_cArray[i] = 'a';

Sleep(1);

}

// 处理完成后即将事件对象置位SetEvent(hEvent);

return 0;

}

UINT ThreadProc13(LPVOID pParam) {

// 等待事件置位

WaitForSingleObject(hEvent, INFINITE); // 对共享资源进行写入操作

for (int i = 0; i < 10; i++)

{

g_cArray[10 - i - 1] = 'b';

Sleep(1);

}

// 处理完成后即将事件对象置位SetEvent(hEvent);

return 0;

}

……

void CSample08View::OnEvent()

{

// 创建事件

hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

// 事件置位

SetEvent(hEvent);

// 启动线程

AfxBeginThread(ThreadProc12, NULL);

AfxBeginThread(ThreadProc13, NULL);

// 等待计算完毕

Sleep(300);

// 报告计算结果

CString sResult = CString(g_cArray);

AfxMessageBox(sResult);

}

在创建线程前,首先创建一个可以自动复位的事件内核对象hEvent,而线程函数则通过WaitForSingleObject()等待函数无限等待hEvent的置位,只有在事件置位时WaitForSingleObject()才会返回,被保护的代码将得以执行。对于以自动复位方式创建的事件对象,在其置位后一被WaitForSingleObject()等待到就会立即复位,也就是说在执行ThreadProc12()中的受保护代码时,事件对象已经是复位状态的,这时即使有ThreadProc13()对CPU的抢占,也会由于WaitForSingleObject()没有hEvent的置位而不能继续执行,也就没有可能破坏受保护的共享资源。在ThreadProc12()中的处理完成后可以通过SetEvent()对hEvent的置位而允许ThreadProc13()对共享资源g_cArray的处理。这里SetEvent()所起的作用可以看作是对某项特定任务完成的通知。

lpHandles来指向。fWaitAll对指定的这nCount个内核对象的两种等待方式进行了指定,为TRUE时当所有对象都被通知时函数才会返回,为FALSE则只要其中任何一个得到通知就可以返回。dwMilliseconds在饫锏淖饔糜朐赪aitForSingleObject()中的作用是完全一致的。如果等待超时,函数将返回WAIT_TIMEOUT。如果返回WAIT_OBJECT_0到WAIT_OBJECT_0+nCount-1中的某个值,则说明所有指定对象的状态均为已通知状态(当fWaitAll为TRUE 时)或是用以减去WAIT_OBJECT_0而得到发生通知的对象的索引(当fWaitAll 为FALSE时)。如果返回值在WAIT_ABANDONED_0与

WAIT_ABANDONED_0+nCount-1之间,则表示所有指定对象的状态均为已通知,且其中至少有一个对象是被丢弃的互斥对象(当fWaitAll为TRUE时),或是用以减去WAIT_OBJECT_0表示一个等待正常结束的互斥对象的索引(当fWaitAll为FALSE时)。下面给出的代码主要展示了对WaitForMultipleObjects ()函数的使用。通过对两个事件内核对象的等待来控制线程任务的执行与中途退出:

// 存放事件句柄的数组

HANDLE hEvents[2];

UINT ThreadProc14(LPVOID pParam)

{

// 等待开启事件

DWORD dwRet1 = WaitForMultipleObjects(2, hEvents, FALSE, INFINITE);

// 如果开启事件到达则线程开始执行任务

if (dwRet1 == WAIT_OBJECT_0)

{

AfxMessageBox("线程开始工作!");

while (true)

{

for (int i = 0; i < 10000; i++);

// 在任务处理过程中等待结束事件

DWORD dwRet2 = WaitForMultipleObjects(2, hEvents, FALSE, 0);

// 如果结束事件置位则立即终止任务的执行

if (dwRet2 == WAIT_OBJECT_0 + 1)

break;

}

}

AfxMessageBox("线程退出!");

return 0;

}

……

void CSample08View::OnStartEvent()

{

// 创建线程

for (int i = 0; i < 2; i++)

hEvents[i] = CreateEvent(NULL, FALSE, FALSE, NULL);

// 开启线程

AfxBeginThread(ThreadProc14, NULL);

// 设置事件0(开启事件)

SetEvent(hEvents[0]);

}

void CSample08View::OnEndevent()

{

// 设置事件1(结束事件)

SetEvent(hEvents[1]);

}

MFC为事件相关处理也提供了一个CEvent类,共包含有除构造函数外的4个成员函数PulseEvent()、ResetEvent()、SetEvent()和UnLock()。在功能上分别相当与Win32 API的PulseEvent()、ResetEvent()、SetEvent()

g_clsEvent.SetEvent();

return 0;

}

UINT ThreadProc23(LPVOID pParam) {

// 等待事件

g_clsEvent.Lock();

// 对共享资源进行写入操作

for (int i = 0; i < 10; i++)

{

g_cArray[10 - i - 1] = 'b';

Sleep(1);

}

return 0;

}

……

void CSample08View::OnEventMfc() {

// 启动线程

AfxBeginThread(ThreadProc22, NULL); AfxBeginThread(ThreadProc23, NULL); // 等待计算完毕

Sleep(300);

// 报告计算结果

CString sResult = CString(g_cArray); AfxMessageBox(sResult);

}

信号量内核对象

信号量(Semaphore)内核对象对线程的同步方式与前面几种方法不同,它允许多个线程在同一时刻访问同一资源,但是需要限制在同一时刻访问此资源的最大线程数目。在用CreateSemaphore()创建信号量时即要同时指出允许的最大资源计数和当前可用资源计数。一般是将当前可用资源计数设置为最大资源计数,每增加一个线程对共享资源的访问,当前可用资源计数就会减1,只要当前可用资源计数是大于0的,就可以发出信号量信号。但是当前可用计数减小到0时则说明当前占用资源的线程数已经达到了所允许的最大数目,不能在允许其他线程的进入,此时的信号量信号将无法发出。线程在处理完共享资源后,应在离开的同时通过ReleaseSemaphore()函数将当前可用资源计数加1。在任何时候当前可用资源计数决不可能大于最大资源计数。

图3 使用信号量对象控制资源

下面结合图例3来演示信号量对象对资源的控制。在图3中,以箭头和白色箭头表示共享资源所允许的最大资源计数和当前可用资源计数。初始如图(a)所示,最大资源计数和当前可用资源计数均为4,此后每增加一个对资源进行访问的线程(用黑色箭头表示)当前资源计数就会相应减1,图(b)即表示的在3个线程对共享资源进行访问时的状态。当进入线程数达到4个时,将如图(c)所示,此时已达到最大资源计数,而当前可用资源计数也已减到0,其他线程无法对共享资源进行访问。在当前占有资源的线程处理完毕而退出后,将会释放出空间,图(d)已有两个线程退出对资源的占有,当前可用计数为2,可以再允许2个线程进入到对资源的处理。可以看出,信号量是通过计数来对线程访问资源进行控制的,而实际上信号量确实也被称作Dijkstra计数器。

使用信号量内核对象进行线程同步主要会用到CreateSemaphore()、OpenSemaphore()、ReleaseSemaphore()、WaitForSingleObject()和

该函数将lReleaseCount中的值添加给信号量的当前资源计数,一般将lReleaseCount设置为1,如果需要也可以设置其他的值。WaitForSingleObject()和WaitForMultipleObjects()主要用在试图进入共享资源的线程函数入口处,主要用来判断信号量的当前可用资源计数是否允许本线程的进入。只有在当前可用资源计数值大于0时,被监视的信号量内核对象才会得到通知。

信号量的使用特点使其更适用于对Socket(套接字)程序中线程的同步。例如,网络上的HTTP服务器要对同一时间内访问同一页面的用户数加以限制,这时可以为没一个用户对服务器的页面请求设置一个线程,而页面则是待保护的共享资源,通过使用信号量对线程的同步作用可以确保在任一时刻无论有多少用户对某一页面进行访问,只有不大于设定的最大用户数目的线程能够进行访问,而其他的访问企图则被挂起,只有在有用户退出对此页面的访问后才有可能进入。下面给出的示例代码即展示了类似的处理过程:

// 信号量对象句柄

HANDLE hSemaphore;

UINT ThreadProc15(LPVOID pParam)

{

// 试图进入信号量关口

WaitForSingleObject(hSemaphore, INFINITE);

// 线程任务处理

AfxMessageBox("线程一正在执行!");

// 释放信号量计数

ReleaseSemaphore(hSemaphore, 1, NULL);

return 0;

}

UINT ThreadProc16(LPVOID pParam)

{

// 试图进入信号量关口

WaitForSingleObject(hSemaphore, INFINITE);

// 线程任务处理

AfxMessageBox("线程二正在执行!");

// 释放信号量计数

ReleaseSemaphore(hSemaphore, 1, NULL);

return 0;

}

UINT ThreadProc17(LPVOID pParam)

{

// 试图进入信号量关口

WaitForSingleObject(hSemaphore, INFINITE);

// 线程任务处理

AfxMessageBox("线程三正在执行!");

// 释放信号量计数

ReleaseSemaphore(hSemaphore, 1, NULL);

return 0;

}

……

void CSample08View::OnSemaphore()

{

// 创建信号量对象

hSemaphore = CreateSemaphore(NULL, 2, 2, NULL); // 开启线程

AfxBeginThread(ThreadProc15, NULL); AfxBeginThread(ThreadProc16, NULL); AfxBeginThread(ThreadProc17, NULL);

}

图4 开始进入的两个线程

图5 线程二退出后线程三才得以进入

上述代码在开启线程前首先创建了一个初始计数和最大资源计数均为2的信号量对象hSemaphore。即在同一时刻只允许2个线程进入由hSemaphore保护的共享资源。随后开启的三个线程均试图访问此共享资源,在前两个线程试图访问共享资源时,由于hSemaphore的当前可用资源计数分别为2和1,此时的hSemaphore是可以得到通知的,也就是说位于线程入口处的WaitForSingleObject ()将立即返回,而在前两个线程进入到保护区域后,hSemaphore的当前资源计数减少到0,hSemaphore将不再得到通知,WaitForSingleObject()将线程挂起。直到此前进入到保护区的线程退出后才能得以进入。图4和图5为上述代脉的运行结果。从实验结果可以看出,信号量始终保持了同一时刻不超过2个线程的进入。

在MFC中,通过CSemaphore类对信号量作了表述。该类只具有一个构造函数,可以构造一个信号量对象,并对初始资源计数、最大资源计数、对象名和安全属性等进行初始化,其原型如下:

CSemaphore( LONG lInitialCount = 1, LONG lMaxCount = 1, LPCTSTR pstrName = NULL, LPSECURITY_ATTRIBUTES lpsaAttributes = NULL );

在构造了CSemaphore类对象后,任何一个访问受保护共享资源的线程都必须通过CSemaphore从父类CSyncObject类继承得到的Lock()和UnLock()成员函数来访问或释放CSemaphore对象。与前面介绍的几种通过MFC类保持线程同步的方法类似,通过CSemaphore类也可以将前面的线程同步代码进行改写,这两种使用信号量的线程同步方法无论是在实现原理上还是从实现结果上都是完全一致的。下面给出经MFC改写后的信号量线程同步代码:

// MFC信号量类对象

CSemaphore g_clsSemaphore(2, 2);

UINT ThreadProc24(LPVOID pParam)

{

// 试图进入信号量关口

g_clsSemaphore.Lock();

// 线程任务处理

AfxMessageBox("线程一正在执行!");

// 释放信号量计数

g_clsSemaphore.Unlock();

return 0;

}

UINT ThreadProc25(LPVOID pParam)

{

// 试图进入信号量关口

g_clsSemaphore.Lock();

// 线程任务处理

AfxMessageBox("线程二正在执行!");

// 释放信号量计数

g_clsSemaphore.Unlock();

return 0;

}

UINT ThreadProc26(LPVOID pParam)

{

// 试图进入信号量关口

g_clsSemaphore.Lock();

// 线程任务处理

AfxMessageBox("线程三正在执行!");

// 释放信号量计数

g_clsSemaphore.Unlock();

return 0;

}

……

void CSample08View::OnSemaphoreMfc()

{

// 开启线程

AfxBeginThread(ThreadProc24, NULL);

AfxBeginThread(ThreadProc25, NULL);

AfxBeginThread(ThreadProc26, NULL);

}

互斥内核对象

互斥(Mutex)是一种用途非常广泛的内核对象。能够保证多个线程对同一共享资源的互斥访问。同临界区有些类似,只有拥有互斥对象的线程才具有访问资源的权限,由于互斥对象只有一个,因此就决定了任何情况下此共享资源都不会同时被多个线程所访问。当前占据资源的线程在任务处理完后应将拥有的互斥对象交出,以便其他线程在获得后得以访问资源。与其他几种内核对象不同,互斥对象在操作系统中拥有特殊代码,并由操作系统来管理,操作系统甚至还允许其进行一些其他内核对象所不能进行的非常规操作。为便于理解,可参照图6

用信号量实现线程同步与互斥

用信号量实现线程同步与互斥 一、相关Win32 API函数 1、创建线程 HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress, LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadId); 函数作用:在其调用进程的进程空间里创建一个新的线程,并返回已建线程的句柄。 各参数含义: ?lpThreadAttributes:指向一个SECURITY_ATTRIBUTES 结构的指针,该结构决定了线程的安全属性,一般置为NULL; ?dwStackSize:指定了线程的堆栈深度,一般都设置为0; ?lpStartAddress:表示新线程开始执行时代码所在函数的地址,即线程的起始地址。 一般情况为(LPTHREAD_START_ROUTINE)ThreadFunc,ThreadFunc 是线程函数 名;函数名称没有限制,但是必须以下列形式声明:DWORD WINAPI ThreadProc (PVOID pParam) ; ?lpParameter:指定了线程执行时传送给线程的32位参数,即线程函数的参数; ?dwCreationFlags:控制线程创建的附加标志,可以取两种值。如果该参数为0,线程在被创建后就会立即开始执行;如果该参数为CREATE_SUSPENDED,则系统产 生线程后,该线程处于挂起状态,并不马上执行,直至函数ResumeThread被调用; ?lpThreadId:该参数返回所创建线程的ID。 如果创建成功则返回线程的句柄,否则返回NULL。 例如: for (int i=0;i

1-3章习题(附答案)

OS 1-3章习题 3.操作系统是一种(A),它负责为用户和用户程序完成所有(B)的工作,(C)不是操作系统关心的主要问题。 A:(1)应用软件;(2)系统软件;(3)通用软件;(4)软件包。 B:(1)与硬件无关并与应用无关;(2)与硬件相关而与应用无关;(3)与硬件无关而与应用相关;(4)与硬件相关并与应用相关。 C:(1)管理计算机裸机;(2)设计、提供用户程序与计算机硬件系统的接口;(3)管理计算机中的信息资源;(4)高级程序设计语言的编译。 4.在OS总采用多道程序设计技术,能有效地提高CPU、内存和I/O设备的(A)。为实现多道程序设计需要有(B)。 A:(1)灵活性;(2)可靠性;(3)兼容性;(4)利用率。 B:(1)更大的内存;(2)更快的CPU;(3)更快的外部设备;(4)更先进的终端。 5.推动批处理系统形成和发展的主要动力是(A),推动分时系统形成和发展的主要动力是(B),推动微机OS发展的主要动力是(C)。 A,B:(1)提高计算机系统的功能;(2)提高系统资源利用率-A;(3)方便用户-B;(4)提高系统的运行速度。 C:(1)方便用户;(2)计算机硬件的不断更新换代;(3)便于微机联网;(4)提高资源的利用率。 6.在设计分时操作系统时,首先要考虑的是(A);在设计批处理操作系统时,首先要考虑的是(B);在设计实时操作系统时,首先要考虑的是(C)。 A,B,C:(1)灵活性和可适应性;(2)交互性和响应时间-A;(3)周转时间和系统吞吐量-B;(4)实时性和可靠性-C。 7.在多道批处理系统中,为了充分利用各种资源,系统总是优先选择(A)多个作业投入运行;为了提高吞吐量,系统总是想方设法缩短用户作业的(B)。 A:(1)适应于内存容量的;(2)计算量大的;(3)I/O量大的;(4)计算型和I/O型均衡的。 B:(1)周转时间;(2)运行时间;(3)提交时间;(4)阻塞时间。

信号量互斥题目

试用用信号量机制描述两人下象棋的过程。 两人下象棋的过程可以概括为:一开始只能是“红先黑后”,以后两人要循环轮流走子,直至某一方获胜或双方和棋为

止。? 这是个只有一个生产者和一个消费者的生产者——消费者问题,是个典型的“你等我,我也等你”的问题。红方是总的前趋任务——生产者进程,黑方是总的后继任务——消费者进程,但由于下棋过程必须轮流走子,所以红黑双方的生产者消费者身份会轮流改变。棋盘则是生产者与消费者共享的缓冲。?要求:只描述对弈过程,对棋盘的访问不做描述。二人对弈过程是个纯粹的同步过程 ①所用信号量设臵如下: Ⅰ)同步信号量hei,初值为1,表示黑方已走子,开始时可使红方先行不受阻。 Ⅱ)同步信号量hong,初值为0,表示红方尚未走子,开始时可使黑方先行受阻。 用信号量机制描述的二人下象棋过程如下

有一个阅览室,共有100个座位,读者进入时必须先在一张登记表上登记,该表为每一座位列一表目,包括座号和读者姓名等,读者离开时要消掉登记的信息,试问: (1)为描述读者的动作,应编写几个程序,设臵几个进程?(2)试用P、V操作描述读者进程之间的同步关系。分析:?读者的动作都是一样的:登记进入阅览室,阅读, 撤消登记离开阅览室,因此可写一个程序,设n个进程。 ?读者共享的资源有阅览室的座位和登记表,因此诸 个读者进程之间有两种互斥制约关系,需设2个信号量来实现:? seat:用于实现诸读者对阅览室的空闲座位的互斥 竞争,初值为100; ? mutex:用于实现诸读者对登记表的互斥访问,初值 为1

(1)可写一个程序,设n个进程 (2)读者进程readeri(i=1,2,3,……)描述如下: P(seat); /*申请空座位*/ P(mutex); /*申请登记*/ 登记; V(mutex) /*允许其他读者登记*/ 阅读; P(mutex); /*申请撤消登记*/ 撤消登记; V(mutex); /*允许其他读者撤消登记*/ V(seat); /*释放座位,允许他人进入*/

进程间的同步和互斥-

实验报告 1、实验名称 进程间的互斥和同步 2、小组成员:姓名+学号 3、实验目的 Linux命名信号量实现进程间的互斥和同步 4、实验背景知识 进程同步也是进程之间直接的制约关系,是为完成某种任务而建立的两个或多个线程,这个线程需要在某些位置上协调他们的工作次序而等待、传递信息所产生的制约关系。进程间的直接制约关系来源于他们之间的合作。比如说进程A需要从缓冲区读取进程B产生的信息,当缓冲区为空时,进程B因为读取不到信息而被阻塞。而当进程A产生信息放入缓冲区时,进程B才会被唤醒。 进程互斥是进程之间的间接制约关系。当一个进程进入临界区使用临界资源时,另一个进程必须等待。只有当使用临界资源的进程退出临界区后,这个进程才会解除阻塞状态。比如进程B需要访问打印机,但此时进程A占有了打印机,进程B会被阻塞,直到进程A释放了打印机资源,进程B才可以继续执行。 5、实验步骤演示 大概步骤: 先进行单次同步,把信号量先初始化为0,创建一个命名信号量,设置信号捕捉处理代码,安装捕捉信号;其次使用信号量进行同步和互斥的操作。 详细步骤: 1.创建一个命名信号量,sem = sem_open(SEM_NAME, OPEN_FLAG, OPEN_MODE, INIT_V); 2.创建子进程,pid = fork(); 3.V操作,sem_post(sem); 4.P操作,sem_wait(sem); 5.等待子进程结束,wait(&status); 6.删掉在系统创建的信号量,sem_unlink(SEM_NAME); 7.彻底销毁打开的信号量,sem_close(sem);

8.信号捕捉处理,static void myhandler(void); 9.迭代同步,两个信号量,开始时一个为1,一个为0,一个进程执行完换另一个执行; 10.安装捕捉信号,signal(SIGINT,(void *)myhandler ); 11.创建一个命名信号量:sem1 = sem_open(SEM_NAME1, OPEN_FLAG, OPEN_MODE, 1);sem2 = sem_open(SEM_NAME2, OPEN_FLAG, OPEN_MODE, 0); 12.创建子进程,pid = fork(); 13.if(0 == pid) P操作:sem_wait(sem1); V操作:sem_post(sem2); 14.if(0 < pid) P操作:sem_wait(sem2); V操作:sem_post(sem1); 15.static void mysem(char *str) { int i = 0; //P操作 sem_wait(sem); while('\0' != str[i]) { printf("%c\n", str[i++]); sleep(1); } //V操作 sem_post(sem); } 进程排斥,在临界区设置PV操作 16.创建一个命名信号量,sem = sem_open(SEM_NAME, OPEN_FLAG, OPEN_MODE, INIT_V); 17.if(0 == pid) { mysem("abcd"); } 18.if(0 < pid) { mysem("1234"); //等待子进程结束 wait(&status); //删掉在系统创建的信号量 sem_unlink(SEM_NAME); //彻底销毁打开的信号量 sem_close(sem); } 说明: 命名信号量不带内存共享,编译时要带库文件-lpthread或-lrt

1互斥信号量:

1.互斥信号量: 互斥互斥,意思就是我用了你就不能用,你用了我就不能用。永远都只有一个人独占这个东西~!举个例子:比如说打印机。 我任务1现在让他打印《静夜思》,那么在我还没打印完之前,别的任务就不能命令打印机去打印别的东西。否则如果任务2让他打印《春晓》,那最后打印出来的会是什么~????反正肯定不是任务1想要的,肯定也不是任务2想要的。 上面讲的比较通俗。打印机就是共享资源,谁都可以访问他~!但是同一时间,肯定要保证只有1个任务再操作打印机。那样才能得到大家想要的结果。也就是要独占共享资源的访问权~! ucos2中通过互斥信号量来解决这个问题。简单说就是任务1开始访问打印机的时候,先去查询这个互斥信号量是否有效,有效,说明没人在访问打印机,这时任务1就把这个互斥信号量置无效,然后开始操作打印机。这样,每个任务再操作打印机前都要去查询这个互斥信号量时候有效。无效就等,等到有效才可以访问,或者等到不耐烦了(术语叫等待超时)就不等了~!任务一直到用完了打印机后才把信号量置有效,这时其他任务才有可能去访问,操作打印机。 这里又有一个问题:再任务1操作打印机器件,可能有多个任务申请打印机的所有权。那么再任务1结束后,我应该给谁用呢~~??也许我们马上就反应过来了~废话~!!当然是排队了~~谁先到的谁用啊~~~。没错,这是一种机制,谁最先等待共享资源,就给谁用。但是~!再ucos里面2.52版本还不支持这种方式。他用的另外一种方法!如果你和你BOSS都再等着用打印机,你先到的,这个时候任务1结束了对打印机的操作。你说你敢先用么~???(除非你第二天不想干了~~)你肯定先让老板先用,这就是ucos的实现方式,基于优先级,任务1结束对打印机的操作后,ucos再等待队列中看那个等待任务优先级最高,就先给他用~!即使他是最晚才等待的~!!(这就是BOSS的威力~!) 关于事件等待列表,有兴趣的可以去看看事件控制块ECB的内容,不在本文讨论。当然,ucos中的互斥信号量还有许多要素,比如说他的继承优先级之类的。本文旨在说明它是干嘛用的,至于其他请参考相关书籍。 下面的图解释了互斥信号量的基本用法:(简单的两个任务,没有包含多任务等待的情况)

进程同步互斥1

进程的同步互斥实验 实验目的 1、进一步认识并发执行的实质 2、分析进程竞争资源的现象,学习解决进程同步互斥的方法 实验内容 1、编写程序,使用相关函数实现父子进程对共享文件的同步互斥访问。 2、修改程序,观察对临界资源访问的互斥控制的作用。 实验基础 一、临界资源的互斥访问 为了实现多进程对临界资源的互斥访问,一个进程访问临界资源的典型程序段类似如下形式: { ………. 进入区 临界区; 退出区 其余代码; ………} 其中,进入区中判断资源是否可用,如果可用,则资源数量减1,进程进入临界区;否则进程阻塞等待。退出区中资源数量加1,唤醒阻塞等待该资源的进程。进入区和退出区都是原子操作。 操作系统中,通常用信号量来实现进入区和退出区,即P操作和V操作。为了实现用户程序中对某些资源的同步互斥访问,操作系统也提供了一些函数接口,功能类似于对特定临界区的进入区和退出区功能。 二、相关的系统调用 (1)lockf(files,function,size) :用作锁定文件的某些段或者整个文件。 函数原型: #include int lockf(int files,int function;long size) 其中:files是文件描述符;参数function可以取以下值:F_LOCK:锁定一个区域。F_ULOCK:解除锁定。参数size指明了从文件当前位置开始的一段连续锁定区域的长度,当size为0时,锁定记录将由当前位置一直扩展到文件尾。 如果lockf的参数function取值为F_LOCK,而指定文件的对应区域已被其他进程锁定,

那么lockf的调用进程将被阻塞直到该区域解锁。 通过使用lockf函数,可实现多进程对共享文件进行互斥访问。进程的实现中,必须使得每个进程在使用文件前对文件加锁,使用文件后解锁。 (2)open:打开一个文件 函数原型:#include #include #include int open(char *path,int flags,mode_t mode); 其中:参数path 是指向所要打开的文件的路径名指针。 参数falgs 规定如何打开该文件,它必须包含以下值之一:O_RDONL Y,只读打开;O_WRONL Y,只写打开;O_RDWR,读/写打开;O_CREAT,当文件不存在时创建文件,需参数mode;O_APPEND,不论当前文件位置在何处,将文件指针移至文件尾,为write添加数据到文件;O_TRUNC,当以可写的方式成功打开普通文件时,截断该文件的长度为0。 参数mode 规定对该文件的访问权限。 open系统调用可以只使用前面介绍的这两个参数,省略第三个参数mode。第三个参数是在用O_CREAT创建文件时使用,指出新建文件的存取许可权。由这个参数指出的存取许可权还要和umask进行运算后才得到新建文件的真正存取许可权。该运算是由umask按位取反,再按位与上第三个参数给出的数取或(~umask&mode)。例如:umask为022,mode为0770,则新建文件的存取许可权为0750即-rwxr-x---。 (3)read:读文件 函数原型:#include int read(int fd,void *buf,size_t nbytes) 该系统调用从文件描述符fd所代表的文件中读取nbytes 个字节,到buf指定的缓冲区内。所读取的内容从当前的读/写指针所指示的位置开始,这个位置由相应的打开文件描述中的偏移值(off_set)给出,调用成功后文件读写指针增加实际读取的字节数。 使用read 系统调用时,应注意设置的数据缓冲区充分大,能够存放所要求的数据字节,因为内核只复制数据,不进行检查。 返回:-1:错误;0:文件偏移值是在文件结束处;整数:从该文件复制到规定的缓冲区中的字节数。通常这个字节数与所请求的字节数相同。除非请求的字节数超过剩余的字节数,这时将返回一个小于请求的字节数的数字。 (4)write:写文件 函数原型:#include int write(int fd,void *buf,size_t nbytes) 该调用从buf所指的缓冲区中将nbytes 个字节写到描述符fd所指的文件中。 (5)lseek:定位一个已打开文件。 函数原型:#include int lseek(int fildes,off_t offset,int whence); 系统调用根据whence指定的位置将文件描述符fildes指向文件的文件指针偏移offset

实验八 uCOS-II的互斥信号量

实验八uCOS的互斥信号量 一:实验目的: 1.理解互斥型信号量。 2.学会使用互斥型信号量实现对共享资源的独占式处理。 3.解决任务在使用独占式资源出现的优先级反转问题。 二:实验内容: 完成教材5-7实验,使用互斥型信号量实现对共享资源的独占式处理。实验中要求要创建互斥型信号量,请求互斥型信号量,发送互斥型信号量,删除互斥型信号量。 三:程序代码: #include "includes.h" #define TASK_STK_SIZE 512 OS_STK StartTaskStk[TASK_STK_SIZE]; OS_STK MyTaskStk[TASK_STK_SIZE]; OS_STK YouTaskStk[TASK_STK_SIZE]; OS_STK HerTaskStk[TASK_STK_SIZE]; INT16S key; char *s1="MyTask running--yangkun"; char *s2="YouTask running--yangkun"; char *s3="HerTask running--yangkun"; char *s4="MyTask pend_Semp"; char *s5="HerTask pend_Semp"; INT8U err; INT8U y=0; INT32U Times=0; OS_EVENT *Semp; void StartTask(void *pdata); void MyTask(void *pdata); void YouTask(void *pdata); void HerTask(void *pdata); void main (void) { OSInit();

uCOS-II互斥信号量

μCOS-II互斥信号量 Application Note AN-1002 Jean J. Labrosse https://www.360docs.net/doc/625269943.html,brosse@https://www.360docs.net/doc/625269943.html, https://www.360docs.net/doc/625269943.html, 概述: 使用互斥信号(Mutual Exclusion Semaphores)或者简单的互斥(mutexes)实现对资源的独占访问,互斥信号本身是一种二进制信号,具有超出μCOS-II提供的一般信号机制的特性。本手册描述了C/OS-II V2.04增加的mutex一系列服务。 简介: 在应用程序中使用互斥信号是为了减少优先级翻转问题(priority inversion problem),如μC/OS-II, The Real-Time kernel (ISBN 0-87930-543-6), section 2.16, page 47中描述的。 当一个高优先级的任务需要的资源被一个低优先级的任务使用是,就会发生优先级翻转问题。为了减少优先级翻转问题,内核可以提高低优先级任务的优先级,先于高优先级的任务运行,释放占用的资源。 为了实现互斥,实时内核需要具有支持在同一优先级具有多个任务的能力。不幸的是,μC/OS-II不允许在相同的优先级有多个任务,必须只有一个任务。但是我们有另外的方法解决这个问题。可以把需要资源的高优先级任务上面的一个任务使用Mutex保留,允许提高低优先级任务的优先级。 举一个mutexes信号工作的例子,如listing1所示。 Listing 1中有三个任务可以使用共同的资源,为了访问这个资源,每个任务必须在互斥信号ResourceMutex上等待(pend),任务#1有最高优先级10,任务#2优先级为15,任务#3优先级为20,一个没有使用的正好在最高优先级之上的优先级#9用来作为优先级继承优先级(Priority Inheritance Priority-PIP)。如main()所示,L1(1)进行μC/OS-II初始化,并通过调用OSMutexCreate() L1(2)创建了一个互斥信号。需要注意的是,OSMutexCreate()函数使用PIP最为参数。然后创建三个任务L1(3),启动μC/OS-II L1(4). 假设任务运行了一段时间,在某个时间点,任务#3最先访问了共同的资源,并得到了互斥信号,任务#3运行了一段时间后被任务#1抢占。任务#1需要使用这个资源,并通过调用OSMutexPend()企图获得互斥信号,这种情况下,OSMutexPend()会发现一个高优先级的任务需要这个资源,就会把任务#3的优先级提高到9,同时强迫进行上下文切换退回到任务#3执行。任务#3可以继续执行然后释放占用的共同资源。任务#3通过调用OSMutexPost()释放占用的mutex信号,OSMutexPost()会发现mutex被一个优先级提升的低优先级的任务占有,就会把任务#3的优先级返回到20。把资源释放给任务#1使用,执行上下文切换到任务#1

操作系统信号量PV操作题若干

(一)图书馆有100个座位,每位进入图书馆的读者要在登记表上登记,退出时要在登记表上注销。要几个程序?有多少个进程?(答:一个程序;为每个读者设一个进程) (1)当图书馆中没有座位时,后到的读者在图书馆为等待(阻塞) (2)当图书馆中没有座位时,后到的读者不等待,立即回家。 设信号量S=200;MUTEX=1; P(S) P(MUTEX) 登记 V(MUTEX) 阅读 P(MUTEX) 注销 V(MUTEX) V(S) (2) 设信号量MUTEX=1; 整型变量S=200; P(MUTEX) IF(S==0) { V(MUTEX) RETURN } ELSE{ COUNT=COUNT-1; 登记 V(MUTEX) 阅读 P(MUTEX) COUNT=COUNT+1; 注销 V(MUTEX) RETURN }

解(1 ) 设信号量:S=100; MUTEX=1 P(S) P(MUTEX) 登记 V(MUTEX) 阅读 P(MUTEX) 注销 V(MUTEX) V(S) 解(2) 设整型变量COUNT=100; 信号量:MUTEX=1; P(MUTEX); IF (COUNT==0) { V(MUTEX); RETURN; } COUNT=COUNT-1; 登记 V(MUTEX); 阅读 P(MUTEX); COUNT=COUNT+1; V(MUTEX); RETURN;

(二)有一座东西方向的独木桥;用P,V操作实现: (1)每次只允许一个人过桥; (2)当独木桥上有行人时,同方向的行人可以同时过桥,相反方向的人必须等待。(3)当独木桥上有自东向西的行人时,同方向的行人可以同时过桥,从西向东的方向,只允许一个人单独过桥。(此问题和读者与写者问题相同,东向西的为读者,西向东的为写者)。 (1) 设信号量S=1 P(S) 过桥 V(S) (2) 设信号量S=1 EW=1;(东向西互斥计数量) WE=1;(西向东互斥计数量) 整型变量 CE =0;(东向西桥上人数) CW=0;(西向东桥上人数) 东向西: P(EW) IF(CE==0) { P(S) } CE++; V(EW) 过桥 P(EW) CD--; IF(CD==0){ V(S) } V(EW)

计算机操作系统_进程间互斥与同步

进程间互斥与同步 实验内容: 编写算法,实现进程间对临界资源的互斥访问以及进程间的同步关系。 实验要求: 1、要求进程互斥使用文本文件; 2、假定文本文件txt1最大可写入30个字符; 3、写满后复制进程将文本文件的内容复制到另一个文本文件txt2中(无长度限制)。 4、复制进程复制完毕写入进程可再重新写入,重复执行3,4,直到给出停止命令。 5、实现进程间的同步和互斥。 代码: #include #include//stdio.h #include//函数库 #include//linux/unix的系统调用 #include//信号量 #include using namespace std; typedef union _semnu{ int val; struct semid_ds *buf; ushort *array; }semun; //v操作 void v(int &sem_id) { struct sembuf sem_b;

sem_b.sem_num=0; sem_b.sem_op=1; sem_b.sem_flg=SEM_UNDO; if(semop(sem_id,&sem_b,1)==-1) { cout<<"error"<

临界区,互斥量,信号量,事件的区别

四种进程或线程同步互斥的控制方法 1、临界区:通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问。 2、互斥量:为协调共同对一个共享资源的单独访问而设计的。 3、信号量:为控制一个具有有限数量用户资源而设计。 4、事件:用来通知线程有一些事件已发生,从而启动后继任务的开始。 临界区(Critical Section) 保证在某一时刻只有一个线程能访问数据的简便办法。在任意时刻只允许一个线程对共享资源进行访问。如果有多个线程试图同时访问临界区,那么在有一个线程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。临界区在被释放后,其他线程可以继续抢占,并以此达到用原子方式操作共享资源的目的。 临界区包含两个操作原语: EnterCriticalSection()进入临界区 LeaveCriticalSection()离开临界区 EnterCriticalSection()语句执行后代码将进入临界区以后无论发生什么,必须确保与之匹配的LeaveCriticalSection()都能够被执行到。否则临界区保护的共享资源将永远不会被释放。虽然临界区同步速度很快,但却只能用来同步本进程内的线程,而不可用来同步多个进程中的线程。 MFC提供了很多功能完备的类,我用MFC实现了临界区。MFC为临界区提供有一个CCriticalSection类,使用该类进行线程同步处理是非常简单的。只需在线程函数中用CCriticalSection类成员函数Lock()和UnLock()标定出被保护代码片段即可。Lock()后代码用到的资源自动被视为临界区内的资源被保护。UnLock后别的线程才能访问这些资源。 互斥量(Mutex) 互斥量跟临界区很相似,只有拥有互斥对象的线程才具有访问资源的权限,由于互斥对象只有一个,因此就决定了任何情况下此共享资源都不会同时被多个线程所访问。当前占据资源的线程在任务处理完后应将拥有的互斥对象交出,以便其他线程在获得后得以访问资源。互斥量比临界区复杂。因为使用互斥不仅仅能够在同一应用程序不同线程中实现资源的安全共享,而且可以在不同应用程序的线程之间实现对资源的安全共享。 互斥量包含的几个操作原语: CreateMutex()创建一个互斥量 OpenMutex()打开一个互斥量 ReleaseMutex()释放互斥量 WaitForMultipleObjects()等待互斥量对象 同样MFC为互斥量提供有一个CMutex类。使用CMutex类实现互斥量操作非常简单,但是要特别注意对CMutex的构造函数的调用 CMutex( BOOL bInitiallyOwn = FALSE, LPCTSTR lpszName = NULL, LPSECURITY_ATTRIBUTES lpsaAttribute = NULL) 不用的参数不能乱填,乱填会出现一些意想不到的运行结果。 信号量(Semaphores)

经典PV操作讲解和练习题

在计算机操作系统中,PV操作是进程管理中的难点。 首先应弄清PV操作的含义:PV操作由P操作原语和V操作原语组成(原语是不可中断的过程),对信号量进行操作,具体定义如下: P(S):①将信号量S的值减1,即S=S-1; ②如果S30,则该进程继续执行;否则该进程置为等待状态,排入等待队列。 V(S):①将信号量S的值加1,即S=S+1; ②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。 PV操作的意义:我们用信号量及PV操作来实现进程的同步和互斥。PV操作属于进程的低级通信。 什么是信号量?信号量(semaphore)的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。信号量的值与相应资源的使用情况有关。当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。注意,信号量的值仅能由PV操作来改变。 一般来说,信号量S30时,S表示可用资源的数量。执行一次P操作意味着请求分配一个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。而执行一个V操作意味着释放一个单位资源,因此S 的值加1;若S£0,表示有某些进程正在等待该资源,因此要唤醒一个等待状态的进程,使之运行下去。 利用信号量和PV操作实现进程互斥的一般模型是: 进程P1 进程P2 ……进程Pn ……………… P(S); P(S); P(S); 临界区;临界区;临界区; V(S); V(S); V(S); …………………… 其中信号量S用于互斥,初值为1。 使用PV操作实现进程互斥时应该注意的是: (1)每个程序中用户实现互斥的P、V操作必须成对出现,先做P操作,进临界区,后做V操作,出临界区。若有多个分支,要认真检查其成对性。 (2)P、V操作应分别紧靠临界区的头尾部,临界区的代码应尽可能短,不能有死循环。(3)互斥信号量的初值一般为1。 利用信号量和PV操作实现进程同步 PV操作是典型的同步机制之一。用一个信号量与一个消息联系起来,当信号量的值为0时,表示期望的消息尚未产生;当信号量的值非0时,表示期望的消息已经存在。用PV操作实现进程同步时,调用P操作测试消息是否到达,调用V操作发送消息。 使用PV操作实现进程同步时应该注意的是: (1)分析进程间的制约关系,确定信号量种类。在保持进程间有正确的同步关系情况下,哪个进程先执行,哪些进程后执行,彼此间通过什么资源(信号量)进行协调,从而明确要设置哪些信号量。

同步和互斥的区别_

同步和互斥的区别

信号量互斥量条件变量 同步和互斥 一、信号量:用于进程间通信(linux中用于线程) 独立于进程在两个进程中都要初始化,若一个已创建,则另一个获取可以执行多次v操作,然后再执行p操作 信号量的一些概念: 以下是信号灯(量)的一些概念: 信号灯与互斥锁和条件变量的主要不同在于”灯”的概念,灯亮则意味着资源可用,灯灭则意味着不可用。如果说后两中同步方式侧重于”等待”操作,即资源不可用的话,信号灯机制则侧重于点灯,即告知资源可用;没有等待线程的解锁或激发条件都是没有意义的,而没有等待灯亮的线程的点灯操作则有效,且能保持灯亮状态。当然,这样的操作原语也意味着更多的开销。 信号灯的应用除了灯亮/灯灭这种二元灯以外,也可以采用大于1的灯数,以表示资源数大于1,这时可以称之为多元灯。 二、互斥量:(用于在线程间的通信) 1、在一个进程中创建 三、信号量与互斥量的区别 1. 互斥量用于线程的互斥,信号量用于线程的同步。 这是互斥量和信号量的根本区别,也就是互斥和同步之间的区别。

互斥:是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的。同步:是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源 以上区别是主要想记住的。 note:信号量可以用来实现互斥量的功能 2. 互斥量值只能为0/1,信号量值可以为非负整数。 也就是说,一个互斥量只能用于一个资源的互斥访问,它不能实现多个资源的多线程互斥问题。信号量可以实现多个同类资源的多线程互斥和同步。当信号量为单值信号量是,也可以完成一个资源的互斥访问。3、互斥量的加锁和解锁必须由同一线程分别对应使用,信号量可以由一个线程释放,另一个线程得到。 4、作用域 信号量: 进程间或线程间(linux仅线程间) 互斥锁: 线程间 5、上锁时 信号量: 只要信号量的value大于0,其他线程就可以sem_wait(p操作-1)成功,成功后信号量的value减一。若value值不大于0,则

操作系统-进程同步-信号量练习题

1【单选题】用P、V操作管理临界区时,互斥信号量的初值应定义为( A)。 ?A,1 ?B,0 ?C,-1 ?D,任意值 2【单选题】在操作系统中,对信号量S的P原语操作定义中,使进程进入相应等待队列等待的条件是( )。 ?A,S>0 ?B,S = 0 ?C,S<0 ?D,S<>0 我的答案:C 3【单选题】信号量S的初值为8,在S上执行了10次wait 操作,6次signal操作后,S的值为(D )。 ?A,10 ?B,8 ?C,6 ?D,4 P操作每执行一次,信号量减1;V操作每执行一次,信号量加1.所以答案为8-10+6 = 4

4【单选题】用V操作唤醒一个等待进程时,被唤醒进程的状态应变成( B)状态。 ?A,执行 ?B,就绪 ?C,阻塞 ?D,挂起 被唤醒的进程由等待状态变为就绪状态。 5【单选题】利用Wait和signal操作可以( )。 ?A,实现进程互斥和同步 ?B,检测死锁 ?C,解除死锁 ?D,防止死锁 我的答案:A 6【单选题】两个并发进程,设互斥信号量mutex(初值为1),若信号量=0;则(B ) ?A,表示没有进程进入临界区 ?B,表示有一个进程进入临界区 ?C,表示有一个进程进入临界区,另一个进程等待进入 ?D,表示两个进程进入临界区 临界区不允许两个进程同时进入,D选项明显错误。mutex初值为1,表示允许一个进程进入临界区,当有一个进程进入临界区且没有进程等待进入时,mutex值减1,变为0。

7【单选题】V操作是对信号量执行加1操作,意味着释放一个单位资源,加1后如果信号量的值等于零,则从等待队列中唤醒一个进程,现进程变为等待状态,否则现进程继续进行。?A,对 ?B,错 我的答案:B 8【单选题】有3个进程,两台打印机,用wait和sigual操作来实现互斥访问打印机,则信号量S的取值范围是( ) ?A,2,1,0,-1 ?B,3,2,1,0 ?C,2,1,0,-1,-2 ?D,1,0,-1,-2 我的答案:如果n个进程共享两个打印机,信号量取值范围:-(n-2)~2; 9【单选题】设与某资源相关的资源信号量K,初值为3,当前值为1,则可用资源个数为( ),等待资源的进程数为( )。 ?A,0,1 ?B,1,0 ?C,1,2 ?D,2,0 我的答案:B

Windows下进程同步与互斥

实验进程同步与互斥 一、实验目的 1.掌握基本的同步与互斥算法,理解生产者消费者模型。 2.学习使用Windows 2000/XP中基本的同步对象,掌握相关API的使用方法。 3.了解Windows 2000/XP中多线程的并发执行机制,实现进程的同步与互斥。 二、实验内容及要求 1.实验内容 以生产者/消费者模型为依据,在Windows 2000环境下创建一个控制台进程,在该进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。 2.实验要求 ●学习并理解生产者/消费者模型及其同步/互斥规则; ●学习了解Windows同步对象及其特性; ●熟悉实验环境,掌握相关API的使用方法; ●设计程序,实现生产者/消费者进程(线程)的同步与互斥; ●提交实验报告。 三、相关知识介绍 1.同步对象 同步对象是指Windows中用于实现同步与互斥的实体,包括信号量(Semaphore)、互斥量(Mutex)、临界区(Critical Section)和事件(Events)等。本实验中使用到信号量、互斥量和临界区三个同步对象。 同步对象的使用步骤: ●创建/初始化同步对象。 ●请求同步对象,进入临界区(互斥量上锁)。 ●释放同步对象(互斥量解锁)。 这些对象在一个线程中创建,在其他线程中都可以使用,实现同步与互斥。 2.相关API的功能及使用 我们利用Windows SDK提供的API编程实现实验题目要求,而VC中包含有Windows SDK的所有工具和定义。要使用这些API,需要包含堆这些函数进行说明的SDK头文件——最常见的是Windows.h(特殊的API调用还需要包含其他头文件)。 下面给出的是本实验使用到的API的功能和使用方法简单介绍。 (1) CreateThread ●功能——创建一个在调用进程的地址空间中执行的线程 ●格式 HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress,

第8章 互斥信号量管理

第8章互斥型信号量管理 任务可以用互斥型信号量实现对共享资源的独占式处理。mutex是二值信号量。 mutex可以在应用程序中用于降解优先级反转问题。 互斥型信号量由3个元素组成: 1个标志,指示mutex是否可以使用(0或1); 1个优先级,准备一旦高优先级的任务需要这个mutex,赋给占有mutex的任务; 1个等待该mutex的任务列表。 对于互斥型信号量提供6种服务:OSMutexCreate(),OSMutexDel(),OSMutexPend(),OSMutexPost(),OSMutexAccept(),OSMutexQuery()。 mutex只能供任务使用,用于处理共享资源。 8.00 建立一个互斥型信号量, OSMutexCreate() 程序清单 L8.2建立一个信号量 OS_EVENT *OSMutexCreate (INT8U prio, INT8U *err) { #if OS_CRITICAL_METHOD == 3 OS_CPU_SR cpu_sr; #endif OS_EVENT *pevent; if (OSIntNesting > 0) { *err = OS_ERR_CREATE_ISR; return ((OS_EVENT *)0); } #if OS_ARG_CHK_EN > 0 if (prio >= OS_LOWEST_PRIO) { *err = OS_PRIO_INVALID; return ((OS_EVENT *)0); } #endif OS_ENTER_CRITICAL(); if (OSTCBPrioTbl[prio] != (OS_TCB *)0) {

计算机操作系统练习题及答案

单项选择 1. 两个进程合作完成一项任务。在并发执行中,一个进程要等待其合作伙伴发来消息,或建立某个条件后再运行,这种制约性合作关系被称为进程的—A—。 A.同步 B.执行 C.互斥 D.调度 2. 为了进行进程协调,进程之间应当具有一定的联系,这种联系通常采用进程间交换数据的方式进行,这种方式通常称为—C—。 A. 进程互斥 B. 进程同步 C. 进程通信 D. 进程制约 3. 除了因为资源不足,进程竞争资源可能出现死锁外,不适当的—C—也可能产生死锁。 A.进程优先权 B.资源线性分配 C.进程推进顺序 D.分配队列优先权 4. 除了可以采用资源剥夺法解除死锁外,还可以采用—C—方法解除死锁。 A.修改信号量 B.拒绝分配新的资源 C.撤消进程 D.执行并行操作 5. 资源的按序分配策略可以破坏—D—条件。 A. 互斥 B. 请求与保持 C. 不剥夺 D. 环路等待 6. 在—C—的情况下,系统出现死锁。 A. 计算机系统发生了重大故障 B. 有多个阻塞的进程存在 C. 若干个进程因竞争资源而无休止地相互等待他方释放已占有的资源 D. 资源数远小于进程数或进程同时申请的资源数远超过资源总数 7.某系统中有3个进程,都需要同类资源4个,试问该系统不会发生死锁的最少资源数是—B—。 A.9 B.10 C.11 D.12 8. 银行家算法是一种—B—算法。 A. 解除死锁 B.避免死锁 C. 预防死锁 D. 检测死锁 9. 在下列解决死锁的方法中,属于死锁预防策略的是—B—。 A. 银行家算法 B. 资源有序分配 C. 死锁检测法 D. 资源分配图化简法 10. 设有n个进程共用一个相同的程序段(临界区),如果每次最多允许m个进程(m≤n)同时进入临界区,则信号量的初值应为—B—。 A. n B. m C. m-n D. -m 11.死锁定理是用于处理死锁的哪一种方法—C—。 A.预防死锁 B.避免死锁 C.检测死锁 D.解除死锁 12. AND信号量集机制是为了—C—。 A. 信号量的集中使用 B. 解决结果的不可再现性问题 C. 防止系统的不安全性 D. 实现进程的相互制约 13.临界区是指—A—。

相关文档
最新文档