初一数学方程与方程组的知识点总结
人教版七年级数学下册知识点总结第八章二元一次方程组

第八章 二元一次方程组一、学问网络构造二、学问要点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为c by ax =+(c b a 、、为常数,并且00≠≠b a ,)。
使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有多数组解。
3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。
使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。
4、用代入法解二元一次方程组的一般步骤:视察方程组中,⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧三元一次方程组解法问题二元一次方程组与实际加减法代入法二元一次方程组的解法方程组的解定义二元一次方程组方程的解定义二元一次方程二元一次方程组是否有用含一个未知数的式子表示另一个未知数,假如有,那么将它干脆代入另一个方程中;假如没有,那么将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。
5、用加减法解二元一次方程组的一般步骤:〔1〕方程组的两个方程中,假如同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;〔2〕把两个方程的两边分别相加或相减,消去一个未知数;〔3〕解这个一元一次方程,求出一个未知数的值;〔4〕将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。
6、解三元一次方程组的一般步骤:①视察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,及另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简洁的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
方程主要知识点总结

方程主要知识点总结一、方程的定义在代数学中,方程是指含有一个或多个未知数的等式,通常用字母表示未知数。
方程的一般形式为:$a_1x^n + a_2x^{n-1} + ... + a_nx + a_{n+1} = 0$,其中$x$为未知数,$a_1,a_2, ..., a_{n+1}$为已知的常数,n为方程的次数。
方程的解即是使等式成立的未知数的值。
二、方程的类型1. 一元一次方程:一元一次方程是指只含有一个未知数的一次方程,一般有形式:$ax + b = 0$,其中$a$和$b$为已知的常数,$x$为未知数。
2. 一元二次方程:一元二次方程是指只含有一个未知数的二次方程,一般有形式:$ax^2+ bx + c = 0$,其中$a$、$b$和$c$为已知的常数,$x$为未知数。
3. 二元一次方程组:二元一次方程组是指含有两个未知数的一次方程组,一般有形式:$ \begin{cases} ax + by = c \\ dx + ey = f \end{cases}$,其中$a$、$b$、$c$、$d$、$e$和$f$为已知的常数,$x$和$y$为未知数。
4. 二元二次方程:二元二次方程是指含有两个未知数的二次方程,一般有形式:$ \begin{cases} ax^2 + by^2 = c \\ dx + ey = f \end{cases}$,其中$a$、$b$、$c$、$d$、$e$和$f$为已知的常数,$x$和$y$为未知数。
5. 多元线性方程组:多元线性方程组是指含有多个未知数的一次方程组,一般有形式:$\begin{cases} a_11x_1 + a_12x_2 + ... + a_1nx_n = b1\\ a_21x_1 + a_22x_2 + ... + a_2nx_n =b_2 \\ \cdots \\ a_m1x_1 + a_m2x_2 + ... + a_mnx_n = b_m \end{cases}$,其中$a_{ij}$和$b_i$为已知的常数,$x_i$为未知数,$i=1, 2, ..., n; j=1, 2, ..., m$。
初中数学与关系知识点归纳

初中数学与关系知识点归纳初中数学是学生们学习的一门基础学科,其中包括了很多重要的数学与关系知识点。
掌握这些知识点对于学生们在数学学习中起着至关重要的作用,不仅能帮助他们理解数学概念,还能提升他们的数学思维能力。
本文将对初中数学与关系知识点进行归纳总结,以期帮助学生们更好地掌握这些知识。
1. 等式与方程等式是指具有相等关系的数学式子,如2+3=5。
简单来说,等号两边的值相等。
方程则是由等式构成的算式,其中含有未知数,如2x+3=7。
学生们需要掌握等式与方程的基本概念,理解等式与方程的关系,以及如何解方程。
解方程是指找出使方程成立的未知数的值。
2. 不等式与区间不等式是指具有不等关系的数学式子,如2<3。
学生们需要学会比较大小,并理解不等式的性质,例如大于、小于、大于等于、小于等于等。
区间是指在数轴上表示不等式解集的一种方式,如表示某个数大于等于2并且小于5的区间可以表示为[2, 5)。
3. 函数与方程图像函数是一种特殊的数学关系,它描述了输入和输出之间的依赖关系。
函数通常用f(x)表示,其中x为自变量,f(x)为因变量。
函数可以用公式、图像或者表格来表示。
方程图像则是由函数方程所描述的曲线或者直线在坐标系上的图形表示。
学生们需要学会根据函数方程绘制方程图像,以及通过观察方程图像来了解函数的性质。
4. 线性关系与线性方程组线性关系是指在随着自变量的变化,因变量以相同的比例变化的关系。
线性关系可以用直线来表示。
线性方程组是由多个线性方程组成的方程集合。
学生们需要学会理解线性关系的特点,例如斜率和截距的概念,以及如何解线性方程组。
5. 比例与百分数比例是指两个量之间的关系,可以用a:b或者a/b表示。
学生们需要学会计算比例,以及应用比例解决实际问题。
百分数是指以百分数形式表示的比例,百分号是指百分数的单位符号。
学生们需要掌握百分数的计算方法,如百分数转换为小数和分数,以及应用百分数解决实际问题。
6. 平均数与中位数平均数是指一组数的总和除以数的个数所得到的值。
初中数学难学的知识点总结

初中数学难学的知识点总结一、代数1. 代数方程代数方程是初中阶段的一个重要知识点,学生在学习时可能会遇到难题。
代数方程一般包括一元一次方程、一元二次方程等,学生需要掌握解方程的方法和技巧,以及应用解方程进行实际问题的求解。
建议:学生需要多做代数方程的练习题,掌握不同类型方程的解法。
可以通过逐步分析和归纳解题方法,加深理解和记忆。
2. 因式分解因式分解是代数中的一个重要内容,包括提公因式、分组提公因式、平方法等多种方法。
学生可能会在这个过程中遇到难题,需要掌握因式分解的基本方法和技巧。
建议:学生可以通过多做因式分解的练习题,巩固掌握不同因式分解的方法和技巧。
在实际问题中多进行因式分解的应用,加深理解和记忆。
3. 方程组方程组是由多个方程组成的一组方程,学生在学习中可能会遇到难题。
需要掌握解方程组的方法和技巧,以及应用解方程组进行实际问题的求解。
建议:学生可以通过多做方程组的练习题,掌握不同类型方程组的解法。
可以通过分步骤进行解题,逐渐提高解题的能力。
二、几何1. 相似三角形相似三角形是初中阶段一个较难的知识点,学生在学习时可能会遇到难题。
需要掌握相似三角形的判定方法和相似三角形的性质。
建议:学生可以通过多做相似三角形的练习题,掌握相似三角形判定和性质的理解。
可以通过比较不同三角形的特点,加深理解和记忆。
2. 圆的性质圆是几何中的一个难点内容,学生在学习时可能会遇到难题。
需要掌握圆的面积和周长的计算方法,以及圆心角和弧度的关系。
建议:学生可以通过多做圆的练习题,掌握圆的相关计算方法和性质。
可以通过实际问题进行应用,加深理解和记忆。
三、数据与概率1. 统计图表统计图表是数据与概率中的一个难点内容,学生在学习时可能会遇到难题。
需要掌握各种不同类型的统计图表,以及如何读懂和分析统计图表。
建议:学生可以通过多做统计图表的练习题,掌握不同类型图表的分析和解读方法。
可以通过比较不同图表的特点,加深理解和记忆。
2. 概率概率是初中阶段一个较难的知识点,学生在学习时可能会遇到难题。
初一数学上册最重要的知识点最新

初一数学上册最重要的知识点最新数学来源于生活,又服务于生活。
与数学相关的问题是取之不尽的,若能把它们运用得恰到好处,就会开启学生的智慧之门。
初一数学上册最重要的知识点有哪些你知道吗?一起来看看初一数学上册最重要的知识点最新,欢迎查阅!初一数学上册最重要的知识点一次方程与方程组-----------3.1一元一次方程及其解法①方程是含有未知数的等式。
②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。
③注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)3)经整理后方程中未知数的次数是1.④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
方程的解代入满足,方程成立。
⑤等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。
a=b得:a+(-)c=b+(-)c2)等式两边同时乘以或除以同一个不为零的数,等式不变。
a=b得:a×c=b×c或a÷c=b÷c(c≠0)注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。
⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来) --------3.2一次方程的应用:(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;①解:设出未知数(注意单位),②根据相等关系列出方程,③解这个方程,④答(包括单位名称,检验)。
简易方程所有的知识点总结

简易方程所有的知识点总结1. 方程的定义方程是含有未知数的数学关系,它可以表示为两个表达式之间的相等关系。
方程通常用字母表示未知数,通过代数方法可以求解出未知数的取值。
2. 未知数在方程中,未知数通常用字母表示,表示未知的数量或者大小。
在求解方程时,我们通过代数运算来确定未知数的值。
3. 方程的解解方程就是要找出使方程成立的未知数值,使得方程左边的表达式等于右边的表达式。
解方程的过程就是求出这些未知数的取值。
二、一元一次方程1. 一元一次方程的定义一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程。
2. 一元一次方程的一般形式一元一次方程的一般形式可以表示为ax+b=0,其中a和b为已知常数,x为未知数。
3. 解一元一次方程的方法解一元一次方程的方法包括加减消去法、配方法、代入法等。
在解方程的过程中,我们通常通过变换方程的形式来求得未知数的值。
4. 一元一次方程的应用一元一次方程的应用十分广泛,可以用来解决各种实际问题,如物品的购买和销售、工程问题、金融问题等。
三、一元二次方程1. 一元二次方程的定义一元二次方程是指只含有一个未知数,并且未知数的最高次数为二的方程。
2. 一元二次方程的一般形式一元二次方程的一般形式可以表示为ax^2+bx+c=0,其中a、b和c为已知常数,x为未知数。
3. 一元二次方程的求解方法解一元二次方程可以通过配方法、公式法、因式分解法等多种方法。
其中,一元二次方程的解法与因子分解和二次函数有着密切的联系。
4. 一元二次方程的应用一元二次方程在生活中也有很多应用,如物体自由落体运动、抛物线运动、建筑中的拱形结构设计等都可以用一元二次方程进行建模和解决。
四、一元三次方程1. 一元三次方程的定义一元三次方程是指只含有一个未知数,并且未知数的最高次数为三的方程。
2. 一元三次方程的一般形式一元三次方程的一般形式可以表示为ax^3+bx^2+cx+d=0,其中a、b、c和d为已知常数,x为未知数。
湘教版七年级数学下册 第1章二元一次方程组知识点梳理

第一章 二元一次方程组一、二元一次方程组 1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。
②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。
2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。
二元一次方程组的解的讨论:已知二元一次方程组①、 当a1/a2 ≠ b1/b2 时,有唯一解; ②、 当a1/a2 = b1/b2 ≠ c1/c2时,无解; ③、 当a1/a2 = b1/b2 = c1/c2时,有无数解。
例如:对应方程组:①、 ②、 ③、例:判断下列方程组是否为二元一次方程组:①、 ②、 ③、 ④、 3、用含一个未知数的代数式表示另一个未知数:用含X 的代数式表示Y,就是先把X 看成已知数,把Y 看成未知数;用含Y 的代数式表示X,则相当于把Y 看成已知数,把X 看成未知数。
例:在方程 2x + 3y = 18 中,用含x 的代数式表示y 为:___________,用含y 的代数式表示x 为:____________。
4、根据二元一次方程的定义求字母系数的值:要抓住两个方面:①、未知数的指数为1,②、未知数前的系数不能为0例:已知方程 (a-2)x^(/a/-1) – (b+5)y^(b^2-24) = 3 是关于x 、y 的二元一次方程,求a 、b 的值。
七年级数学下册第八章二元一次方程组知识点总结素材新版新人教版(含参考答案)

七年级数学下册知识点总结素材:
二元一次方程组
一.知识结构图
二、知识概念
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。
方程,一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法. 重点:二元一次方程组的解法,列二元一次方程组解决实际问题. 难点:二元一次方程组解决实际问题
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学方程与方程组的知识点总结
初一数学方程与方程组的知识点总结
【一元一次方程:】
①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
【解一元一次方程的步骤:】
去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的'方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。