专题25 规律性问题-决胜2018中考数学压轴题全揭秘精品(解析版)

合集下载

北师大版2018-中考数学压轴题解题方法大全和技巧

北师大版2018-中考数学压轴题解题方法大全和技巧

中考数学压轴题解题技巧解中考数学压轴题秘诀(一)数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。

(一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。

初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线。

求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。

此类题基本在第24题,满分12分,基本分2-3小题来呈现。

(二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。

求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。

一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。

找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。

求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。

而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。

2018中考数学《规律探索》专题复习试题含解析

2018中考数学《规律探索》专题复习试题含解析

规律探索一、选择题1. 如图,将一张等边三角形纸片沿中位线剪成4 个小三角形,称为第一次操作;然后,将其中的一 个三角形按同样方式再剪成 4 个小三角形,共得到7 个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成 4 个小三角形, 共得到 10 个小三角形, 称为第三次操作; , 根据以上操作, 若要得到 100 个小三角形,则需要操作的次数是( )A .25B .33C .34D . 50 【考点】 规律型:图形的变化类.【分析】 由第一次操作后三角形共有 4 个、第二次操作后三角形共有( 4+3)个、第三次操作后三角 形共有( 4+3+3)个,可得第n 次操作后三角形共有4+3( n ﹣ 1)=3n+1 个,根据题意得 3n+1=100, 求得 n 的值即可.【解答】 解:∵第一次操作后,三角形共有 4 个; 第二次操作后,三角形共有 4+3=7 个; 第三次操作后,三角形共有 4+3+3=10 个;,∴第 n 次操作后,三角形共有 4+3( n ﹣ 1) =3n+1 个; 当 3n+1=100 时,解得: n=33, 故选: B .2. 观察图中正方形四个顶点所标的数字规律,可知,数 2016 应标在( )A .第 C .第504 个正方形的左下角 505 个正方形的左上角B.第D.第504 个正方形的右下角505 个正方形的右下角【考点】规律型:点的坐标.【分析】根据图形中对应的数字和各个数字所在的位置,可以推出数 2016 在第多少个正方形和它所在的位置,本题得以解决.【解答】解:∵ 2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0 在右下角,然后按逆时针由小变大,∴第 504 个正方形中最大的数是2015,∴数 2016 在第 505 个正方形的右下角,故选 D.3 .( 2016. 山东省临沂市, 3 分)用大小相等的小正方形按一定规律拼成下列图形,则第 n 个图形中小正方形的个数是()22A. 2n+1 B . n ﹣ 1 C . n +2n D . 5n ﹣ 2【分析】由第 1 个图形中小正方形的个数是 2 2﹣ 1、第 2 个图形中小正方形的个数是 3 2﹣ 1 、第 3 个图形中小正方形的个数是 4 2﹣ 1,可知第 n 个图形中小正方形的个数是( n+1 )2﹣ 1 ,化简可得答案.【解答】解:∵第 1 个图形中,小正方形的个数是: 22﹣ 1=3 ;第2 个图形中,小正方形的个数是: 3 2﹣ 1=8 ;第3 个图形中,小正方形的个数是: 4 2﹣ 1=15 ;,∴第 n 个图形中,小正方形的个数是:( n+1 )2﹣ 1=n 2+2n+1 ﹣ 1=n 2 +2n ;故选: C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n 个图形中共有三角形的个数为4n﹣ 3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的 4 倍少 3 个三角形,即可得出结果.【解答】解:第①是 1 个三角形, 1=4×1﹣ 3;第②是 5 个三角形, 5=4×2﹣ 3;第③是 9 个三角形, 9=4×3﹣ 3;∴第 n 个图形中共有三角形的个数是4n﹣3;故答案为: 4n﹣ 3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l : y=-43 x,点 A1 坐标为(- 3,0) . 过点 A1 作 x 轴的垂线交直线l 于点 B1,以原点 O为圆心, OB1 长为半径画弧交x 轴负半轴于点A2,再过点A2 作 x 轴的垂线交直线l 于点 B2,以原点 O为圆心, OB2 长为半径画弧交x 轴负半轴于点A3,, ,按此做法进行下去,点A2016 的坐标为.【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】 由直线 l : y=- 4 x 的解析式求出 A1B1 的长,再根据勾股定理,求出 OB1 的长,从而得出 A23的坐标;再把 A 的横坐标代入 y= - 4 x 的解析式求出 A B 的长,再根据勾股定理,求出 OB 的长,从3 2 2 2 2 而得出 A3 的坐标; , ,由此得出一般规律.【解答】 解:∵点 A 1 坐标为(- 3,0),知 O A1=3,把 x=- 3 代入直线 y=- 4 x 中,得y=4 ,即A1B1=4. 3根据勾股定理,OB= 2 1 22 21 1 = 3 4 =5, 1 OA A B∴ A 坐标为(- 5, 0), O A=5;2 24 x 中,得 y=20 ,即 A B = 2把 x=- 5 代入直线 y=- 3 3 3 .2 22 2 2 2 2 根据勾股定理, OB2= A 2 B = ( 20 ) = 253 = 51,2 2 5 OA3 3 2 2∴A3 坐标为(-51 , 0),O A3= 51 ; 3 32把 x=- 51 代入直线 y=- 4x 中,得 y= 100 ,即 A3B3= 100.3 3 9 92 2 25 2 100 23 ( ) ( ) 125 5根据勾股定理, OB = OA A B = = ,3 9 9 = 233 3 3 3 3∴ A4 坐标为(-52, 0), OA4= 52;3 3,,n 1n 1同理可得 An 坐标为(-52, 0), OAn=52 ;n n3 32015∴ A2016 坐标为(-52014, 0)32015故答案为:( - 52014 , 0)3【点评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征 . 解题时,要注意数形结合思想的运用,总结规律是解题的关键 . 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。

2018年中考数学押轴题解析-文档资料

2018年中考数学押轴题解析-文档资料

2018年中考数学押轴题解析以下是查字典数学网为您推荐的 2018年中考数学押轴题解析,希望本篇文章对您学习有所帮助。

2018年中考数学押轴题解析一、选择题1. (2018福建龙岩4分)如图,矩形ABCD中,AB=1,BC=2,把矩形ABCD 绕AB所在直线旋转一周所得圆柱的侧面积为【】A. B. C. D.2【答案】B。

【考点】矩形的性质,旋转的性质。

【分析】把矩形ABCD 绕AB所在直线旋转一周所得圆柱是以BC=2为底面半径,AB=1为高。

所以,它的侧面积为。

故选B。

2. (2018福建南平4分)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为【】A. B. C. D.3【答案】B。

【考点】翻折变换(折叠问题),正方形的性质,折叠的性质,勾股定理。

【分析】∵正方形纸片ABCD的边长为3,C=90,BC=CD=3。

根据折叠的性质得:EG=BE=1,GF=DF。

设DF=x,则EF=EG+GF=1+x,FC=DC-DF=3-x,EC=BC-BE=3-1=2。

在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3-x)2,解得:。

DF= ,EF=1+ 。

故选B。

3. (2018福建宁德4分)如图,在矩形ABCD中,AB=2,BC=3,点E、F、G、H分别在矩形ABCD的各边上,EF∥HG,EH∥FG,则四边形EFGH的周长是【】A.10B.13C.210D.2134. (2018福建莆田4分)如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABC-DA一的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是【】A.(1,-1)B.(-1,1)C.(-1,-2)D.(1,-2)【答案】B。

专题27 实践操作问题-决胜2018中考数学压轴题全揭秘精品(解析版)

专题27 实践操作问题-决胜2018中考数学压轴题全揭秘精品(解析版)

一、选择题1.(2017江苏省南通市,第9题,3分)已知∠AOB,作图.步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OA、OB于点P、Q;步骤2:过点M作PQ的垂线交PQ于点C;步骤3:画射线OC.则下列判断:①PC CQ=;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正确的个数为()A.1B.2C.3D.4【答案】C.【分析】由OQ为直径可得出OA⊥PQ,结合MC⊥PQ可得出OA∥MC,结论②正确;根据平行线的性质可得出∠P AO=∠CMQ,结合圆周角定理可得出∠COQ=12∠POQ=∠BOQ,进而可得出PC CQ=,OC平分∠AOB,结论①④正确;由∠AOB的度数未知,不能得出OP=PQ,即结论③错误.综上即可得出结论.点睛:本题考查了作图中的复杂作图、角平分线的定义、圆周角定理以及平行线的判定及性质,根据作图的过程逐一分析四条结论的正误是解题的关键.考点:作图—复杂作图;圆周角定理.2.(2017河北,第16题,2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4B.1.1C.0.8D.0.5点睛:本题考查正六边形、正方形的性质等知识,解题的关键作出点M的运动轨迹,利用图象解决问题,题目有一定的难度.考点:正多边形和圆;旋转的性质;操作型;综合题.3.(2017湖北省武汉市,第10题,3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7【答案】D.【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解析】如图:故选D.点睛:本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.考点:等腰三角形的判定与性质;分类讨论;综合题;操作型.学科.网4.(2016四川省达州市)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25B.33C.34D.50【答案】B.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解析】∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选B.考点:规律型:图形的变化类;操作型.5.(2016山东省淄博市)小明用计算器计算(a+b)c的值,其按键顺序和计算器显示结果如表:这时他才明白计算器是先做乘法再做加法的,于是他依次按键:从而得到了正确结果,已知a是b的3倍,则正确的结果是()A.24B.39C.48D.96【答案】C.【分析】根据题意得出关于a,b,c的方程组,进而解出a,b,c的值,进而得出答案.【解析】由题意可得:21393a bcb aca b+=⎧⎪+=⎨⎪=⎩,则:321339b bcb bc+=⎧⎨+=⎩,解得:934abc=⎧⎪=⎨⎪=⎩,故(9+3)×4=48.故选C.考点:计算器—基础知识;操作型.6.(2016江苏省扬州市)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6B.3C.2.5D.2【答案】C.【分析】以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD 于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小【解析】如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣12×4×4﹣12×3×6﹣12×3×3=2.5.故选C.考点:矩形的性质;等腰直角三角形;操作型;最值问题;几何问题的最值.7.(2016福建省莆田市)如图,在平面直角坐标系中,点A(0,2),在x轴上任取一点M,完成以下作图步骤:①连接AM.作线段AM的垂直平分线l1,过点M作x轴的垂线l2,记l1,l2的交点为P;②在x轴上多次改变点M的位置,用①的方法得到相应的点P,把这些点用平滑的曲线顺次连接起来,得到的曲线是()A.直线B.抛物线C.双曲线D.双曲线的一支【答案】B.【分析】按照给定的作图步骤作图,根据图形中曲线的特征即可得出该曲线为抛物线.【解析】根据作图步骤作图,如图所示.由此即可得出该曲线为抛物线.故选B.考点:二次函数图象上点的坐标特征;线段垂直平分线的性质;作图—基本作图.8.(2016黑龙江省绥化市)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.【答案】C.【分析】结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.【解析】当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选C.考点:剪纸问题;操作型.9.(2016黑龙江省龙东地区)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1B.2C.3D.4【答案】C.【分析】截下来的符合条件的彩绳长度之和刚好等于总长9米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得到关于x与y的方程,求出方程的正整数解即可得到结果.【解析】截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x根,1米长的y根,由题意得,2x+y=5,因为x,y都是正整数,所以符合条件的解为:5 xy=⎧⎨=⎩,13xy=⎧⎨=⎩,21xy=⎧⎨=⎩,则共有3种不同截法,故选C.考点:二元一次方程的应用;方案型;操作型.10.(2015荆州)如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.【答案】A.【解析】试题分析:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.考点:剪纸问题.11.(2015深圳)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC=BC,则下列选项正确的是()A.B.C.D.【答案】D.考点:作图—复杂作图.12.(2015三明)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC【答案】D.【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.考点:1.作图—基本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线.13.(2015潍坊)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.8【答案】D.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—基本作图.学科.网14.(2015嘉兴)数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.【答案】A.【解析】试题分析:A.根据作法无法判定PQ⊥l;B.以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C.根据直径所对的圆周角等于90°作出判断;D.根据全等三角形的判定和性质即可作出判断.从以上分析可知,选项B、C、D都能够得到PQ⊥l于点Q;选项A不能够得到PQ⊥l于点Q.故选A.考点:作图—基本作图.二、填空题15.(2017北京市,第16题,3分)图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于12的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.【答案】到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所的弦是直径.点睛:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.考点:作图—复杂作图;三角形的外接圆与外心;作图题.16.(2017天津,第18题,3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △P S △P S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)【答案】(117;(2)答案见解析.【分析】(1)利用勾股定理即可解决问题;(2)如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.【解析】(1)AB 2214 1717.(2)如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:3,△P AB的面积=12平行四边形ABME的面积,△PBC的面积=12平行四边形CDNB的面积,△P AC的面积=△PNG的面积=12△DGN的面积=12平行四边形DEMG的面积,∴S△P S△P S△PCA=1:2:3.点睛:本题考查作图﹣应用与设计、勾股定理、三角形的面积等知识,解题的关键是利用数形结合的思想解决问题,求出△P AB,△PBC,△P AC的面积,属于中考常考题型.考点:作图—应用与设计作图;勾股定理;综合题.17.(2017安徽省,第14题,5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.【答案】40或33.【分析】解直角三角形得到AB=3∠ABC=60°,根据折叠的性质得到∠ABD=∠EBD=12∠ABC=30°,BE=AB=3求得DE=10,BD=20,如图1,平行四边形的边是DF,BF,如图2,平行四边形的边是DE,EG,于是得到结论.【解析】∵∠A=90°,∠C=30°,AC=30cm,∴AB=103ABC=60°,∵△ADB≌△EDB,∴∠ABD=∠EBD=12∠ABC=30°,BE=AB=103,∴DE=10,BD=20,如图1,平行四边形的边是DF,BF,且DF=BF=2033,∴平行四边形的周长=8033;如图2,平行四边形的边是DE,EG,且DF=BF=10,∴平行四边形的周长=40.综上所述:平行四边形的周长为40或8033,故答案为:40或8033.点睛:本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.考点:剪纸问题;操作型;分类讨论;综合题.18.(2017山东省烟台市,第18题,3分)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交AB于点D,点F是AB上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,F A依次剪下,则剪下的纸片(形状同阴影图形)面积之和为.【答案】36π﹣108.【分析】先求出∠ODC=∠BOD=30°,作DE⊥OB可得DE=12OD=3,先根据S弓形BD=S扇形BOD﹣S△BOD求得弓形的面积,再利用折叠的性质求得所有阴影部分面积.【解析】如图,∵CD⊥OA,∴∠DCO=∠AOB=90°,∵OA=OD=OB=6,OC=12OA=12OD,∴∠ODC=∠BOD=30°,作DE⊥OB于点E,则DE=12OD=3,∴S弓形BD=S扇形BOD﹣S△BOD=2306360π⨯﹣12×6×3=3π﹣9,则剪下的纸片面积之和为12×(3π﹣9)=36π﹣108,故答案为:36π﹣108.点睛:本题主要考查扇形面积的计算,熟练掌握扇形的面积计算公式及折叠的性质是解题的关键. 考点:扇形面积的计算;剪纸问题;操作型.19.(2017黑龙江省绥化市,第21题,3分)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为 .【答案】2112n -.【分析】记原来三角形的面积为s ,第一个小三角形的面积为s 1,第二个小三角形的面积为s 2,…,求出s 1,s 2,s 3,探究规律后即可解决问题.【解析】记原来三角形的面积为s ,第一个小三角形的面积为s 1,第二个小三角形的面积为s 2,…,∵ s 1=14•s =212•s ,s 2=14•14s =412 •s ,s 3=612•s ,∴s n =212n •s =2211222n ⋅⋅=2112n -,故答案为:2112n -. 点睛:本题考查三角形的中位线定理,三角形的面积等知识,解题的关键是循环从特殊到一般的探究方法,寻找规律,利用规律即可解决问题.考点:三角形中位线定理;等腰直角三角形;综合题;规律型;操作型.20.(2017黑龙江省齐齐哈尔市,第16题,3分)如图,在等腰三角形纸片ABC 中,AB =AC =10,BC =12,沿底边BC 上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是 .【答案】10cm ,73,13.【分析】利用等腰三角形的性质,进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长.【解析】如图:,过点A 作AD ⊥BC 于点D ,∵△ABC 边AB =AC =10cm ,BC =12cm ,∴BD =DC =6cm ,∴AD =8cm ,如图①所示:可得四边形ACBD 是矩形,则其对角线长为:10cm ,如图②所示:AD =8cm ,连接BC ,过点C 作CE ⊥BD 于点E ,则EC =8cm ,BE =2BD =12cm ,则BC =413cm ,如图③所示:BD =6cm ,由题意可得:AE =6cm ,EC =2BE =16cm ,故AC =22616 =273cm ,故答案为:10cm ,273cm ,413cm .点睛:此题主要考查了图形的剪拼以及勾股定理和等腰三角形的性质等知识,利用分类讨论得出是解题关键.考点:图形的剪拼;分类讨论;操作型.学科.网21.(2016北京市)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l 和l 外一点P .(如图1)求作:直线l 的垂线,使它经过点P .作法:如图2(1)在直线l 上任取两点A ,B ;(2)分别以点A ,B 为圆心,AP ,BP 长为半径作弧,两弧相交于点Q ;(3)作直线PQ .所以直线PQ 就是所求的垂线.请回答:该作图的依据是 .【答案】到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).【分析】只要证明直线AB是线段PQ的垂直平分线即可.【解析】到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵P A=PQ,PB=PB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.考点:作图—基本作图.22.(2016天津市)如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(1)AE的长等于________;(2)若点P在线段AC上,点Q在线段BC上,且满足AP = PQ = QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)________.【答案】(1)5;(2)答案见解析. 【分析】(1)利用格点,根据勾股定理求出AB 的长;(2)如图,AC 与网格线相交,得点P ;取个点M ,连接AM 并延长与BC 相交,得点Q ,连接PQ 即可.【解析】(1)AE =2212+=5;(2)如图,AC 与网格线相交,得点P ;取个点M ,连接AM 并延长与BC 相交,得点Q ,连接PQ .线段PQ 即为所求.证明如下:以A 为坐标原点建立直角坐标系,使点B 、C 都在第一象限.则A (0,0),P (1.5,3),M (3,3),B (6,1.5),F (5,3.5).可求出直线AM 的解析式为:y =x ,直线BF 的解析式为:y =-2x +13.5,则由213.5y x y x =⎧⎨=-+⎩,得:x =y =4.5,∴Q (4.5,4.5),则AP =221.53+=352, PQ =22(4.5 1.5)(4.53)-+-=352,QB =22(6 4.5)(1.5 4.5)-+-=352,∴AP = PQ = QB .考点:勾股定理;作图题.23.(2016山东省青岛市)如图,以边长为20cm 的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中 虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为 cm 3.【答案】1443.【分析】由题意得出△ABC为等边三角形,△OPQ为等边三角形,得出∠A=∠B=∠C=60°,AB=BC=AC.∠POQ=60°,连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,得出OD 的长,求出OP,无盖柱形盒子的容积=底面积×高,即可得出结果.【解析】如图由题意得:△ABC为等边三角形,△OPQ为等边三角形,AD=AK=BE=BF=CG=CH=4CM,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=33AD=433cm,∵PQ=OP=DE=20﹣2×4=12(cm),∴QM=OP•sin60°=12×32=63(cm),∴无盖柱形盒子的容积=1126342⨯⨯⨯=1443(cm3);故答案为:1443.考点:剪纸问题.24.(2016广东省深圳市)如图,在▱ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于12PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为.【答案】2.【分析】根据作图过程可得得AE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.【解析】根据作图的方法得:A E平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=5﹣3=2;故答案为:2.考点:平行四边形的性质;等腰三角形的判定;作图—复杂作图;操作型.25.(2016浙江省湖州市)如图,在Rt △ABC 中,∠ACB =90°,BC =6,AC =8,分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径作弧,相交于点E ,F ,过点E ,F 作直线EF ,交AB 于点D ,连结CD ,则CD 的长是 .【答案】5.【分析】首先说明AD =DB ,利用直角三角形斜边中线等于斜边一半,即可解决问题.【解析】由题意EF 是线段AB 的垂直平分线,∴AD =DB ,Rt △ABC 中,∵∠ACB =90°,BC =6,AC =8,∴AB =22AC BC +=2268+=10,∵AD =DB ,∠ACB =90°,∴CD =12AB =5.故答案为:5.考点:作图—基本作图;直角三角形斜边上的中线;勾股定理.学科.网26.(2016山东省淄博市)由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.【答案】答案见解析.【分析】根据俯视图和左视图可知,该几何体共两层,底层有9个正方体,上层中间一行有正方体,若使主视图为轴对称图形可使中间一行、中间一列有一个小正方体即可.【解析】如图所示:考点:作图-三视图;轴对称图形;由三视图判断几何体.27.(2016四川省眉山市)已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.【答案】(1)作图见解析;(2)作图见解析,A2坐标(﹣2,﹣2).【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出.【解析】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,A2坐标(﹣2,﹣2).考点:作图-平移变换;作图-位似变换.28.(2016四川省达州市)如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)作图见解析;(2)四边形ABEF是菱形.【分析】(1)由角平分线的作法容易得出结果,在AD上截取AF=AB,连接EF;画出图形即可;(2)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由(1)得:A F=AB,得出BE=AF,即可得出结论.考点:平行四边形的性质;作图—基本作图.29.(2016山东省枣庄市)P n 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P n 与n 的关系式是:P n =2(1)()24n n n an b -⋅-+(其中a ,b 是常数,n ≥4) (1)通过画图,可得:四边形时,P 4= ;五边形时,P 5= ; (2)请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值. 【答案】(1)1;5;(2)a =5,b =6.【分析】(1)依题意画出图形,数出图形中对角线交点的个数即可得出结论;(2)将(1)中的数值代入公式可得出关于a 、b 的二元一次方程组,解方程组即可得出结论. 【解析】(1)画出图形如下.由画形,可得:当n =4时,P 4=1;当n =5时,P 5=5. 故答案为:1;5.(2)将(1)中的数值代入公式,得:224(41)1(44)245(51)5(55)24a b a b ⨯-⎧=⋅-+⎪⎪⎨⨯-⎪=⋅-+⎪⎩,解得:a =5,b =6.考点:作图—应用与设计作图;二元一次方程的应用;多边形的对角线.30.(2016山东省聊城市)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣2,1),C (﹣1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 1的坐标为(4,0),写出顶点A 1,B 1的坐标; (2)若△ABC 和△A 1B 2C 2关于原点O 成中心对称图形,写出△A 1B 2C 2的各顶点的坐标; (3)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 2B 3C 3,写出△A 2B 3C 3的各顶点的坐标.【答案】(1)A1(2,2),B1(3,﹣2);(2)A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)A3(5,3),B3(1,2),C3(3,1).【分析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.【解析】(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC 先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);考点:坐标与图形变化-旋转;坐标与图形变化-平移;作图题.31.(2016山东省青岛市)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【答案】作图见解析.【分析】首先作出∠ACB的平分线CD,再截取CO=a得出圆心O,作OE⊥CA,由角平分线的性质和切线的判定作出圆即可.【解析】①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O我圆心,OE长为半径作圆;如图所示:⊙O即为所求.考点:作图—复杂作图.学科.网32.(2016山西省)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C′D′,连接BD′,CC′,使四边形BCC′D恰好为正方形,求a的值,请你解答此问题;(4)请你参照以上操作,将图1中的△ACD 在同一平面内进行一次平移,得到△A ′C ′D ,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.【答案】(1)菱形;(2)证明见解析;(3)7113或40913;(4)答案见解析. 【分析】(1)利用旋转的性质结合菱形的性质得出:∠1=∠2,∠2=∠3,∠1=∠4,AC =AC ′,进而利用菱形的判定方法得出答案;(2)利用旋转的性质结合菱形的性质得出,四边形BCC ′D 是平行四边形,进而得出四边形BCC ′D 是矩形;(3)首先求出CC ′的长,分别利用①点C ″在边C ′C 上,②点C ″在C ′C 的延长线上,求出a 的值; (4)利用平移的性质以及平行四边形的判定方法得出答案.【解析】(1)如图2,由题意可得:∠1=∠2,∠2=∠3,∠1=∠4,AC =AC ′,故AC ′∥EC ,AC ∥C ′E ,则四边形ACEC ′是平行四边形,故四边形ACEC ′的形状是菱形; 故答案为:菱形;(2)证明:如图3,作AE ⊥CC ′于点E ,由旋转得:A C ′=AC ,则∠CAE =∠C ′AE =12α=∠BAC ,∵四边形ABCD 是菱形,∴BA =BC ,∴∠BCA =∠BAC ,∴∠CAE =∠BCA ,∴AE ∥BC ,同理可得:A E ∥DC ′,∴BC ∥DC ′,则∠BCC ′=90°,又∵BC =DC ′,∴四边形BCC ′D 是平行四边形,∵∠BCC ′=90°,∴四边形BCC ′D 是矩形;(3)如图3,过点B 作BF ⊥AC ,垂足为F ,∵BA =BC ,∴CF =AF =12AC =12×10=5,在Rt △BCF 中,BF 22BC CF -22135-12,在△ACE 和△CBF 中,∵∠CAE =∠BCF ,∠CEA =∠BFC =90°,∴△ACE ∽△CBF ,∴CE AC BF BC =,即101213CE =,解得:EC =12013,∵AC =AC ′,AE ⊥CC ′,∴CC ′=2CE =2×12013=24013,当四边形BCC ′D ′恰好为正方形时,分两种情况: ①点C ″在边C ′C 上,a =C ′C ﹣13=24013﹣13=7113;②点C ″在C ′C 的延长线上,a =C ′C +13=24013+13=40913.综上所述:a 的值为:7113或40913; (4)答案不唯一,例:如图4,画出正确图形,平移及构图方法:将△ACD 沿着射线CA 方向平移,平移距离为12AC 的长度,得到△A ′C ′D ′,连接A ′B ,D ′C ,结论:∵BC =A ′D ′,BC ∥A ′D ′,∴四边形A ′BCD ′是平行四边形.考点:几何变换综合题;操作型;分类讨论;压轴题. 33.(2016山西省)综合与探究如图,在平面直角坐标系中,已知抛物线28y ax bx =+-与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2)试探究抛物线上是否存在点F ,使△FOE ≌△FCE ?若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q ,试探究:当m 为何值时,△OPQ 是等腰三角形.【答案】(1)21382y x x =--,B (8,0),E (3,﹣4);(2)(317+,﹣4)或(3174);(3)m =83-或323-. 【分析】(1)根据待定系数法求出抛物线解析式即可求出点B 坐标,求出直线OD 解析式即可解决点E 坐。

决胜2018中考数学压轴题全揭秘精品:(压轴题)专题22 动态几何之动点形成的四边形存

决胜2018中考数学压轴题全揭秘精品:(压轴题)专题22 动态几何之动点形成的四边形存

(3)在(2)的条件下,过点 P 作 PF⊥x 轴于点 F,G 为抛物线上一动点,M 为 x 轴上一动点,N 为直线 PF 上一
动点,当以
F、M、G
为顶点的四边形是正方WW.ziyua nku.co m
16.(2016 内蒙古呼伦贝尔市,第 26 题,13 分)如图,抛物线 y x2 2x 3 与 x 轴相交的于 A,B 两点(点 A
在点 B 的左侧),与 y 轴相交于点 C,顶点为 D. (1)直接写出 A,B,C 三点的坐标和抛物线的对称轴; (2)连接 BC,与抛物线的对称轴交于点 E,点 P 为线段 BC 上的一个动点(P 不与 C,B 两点重合),过点 P 作 PF∥DE 交抛物线于点 F,设点 P 的横坐标为 m. ①用含 m 的代数式表示线段 PF 的长,并求出当 m 为何值时,四边形 PEDF 为平行四边形. ②设△BCF 的面积为 S,求 S 与 m 的函数关系式;当 m 为何值时,S 有最大值.
4
11.(2016 山东省东营市)在平面直角坐标系中,平行四边形 ABOC 如图放置,点 A、C 的坐标分别是(0,4)、 (﹣1,0),将此平行四边形绕点 O 顺时针旋转 90°,得到平行四边形 A′B′OC′. (1)若抛物线经过点 C、A、A′,求此抛物线的解析式; (2)点 M 是第一象限内抛物线上的一动点,问:当点 M 在何处时,△AMA′的面积最大?最大面积是多少?并求 出此时 M 的坐标; (3)若 P 为抛物线上一动点,N 为 x 轴上的一动点,点 Q 坐标为(1,0),当 P、N、B、Q 构成平行四边形时, 求点 P 的坐标,当这个平行四边形为矩形时,求点 N 的坐标.
C 三点,其中点 A 的坐标为(0,8),点 B 的坐标为(﹣4,0). (1)求该二次函数的表达式及点 C 的坐标; (2)点 D 的坐标为(0,4),点 F 为该二次函数在第一象限内图象上的动点,连接 CD、CF,以 CD、CF 为邻边 作平行四边形 CDEF,设平行四边形 CDEF 的面积为 S.$来&源: ①求 S 的最大值; ②在点 F 的运动过程中,当点 E 落在该二次函数图象上时,请直接写出此时 S 的值.

2018年 中考数学总复习 规律探究问题 专题综合训练题 含答案和解析

2018年 中考数学总复习  规律探究问题  专题综合训练题 含答案和解析

2018年中考数学总复习规律探究问题专题综合训练题含答案和解析依照此规律,第11个数据是.7. 观察下列等式:第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24在上述数字宝塔中,从上往下数,2019在第____层.8. 观察下列等式:第1个等式: a1=11+2=2-1,第2个等式:a2=12+3=3-2,第3个等式:a3=13+2=2-3,第4个等式:a4=12+5=5-2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=;(2)a1+a2+a3+…+a n=.9. 观察下列各式:1+13=213,2+14=314,3+15=415,……请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是.10. 如图,在数轴上,点A表示1,现将点A沿轴做如下移动:第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,……按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是____.11. 如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,……依次进行下去,则点A2019的坐标为.12. 在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n-1,使得点A1,A2,A3,…在直线l上,点C1,C2,C3,…在y轴正半轴上,则点B n的坐标是.13. 甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,……依次循环反复下去,当报出的数为2019时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是____分.14. 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.15. 如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒π2个单位长度,试求第2019秒时点P 的坐标. 参考答案: 1. B2. B 【解析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n 个图案中白色纸片数,从而可得关于n 的方程,解方程可得.∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;……∴第n 个图案中白色纸片有1+n ×3=3n +1(张),根据题意得3n +1=2019,解得n =672,故选B.3. D 【解析】观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为(n +1)(n +2)2+n 2,根据规律求解.通过观察,得到小圆圈的个数分别是:第一个图形为:(1+2)×22 +12=4,第二个图形为:(1+3)×32 +22=6,第三个图形为:(1+4)×42+32=10,第四个图形为:(1+5)×52+42=15,…,所以第n 个图形为:(n +2)(n +1)2 +n 2,当n =7时,(7+2)(7+1)2+72=85,故选D.4. C 【解析】设图形n 中星星的颗数是a n (n 为自然数),观察,发现规律:a 1=1+1,a 2=(1+2)+3,a 3=(1+2+3)+5,a 4=(1+2+3+4)+7,…,∴a n =(1+2+…+n )+(2n -1)=n (n +1)2+2n -1,当n =8时,a 8=8(8+1)2+2×8-1=51,故选C.5. C6. -12211 【解析】根据题意可得:所有数据分母为连续正整数,第奇数个是负数,且分子是连续正整数的平方加1,进而得出答案.∵-2=-21,52,-103,174,-265,…,∴第11个数据是:-112+111=-12211.7. 44 【解析】第一层:第一个数为12=1,最后一个数为22-1=3,第二层:第一个数为22=4,最后一个数为32-1=8,第三层:第一个数为32=9,最后一个数为42-1=15,∵442=1936,452=2025,又∵1936<2019<2025,∴在上述数字宝塔中,从上往下数,2019在第44层. 8. (1)1n +n +1=n +1-n(2) n +1-1【解析】(1)根据题意可知,a 1=11+2=2-1,a 2=12+3=3-2,a 3=13+2=2-3,a 4=12+5=5-2,……由此得出第n 个等式:a n =1n +n +1=n +1-n ;(2) 将每一个等式化简即可求得答案.解:(1)∵第1个等式:a 1=11+2=2-1,第2个等式:a 2=12+3=3-2,第3个等式:a 3=13+2=2-3,第4个等式a 4=12+5=5-2,∴第n 个等式:a n =1n +n +1=n +1-n (2)a 1+a 2+a 3+…+a n =(2-1)+(3-2)+(2-3)+(5-2)+…+(n+1-n)=n+1-19. n+1n+2=(n+1)1n+210. 13【解析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为-17-3=-20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于20时,n的最小值是13.11. (21008,21009)【解析】写出部分A n点的坐标,根据坐标的变化找出变化规律“A2n+1((-2)n,2(-2)n)(n为自然数)”,依此规律即可得出结论.观察,发现规律:A1(1,2),A2(-2,2),A3(-2,-4),A4(4,-4),A5(4,8),…,∴A2n+1((-2)n,2(-2)n)(n为自然数).∵2019=1008×2+1,∴A2019的坐标为((-2)1008,2(-2)1008)=(21008,21009).12. (2n-1,2n-1)【解析】∵y=x-1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21-1),B2(13. 33614. (63,32)15. 解:∵半圆的半径r=1,∴半圆长度=π,∴第2019秒点P运动的路径长为π2×2019,∵π2×2019÷π=1007…1,∴点P位于第1008个半圆的中点上,且这个半圆在x轴的下方,∴此时点P的横坐标为1008×2-1=2019,纵坐标为-1,∴点P(2019,-1)。

2018届中考数学复习 专题25 等腰三角形、等边三角形试题(B卷,含解析)

2018届中考数学复习 专题25 等腰三角形、等边三角形试题(B卷,含解析)

等腰三角形、等边三角形一、选择题 1. .(广东省广州市,13,3分)如图,△ABC 中,AB =AC ,BC =12cm ,点D 在AC 上,DC =4cm ,将线段DC 沿CB 方向平移7cm 得到线段EF ,点E ,F 分别落在边AB ,BC 上,则△EBF 的周长为 cm .【答案】13【逐步提示】利用平移的性质可以求得EF 与FC 的长,进而可得BF 的长;再根据等腰三角形的判定可得BE =EF ,这样求得了△EBF 的三边长,其和即为△EBF 的周长.【详细解答】解:根据平移的性质,将线段DC 沿着CB 的方向平移7cm 得到线段EF ,则EF =DC =4cm ,FC =7cm ,∠EFB =∠C .∵AB =AC ,∴∠B =∠C ,∴∠B =∠BFE ,∴BE =EF =4cm .又BF =BC -FC =12-7=5cm ,∴△EBF 的周长=4+4+5=13(cm ).故答案为13.【解后反思】图形平移后,对应线段平行(或在同一条直线上)且相等,这样往往存在平行四边形与全等三角形或等腰三角形,给我解决问题提供了重要途径. 【关键词】平移的性质;等腰三角形的判定2. ( 河北省,16,2分)如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .1个B .2个C .3个D .3个以上【答案】D【逐步提示】先找出符合要求的特殊点,如点M 与点O 重合,点N 与点O 重合等,不难发现以上特殊情形都满足OM+ON=2,再研究一般情形下△PMN 是否为等边三角形,问题得解. 【详细解答】解:如图,在OA 上截取OC=OP=2,∵∠AOP =60°,∴△OCP 是等边三角形,∴CP=OP ,∠OCP=∠CPO=60°.在线段OC 任取一点M ,在OB 上截取ON ,使ON+OM=2,连接MN ,PM ,PN.∵MC+OM =2,∴CM=ON.在△MCP 和△NOP 中,∵CM=ON,∠MCP =∠NOP =60°,CP=OP ,∴△MCP ≌△NOP (SAS ),∴PM=PN ,∠MPC=∠NPO ,∴∠MPC+∠MPO=∠NPO+∠MPO ,即∠CPO =∠MPN,∴∠MPN =60°,∴△PMN 是等边三角形.故满足条件的△PMN 有无数个,答案为选项D.A B CE D F【解后反思】如图所示,本题是含有60°内角的菱形问题的变式,掌握其中等边三角形和全等三角形的判定有助于我们解决此题.【关键词】等边三角形的判定和性质;全等三角形的判定;存在性问题3.(湖南省怀化市,8,4分)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A. 16cmB. 17cmC. 20cmD. 16cm或20cm【答案】C.【逐步提示】此题考查等腰三角形的定义和三角形三边的关系.题中给出了等腰三角形的两条边长,而没有明确其腰长或底边长,因此需要分腰为4cm长或腰为8cm长两种情况讨论等腰三角形的周长即可.【详细解答】解:若4cm的边长为腰,8cm的边长为底,4+4=8,由三角形三边的关系知,该等腰三角形不存在;若8cm的边长为腰,4cm的边长为底,则等腰三角形的周长为20cm,故选择C.【解后反思】此题考查等腰三角形的定义和三角形三边的关系,解此题的关键是能根据题意,考虑到需要分类讨论等腰三角形的周长.此题的易错点是审题不认真,忽略分类讨论.【关键词】等腰三角形的定义;三角形三边的关系4.(湖南湘西,14,4分)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是A.13cm B .14cm C. 13 cm或14cm D.以上都不对【答案】C【逐步提示】本题考查了三角形的三边关系及等腰三角形的性质,解题的关键是应用三角形三边关系定理讨论.分4cm为等腰三角形的腰和5cm为等腰三角形的腰,先判断符合不符合三边关系,再求出周长.【详细解答】解:①当等腰三角形的腰为4,底为5时,等腰三角形的周长为2×4+5=13;②当等腰三角形的腰为5,底为4时,等腰三角形的周长为2×5+4=14,∴这个等腰三角形的周长是13 cm或14cm,故选择C . 【解后反思】在解有关等腰三角形边长问题时,通常要进行讨论,注意分类讨论后一定要运用三边关系检验,所求的结果若能够组成三角形后,才能继续进行有关的计算.【关键词】三角形三边的关系;等腰三角形的性质5.(山东滨州6,3分)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE 的度数为()A.50° B.51° C.51.5° D.52.5°【答案】D .【逐步提示】先根据AC =CD ,∠A =50°,计算出∠ADC 的度数,再由CD =BD ,可知∠B=∠BCD ,从而求出∠B 的度数,BD =BE ,∠BDE =∠BED ,求出∠BDE 的度数,最后根据∠ADC +∠CDE +∠BDE =180°,计算出∠CDE 的度数. 【详细解答】解:∵AC =CD ,∴∠ADC=∠A =50°,又∵CD =BD ,∴∠B=∠BCD ,∠ADC=∠B+∠BCD ,∴∠B=25°,∵BD =BE ,∠BDE =∠BED=77.5°,∠ADC +∠CDE +∠BDE =180°,∴∠CDE =52.5°. 【解后反思】根据“等腰三角形两底角相等”得到角的度数,再根据三角形的一个外角等于和它不相邻的2个内角的度数之和.【关键词】等腰三角形 三角形的外角和定理6.(江苏省扬州市,8,3分)如图,矩形纸片ABCD 中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是 ( )A .6B .3C .2.5D .2(第8题)BC【答案】C【逐步提示】本题考查了操作活动中的估算和大小比较,解题的关键是合理构造等腰直角三角形,使得剩余部分面积的最小,此时每次都要考虑以最大边做斜边才使得剪去的等腰直角三角形面积最大.【详细解答】解:如图所示,剩余三角形的面积为24—1442创—12—1332创=2.5,故选择C .【解后反思】本题属于数学实验的简单类的问题,在构造等腰直角三角形时,学生可能会构造出如图所示的方法,剩余三角形的面积为24—1442创—12创—12创,错选答案B .【关键词】 三角形;等腰三角形与直角三角形;等腰三角形的性质;勾股定理;四边形;特殊的平行四边形;矩形的性质;面积最小化;化归思想二、填空题1. ( 甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,17,4分)将一张矩形纸片折叠成如图所示的图形,若AB =6cm ,则AC =_____________cm .第17题图 【答案】6【逐步提示】本题考查轴对称变换的性质,解题的关键是画出折叠之前的矩形纸片,画出折叠之前的矩形纸片之后,一目了然,通过角度之间代换得到△ABC 是等腰三角形,得解.【详细解答】解:由折叠得∠1=∠2,再由矩形纸片对边平行得到∠1=∠3,从而得到∠2=∠3,所以△ABC 是等腰三角形且AB =AC =6cm ,故答案为6.【解后反思】折叠也就是翻折或轴对称,它连同平移、旋转一样是全等变换,即不改变图形的形状和大小,所以看到折叠就要想到全等,进一步得到对应角相等、对应边相等为进一步解题提供条件. 【关键词】 折叠;矩形的性质;等腰三角形的判定;2. ( 河北省,19,4分)如图,已知∠AOB =7°,一条光线从点A 出发后射向OB 边.若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A =90°-7°=83°.当∠A <83°时,光线射到OB 边上的点A 1后,经OB 反射到线段AO 上的点A 2,易知∠1=∠2.若A 1A 2⊥AO ,光线又会沿A 2→A 1→A 原路返回到点A ,此时∠A =_____°. ……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=_______°.【答案】76 6 【逐步提示】本题属于规律探究题,对于(1)先在Rt△A1A2O中根据三角形内角和定理求出∠2的度数,由此得到∠1和∠AA1A2的度数,再在△AA1A2中根据三角形内角和定理求出∠A的度数;(2)由(1)可知当光线垂直于OA时光线会沿原路返回,画出符合题意的图形,分别求出有公共顶点的光线夹角的度数,从而找出夹角变化的规律,问题可解.【详细解答】解:(1)∵A1A2⊥AO,∴∠A1A2A=∠A1A2O=90°.在Rt△A1A2O中,∠O=7°,∴∠2=90°-7°=83°,∴∠1=83°,∴∠AA1A2=180°-2×83°=14°.在Rt△AA1A2中,∴∠A=90°-14°=76°.(2)如图,当A n-1A n ⊥OA时,易求得∠A n A n-1A n-2=14°=1×14°,∠A n-1A n-2A n-3=28°=2×14°,∠A n-2A n-3A n-4=42°=3×14°,……,由此可知当∠A1AC=12×14°=168°时,∠A1AO=12×(180°-168°)=6°,且此时∠A1AO最小.【解后反思】对于规律探究题,解决问题的一般思路是从特殊情形中发现一般规律,进而应用一般规律求解. 【关键词】规律探究题3.(湖北省黄冈市,12,3分)如图,⊙O是ΔABC的外接圆,∠AOB=700,AB=AC,则∠ABC= 。

2018年江苏省十三市中考数学试卷压轴题及详细答案解析

2018年江苏省十三市中考数学试卷压轴题及详细答案解析

2018年江苏省十三市中考数学试卷压轴题及详细答案解析1.(2018年江苏省南京市第25题)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16min回到家中.设小明出发第t min时的速度为vm/min,离家的距离为s m,v与t之间的函数关系如图所示(图中的空心圈表示不包含这一点).(1)小明出发第2min时离家的距离为200m;(2)当2<t≤5时,求s与t之间的函数表达式;(3)画出s与t之间的函数图象.【分析】(1)根据路程=速度×时间求出小明出发第2min时离家的距离即可;(2)当2<t≤5时,离家的距离s=前面2min走的路程加上后面(t﹣2)min走过的路程列式即可;(3)分类讨论:0≤t≤2、2<t≤5、5<t≤6.25和6.25<t≤16四种情况,画出各自的图形即可求解.【解答】解:(1)100×2=200(m).故小明出发第2min时离家的距离为200m;(2)当2<t≤5时,s=100×2+160(t﹣2)=160t﹣120.故s与t之间的函数表达式为160t﹣120;(3)s与t之间的函数关系式为,如图所示:故答案为:200.【点评】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,读懂题目信息,从图中准确获取信息是解题的关键.2.(2018年江苏省南京市第26题)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.【分析】(1)欲证明△AFG∽△DFC,只要证明∠FAG=∠FDC,∠AGF=∠FCD;(2)首先证明CG是直径,求出CG即可解决问题;【解答】(1)证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC.(2)解:如图,连接CG.∵∠EAD=∠AFD=90°,∠EDA=∠ADF,∴△EDA∽△ADF,∴=,即=,∵△AFG∽△DFC,∴=,∴=,在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA﹣AG=4﹣1=3,∴CG==5,∵∠CDG=90°,∴CG是⊙O的直径,∴⊙O的半径为.【点评】本题考查相似三角形的判定和性质、正方形的性质、圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.3.(2018年江苏省南京市第27题)结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=AC•BC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【分析】(1)由切线长知AE=AD=m、BF=BD=n、CF=CE=x,根据勾股定理得(x+m)2+(x+n)2=(m+n)2,即x2+(m+n)x=mn,再利用三角形的面积公式计算可得;(2)由由AC•BC=2mn得(x+m)(x+n)=2mn,即x2+(m+n)x=mn,再利用勾股定理逆定理求证即可;(3)作AG⊥BC,由三角函数得AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m)、BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,最后利用三角形的面积公式计算可得.【解答】解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)= [x2+(m+n)x+mn]=(mn+mn)=mn,(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)= [x2+(m+n)x+mn]=×(3mn+mn)=mn.【点评】本题主要考查圆的综合问题,解题的关键是掌握切线长定理的运用、三角函数的应用及勾股定理及其逆定理等知识点.4.(2018年江苏省淮安市第26题)如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=15°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.【分析】(1)根据“准互余三角形”的定义构建方程即可解决问题;(2)只要证明△CAE∽△CBA,可得CA2=CE•CB,由此即可解决问题;(3)如图②中,将△BCD沿BC翻折得到△BCF.只要证明△FCB∽△FAC,可得CF2=FB•FA,设FB=x,则有:x(x+7)=122,推出x=9或﹣16(舍弃),再利用勾股定理求出AC即可;【解答】解:(1)∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,∴2∠B+∠A=60°,解得,∠B=15°,故答案为:15°;(2)如图①中,在Rt△ABC中,∵∠B+∠BAC=90°,∠BAC=2∠BAD,∴∠B+2∠BAD=90°,∴△ABD是“准互余三角形”,∵△ABE也是“准互余三角形”,∴只有2∠A+∠BAE=90°,∵∠A+∠BAE+∠EAC=90°,∴∠CAE=∠B,∵∠C=∠C=90°,∴△CAE∽△CBA,可得CA2=CE•CB,∴CE=,∴BE=5﹣=.(3)如图②中,将△BCD沿BC翻折得到△BCF.∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD,∵∠ABD=2∠BCD,∠BCD+∠CBD=90°,∴∠ABD+∠DBC+∠CBF=180°,∴A、B、F共线,∴∠A+∠ACF=90°∴2∠ACB+∠CAB≠90°,∴只有2∠BAC+∠ACB=90°,∴∠FCB=∠FAC,∵∠F=∠F,∴△FCB∽△FAC,∴CF2=FB•FA,设FB=x,则有:x(x+7)=122,∴x=9或﹣16(舍弃),∴AF=7+9=16,在Rt△ACF中,AC===20.【点评】本题考查四边形综合题、相似三角形的判定和性质、“准互余三角形”的定义等知识,解题的关键是理解题意,学会利用翻折变换添加辅助线,构造相似三角形解决问题,学会利用已知模型构建辅助线解决问题,属于中考压轴题.5.(2018年江苏省淮安市第27题)如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A 关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=秒时,点Q的坐标是(4,0);(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t 的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.【分析】(1)先确定出点A的坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T的运动轨迹,进而找出OT+PT最小时的点T的位置,即可得出结论.【解答】解:(1)令y=0,∴﹣x+4=0,∴x=6,∴A(6,0),当t=秒时,AP=3×=1,∴OP=OA﹣AP=5,∴P(5,0),由对称性得,Q(4,0);故答案为(4,0);(2)当点Q在原点O时,OQ=6,∴AP=OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB==,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD中,tan∠OAB===,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN===,∴CN=t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣t×t=t2;②当1<t≤时,如图2,同①的方法得,DN=t,CN=t,∴S=S矩形OENP ﹣S△CDN=3t×(6﹣3t)﹣t×t=﹣t2+18t;③当<t≤2时,如图3,S=S梯形OBDP=(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6﹣3t,0),Q(6﹣6t,0),∴M(6﹣6t,3t),∵T是正方形PQMN的对角线交点,∴T(6﹣t,t)∴点T是直线y=﹣x+2上的一段线段,(﹣3≤x<6),作出点O关于直线y=﹣x+2的对称点O'交此直线于G,过点O'作O'F⊥x轴,则O'F就是OT+PT的最小值,由对称知,OO'=2OG,易知,OH=2,∵OA=6,AH==2,∴S△AOH=OH×OA=AH×OG,∴OG=,∴OO'=在Rt△AOH中,sin∠OHA===,∵∠HOG+∠AOG=90°,∠HOG+∠OHA=90°,∴∠AOG=∠OHA,在Rt△OFO'中,O'F=OO'sin∠O'OF=×=,即:OT+PT的最小值为.【点评】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T的位置是解本题(3)的难点.6.(2018年江苏省连云港市第25题)如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底间时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)【分析】(1)作DM⊥AB于M,CN⊥AN于N.由题意:tan∠DAB==2,设AM=x,则DM=2x,在Rt△BCN中,求出BN,构建方程即可解决问题;(2)作FH⊥AB于H.设DF=y,设DF=y,则AE=2y,EH=3+2y﹣y=3+y,BH=14+2y﹣(3+y)=11+y,由△EFH∽△FBH,可得=,即=,求出y即可;【解答】解:(1)作DM⊥AB于M,CN⊥AN于N.由题意:tan∠DAB==2,设AM=x,则DM=2x,∵四边形DMNC是矩形,∴DM=CN=2x,在Rt△NBC中,tan37°===,∴BN=x,∵x+3+x=14,∴x=3,∴DM=6,答:坝高为6m.(2)作FH⊥AB于H.设DF=y,设DF=y,则AE=2y,EH=3+2y﹣y=3+y,BH=14+2y﹣(3+y)=11+y,由△EFH∽△FBH,可得=,即=,解得y=﹣7+2或﹣7﹣2(舍弃),∴DF=2﹣7,答:DF的长为(2﹣7)m.【点评】本题考查了坡度坡角的求解,考查了特殊角的三角函数值,考查了三角函数在直角三角形中运用,解题的关键是学会理由参数构建方程解决问题.7.(2018年江苏省连云港市第26题)如图1,图形ABCD是由两个二次函数y1=kx2+m(k <0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标【分析】(1)利用待定系数法即可得出结论;(2)先确定出MM'=(1﹣m2)﹣(3m2﹣3)=4﹣4m2,进而建立方程2m=4﹣4m2,即可得出结论;(3)先利用勾股定理求出AD=,同理:CD=,BC=,再分两种情况:①如图1,当△DBC∽△DAE时,得出,进而求出DE=,即可得出E(0,﹣),再判断出△DEF∽△DAO,得出,求出DF=,EF=,再用面积法求出E'M=,即可得出结论;②如图2,当△DBC∽△ADE时,得出,求出AE=,当E在直线AD左侧时,先利用勾股定理求出PA=,PO=,进而得出PE=,再判断出即可得出点E坐标,当E'在直线DA右侧时,即可得出结论.【解答】解:(1)∵点A(1,0),B(0,1)在二次函数y1=kx2+m(k<0)的图象上,∴,∴,∴二次函数解析式为y1=﹣x2+1,∵点A(1,0),D(0,﹣3)在二次函数y2=ax2+b(a>0)的图象上,∴,∴,∴二次函数y2=3x2﹣3;(2)设M(m,﹣m2+1)为第一象限内的图形ABCD上一点,M'(m,3m2﹣3)为第四象限的图形上一点,∴MM'=(1﹣m2)﹣(3m2﹣3)=4﹣4m2,由抛物线的对称性知,若有内接正方形,∴2m=4﹣4m2,∴m=或m=(舍),∵0<<1,∴存在内接正方形,此时其边长为;(3)在Rt△AOD中,OA=1,OD=3,∴AD==,同理:CD=,在Rt△BOC中,OB=OC=1,∴BC==,①如图1,当△DBC∽△DAE时,∵∠CDB=∠ADO,∴在y轴上存在E,由,∴,∴DE=,∵D(0,﹣3),∴E(0,﹣),由对称性知,在直线DA右侧还存在一点E'使得△DBC∽△DAE',连接EE'交DA于F点,作E'M⊥OD于M,连接E'D,∵E,E'关于DA对称,∴DF垂直平分线EE',∴△DEF∽△DAO,∴,∴,∴DF=,EF=,∵S△DEE'=DE•E'M=EF×DF=,∴E'M=,∵DE'=DE=,在Rt△DE'M中,DM==2,∴OM=1,∴E'(,﹣1),②如图2,当△DBC∽△ADE时,有∠BDC=∠DAE,,∴,∴AE=,当E在直线AD左侧时,设AE交y轴于P,作EQ⊥AC于Q,∵∠BDC=∠DAE=∠ODA,∴PD=PA,设PD=n,∴PO=3﹣n,PA=n,在Rt△AOP中,PA2=OA2+OP2,∴n2=(3﹣n)2+1,∴n=,∴PA=,PO=,∵AE=,∴PE=,在AEQ中,OP∥EQ,∴,∴OQ=,∵,∴QE=2,∴E(﹣,﹣2),当E'在直线DA右侧时,根据勾股定理得,AE==,∴AE'=∵∠DAE'=∠BDC,∠BDC=∠BDA,∴∠BDA=∠DAE',∴AE'∥OD,∴E'(1,﹣),综上,使得△BDC与△ADE相似(其中点C与E是对应顶点)的点E的坐标有4个,即:(0,﹣)或(,﹣1)或(1,﹣)或(﹣,﹣2).【点评】此题是二次函数综合题,主要考查了待定系数法,勾股定理,相似三角形的判定和性质,对称性,正确作出辅助线和用分类讨论的思想是解本题的关键.8.(12018年江苏省连云港市第27题)在数学兴趣小组活动中,小亮进行数学探究活动.△ABC是边长为2的等边形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E在线段上运动时,点F也随着运动,若四边形ABFC的面积为,求AE的长.(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系.并说明理由.(4)如图2,当△ECD的面积S1=时,求AE的长.【分析】(1)结论:△ABE≌△CBF.理由等边三角形的性质,根据SAS即可证明;(2)由△ABE≌△CBF,推出S△ABE=S△BCF,推出S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,由S四边形ABCF=,推出S△ABE=,再利用三角形的面积公式求出AE即可;(3)结论:S2﹣S1=.利用全等三角形的性质即可证明;(4)首先求出△BDF的面积,由CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,推出CD=x﹣,由CD∥AB,可得=,即=,求出x即可;【解答】解:(1)结论:△ABE≌△CBF.理由:如图1中,∴∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF.(2)如图1中,∵△ABE≌△CBF,∴S△ABE=S△BCF,∴S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,∵S四边形ABCF=,∴S△ABE=,∴•AE•AB•siin60°=,∴AE=.(3)结论:S2﹣S1=.理由:如图2中,∵∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF,∴S△ABE=S△BCF,∵S△BCF﹣S△BCE=S2﹣S1,∴S2﹣S1=S△ABE﹣S△BCE=S△ABC=.(4)由(3)可知:S△BDF﹣S△ECD=,∵S△ECD=,∴S△BDF=,∵△ABE≌△CBF,∴AE=CF,∠BAE=∠BCF=60°,∴∠ABC=∠DCB,∴CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,∴CD=x﹣,∵CD∥AB,∴=,即=,化简得:3x2﹣x﹣2=0,解得x=1或﹣(舍弃),∴CE=1,AE=3.【点评】本题考查四边形综合题、全等三角形的判定和性质、平行线等分线段定理、解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.9.(2018年江苏省泰州市第25题)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P 点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)【分析】(1)依据△BCE是等腰直角三角形,即可得到CE=BC,由图②,可得CE=CD,而AD=BC,即可得到CD=AD,即=;(2)①由翻折可得,PH=PC,即PH2=PC2,依据勾股定理可得AH2+AP2=BP2+BC2,进而得出AP=BC,再根据PH=CP,∠A=∠B=90°,即可得到Rt△APH≌Rt△BCP(HL),进而得到∠CPH=90°;②由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,进而得到CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.【解答】解:(1)由图①,可得∠BCE=∠BCD=45°,又∵∠B=90°,∴△BCE是等腰直角三角形,∴=cos45°=,即CE=BC,由图②,可得CE=CD,而AD=BC,∴CD=AD,∴=;(2)①设AD=BC=a,则AB=CD=a,BE=a,∴AE=(﹣1)a,如图③,连接EH,则∠CEH=∠CDH=90°,∵∠BEC=45°,∠A=90°,∴∠AEH=45°=∠AHE,∴AH=AE=(﹣1)a,设AP=x,则BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2,∴AH2+AP2=BP2+BC2,即[(﹣1)a]2+x2=(a﹣x)2+a2,解得x=a,即AP=BC,又∵PH=CP,∠A=∠B=90°,∴Rt△APH≌Rt△BCP(HL),∴∠APH=∠BCP,又∵Rt△BCP中,∠BCP+∠BPC=90°,∴∠APH+∠BPC=90°,∴∠CPH=90°;②折法:如图,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;折法:如图,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,又∵∠DCH=∠ECH,∴∠BCP=∠PCE,即CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.【点评】本题属于折叠问题,主要考查了等腰直角三角形的性质,矩形的性质,全等三角形的判定与性质的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.10.(2018年江苏省泰州市第26题)平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.(1)设a=2,点B(4,2)在函数y1、y2的图象上.①分别求函数y1、y2的表达式;②直接写出使y1>y2>0成立的x的范围;(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.【分析】(1)由已知代入点坐标即可;(2)面积问题可以转化为△AOB面积,用a、k表示面积问题可解;(3)设出点A、A′坐标,依次表示AD、AF及点P坐标.【解答】解:(1)①由已知,点B(4,2)在y1═(x>0)的图象上∴k=8∴y1=∵a=2∴点A坐标为(2,4),A′坐标为(﹣2,﹣4)把B(4,2),A(﹣2,﹣4)代入y2=mx+n解得∴y2=x﹣2②当y1>y2>0时,y1=图象在y2=x﹣2图象上方,且两函数图象在x轴上方∴由图象得:2<x<4(2)分别过点A、B作AC⊥x轴于点C,BD⊥x轴于点D,连BO∵O为AA′中点S△AOB=S△AOA′=8∵点A、B在双曲线上=S△BOD∴S△AOC=S四边形ACDB=8∴S△AOB由已知点A、B坐标都表示为(a,)(3a,)∴解得k=6(3)由已知A(a,),则A′为(﹣a,﹣)把A′代入到y=﹣∴n=∴A′B解析式为y=﹣当x=a时,点D纵坐标为∴AD=∵AD=AF,∴点F和点P横坐标为∴点P纵坐标为∴点P在y1═(x>0)的图象上【点评】本题综合考查反比例函数、一次函数图象及其性质,解答过程中,涉及到了面积转化方法、待定系数法和数形结合思想.11.(2018年江苏省无锡市第26题)如图,平面直角坐标系中,已知点B的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.【分析】(1)①作线段OB的垂直平分线AC,满足条件,②作矩形OA′BC′,直线A′C′,满足条件;(2)分两种情形分别求解即可解决问题;【解答】(1)解:如图△ABC即为所求;(2)解:这样的直线不唯一.①作线段OB的垂直平分线AC,满足条件,此时直线的解析式为y=﹣x+.②作矩形OA′BC′,直线A′C′,满足条件,此时直线A′C′的解析式为y=﹣x+4.【点评】本题考查作图﹣复杂作图,待定系数法等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.(2018年江苏省无锡市第27题)如图,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A1BC1D1,点A1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;(2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC 的延长线上,设边A2B与CD交于点E,若=﹣1,求的值.【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出==,可得CE=由=﹣1推出=,推出AC=•,推出BH=AC==•,可得m2﹣n2=6•,可得1﹣=6•,由此解方程即可解决问题;【解答】解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA1=n=1,在Rt△A1HB中,∵BA1=BA=m=2,∴BA1=2HA1,∴∠ABA1=30°,∴旋转角为30°,∵BD==,∴D到点D1所经过路径的长度==π.(2)∵△BCE∽△BA2D2,∴==,∴CE=∵=﹣1∴=,∴AC=•,∴BH=AC==•,∴m2﹣n2=6•,∴m4﹣m2n2=6n4,1﹣=6•,∴=(负根已经舍弃).【点评】本题考查轨迹,旋转变换、解直角三角形、弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.13.(2018年江苏省无锡市第28题)已知:如图,一次函数y=kx﹣1的图象经过点A(3,m)(m>0),与y轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD.(1)求这个一次函数的表达式;(2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(﹣,0),求这条抛物线的函数表达式.【分析】(1)利用三角形相似和勾股定理构造方程,求AC和m(2)由∠APQ=90°,构造△PQD∽△APE构造方程求点P坐标可求二次函数解析式.【解答】解:(1)过点A作AF⊥x轴,过点B作BF⊥CD于H,交AF于点F,过点C作CE⊥AF于点E设AC=n,则CD=n∵点B坐标为(0,﹣1)∴CD=n+1,AF=m+1∵CH∥AF,BC=2AC∴即:整理得:n=Rt△AEC中,CE2+AE2=AC2∴5+(m﹣n)2=n2把n=代入5+(m﹣)2=()2解得m1=2,m2=﹣3(舍去)∴n=1∴把A(3,2)代入y=kx﹣1得k=∴y=x﹣1(2)如图,过点A作AE⊥CD于点E设点P坐标为(2,n),由已知n>0由已知,PD⊥x轴∴△PQD∽△APE∴∴解得n1=5,n2=﹣3(舍去)设抛物线解析式为y=a(x﹣h)2+k∴y=a(x﹣2)2+5把A(3,2)代入y=a(x﹣2)2+5解得a=﹣∴抛物线解析式为:y=﹣【点评】本题综合考查二次函数和一次函数性质.在解答过程中,应注意利用三角形相似和勾股定理构造方程,求出未知量.26.(2018年江苏省宿迁市第26题)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.【分析】(1)连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;(2)先证△OBC是等边三角形得∠COB=60°,再由(1)中所证切线可得∠OCF=90°,结合半径OC=5可得答案.【解答】解:(1)连接OC,∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC,在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP∵PA是半⊙O的切线,∴∠OAP=90°.∴∠OCP=90°,即OC⊥PC∴PC是⊙O的切线.(2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°,∵AB=10,∴OC=5,由(1)知∠OCF=90°,∴CF=OCtan∠COB=5.27.(2018年江苏省宿迁市第27题)如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.【分析】(1)根据函数解析式可以直接得到抛物线与x轴的两个交点坐标;令x=0,即可求得点D的纵坐标;(2)由抛物线顶点坐标公式求得点C的坐标,易得线段PB、PC的长度;①若△AOD∽△BPC时,则=,将相关线段的长度代入求得a的值;②若△AOD∽△CPB时,则=,将相关线段的长度代入求得a的值;(3)能.理由如下:联结BD,取中点M,则D、O、B在同一个圆上,且圆心M为(,a).若点C也在圆上,则MC=MB.根据两点间的坐标求得相关线段的长度,借助于方程解答即可.【解答】解:(1)∵y=(x﹣a)(x﹣3)(0<a<3),∴A(a,0),B(3,0).当x=0时,y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),∴对称轴直线方程为:x=.当x=时,y=﹣()2,∴C(,﹣()2),PB=3﹣,PC=()2,①若△AOD∽△BPC时,则=,即=,解得a=±3(舍去);②若△AOD∽△CPB时,则=,即=,解得a=3(舍去)或a=.所以a的值是.(3)能.理由如下:联结BD,取中点M∵D、O、B在同一个圆上,且圆心M为(,a).若点C也在圆上,则MC=MB.即(﹣)2+(a+()2)2=(﹣3)2+(a﹣0)2,整理,得a4﹣14a2+45=0,所以(a2﹣5)(a2﹣9)=0,解得a1=,a2=﹣(舍),a3=3(舍),a4=﹣3(舍),∴a=.28.(2018年江苏省宿迁市第28题)如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x.(1)当AM=时,求x的值;(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.【分析】(1)利用勾股定理构建方程,即可解决问题;(2)设AM=y,则BE=EM=x,MD=1﹣y,在Rt△AEM中,由勾股定理得出x、y 的关系式,可证Rt△AEM∽Rt△DMP,根据相似三角形的周长比等于相似比求△DMP的周长;(3)作FH⊥AB于H.则四边形BCFH是矩形.连接BM交FN于O,交FH于K.根据梯形的面积公式构建二次函数,利用二次函数的性质解决最值问题即可;【解答】解:(1)如图,在Rt△AEM中,AE=1﹣x,EM=BE=x,AM=,∵AE2+AM2=EM2,∴(1﹣x)2+()2=x2,∴x=.(2)△PDM的周长不变,为2.理由:设AM=y,则BE=EM=x,MD=1﹣y,在Rt△AEM中,由勾股定理得AE2+AM2=EM2,(1﹣x)2+y2=x2,解得1+y2=2x,∴1﹣y2=2(1﹣x)∵∠EMP=90°,∠A=∠D,∴Rt△AEM∽Rt△DMP,∴=,即=,解得DM+MP+DP==2.∴△DMP的周长为2.(3)作FH⊥AB于H.则四边形BCFH是矩形.连接BM交FN于O,交FH于K.在Rt△AEM中,AM==,∵B、M关于EF对称,∴BM⊥EF,∴∠KOF=∠KHB,∵∠OKF=∠BKH,∴∠KFO=∠KBH,∵AB=BC=FH,∠A=∠FHE=90°,∴△ABM≌△HFE,∴EH=AM=,∴CF=BH=x﹣,∴S=(BE+CF)•BC=(x+x﹣)=[()2﹣+1]=(﹣)2+.当=时,S有最小值=.27.(2018年江苏省徐州市第27题)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式.(2)根据的函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标.(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)=×(2+5)×9﹣×2×4﹣×5×5=15.∴S△OA′B′【点评】本题考查了用待定系数法求抛物线解析式、函数图象交点、图形面积的求法等知识.不规则图形的面积通常转化为规则图形的面积的和差.28.(2018年江苏省徐州市第28题)如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.探究一:在旋转过程中,(1)如图2,当时,EP与EQ满足怎样的数量关系?并给出证明;(2)如图3,当时,EP与EQ满足怎样的数量关系?并说明理由;(3)根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为EP:EQ=1:m,其中m的取值范围是0<m≤2+.(直接写出结论,不必证明)探究二:若且AC=30cm,连接PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化,求出相应S的值或取值范围.【分析】探究一:(1)连接BE,根据已知条件得到E是AC的中点,根据等腰直角三角形的性质可以证明BE=CE,∠PBE=∠C.根据等角的余角相等可以证明∠BEP=∠CEQ.即可得到全等三角形,从而证明结论;(2)作EM⊥AB,EN⊥BC于M、N,根据两个角对应相等证明△MEP∽△NWQ,发现EP:EQ=EM:EN,再根据等腰直角三角形的性质得到EM:EN=AE:CE;(3)根据(2)中求解的过程,可以直接写出结果;要求m的取值范围,根据交点的位置的限制进行分析.探究二:(1)设EQ=x,结合上述结论,用x表示出三角形的面积,根据x的最值求得面积的最值;(2)首先求得EQ和EB重合时的三角形的面积的值,再进一步分情况讨论.【解答】解:探究一:(1)连接BE,根据E是AC的中点和等腰直角三角形的性质,得BE=CE,∠PBE=∠C,又∠BEP=∠CEQ,则△BEP≌△CEQ,得EP=EQ;(2)作EM⊥AB,EN⊥BC于M,N,∴∠EMP=∠ENC,∵∠MEP+∠PEN=∠PEN+∠NEF=90°,∴∠MEP=∠NEF,∴△MEP∽△NEQ,∴EP:EQ=EM:EN=AE:CE=1:2;(3)过E点作EM⊥AB于点M,作EN⊥BC于点N,∵在四边形PEQB中,∠B=∠PEQ=90°,∴∠EPB+∠EQB=180°(四边形的内角和是360°),又∵∠EPB+∠MPE=180°(平角是180°),∴∠MPE=∠EQN(等量代换),∴Rt△MEP∽Rt△NEQ(AA),∴(两个相似三角形的对应边成比例);在Rt△AME∽Rt△ENC∴=m=∴=1:m=,EP与EQ满足的数量关系式为EP:EQ=1:m,∴0<m≤2+;(当m>2+时,EF与BC不会相交).探究二:若AC=30cm,(1)设EQ=x,则S=x2,所以当x=10时,面积最小,是50cm2;当x=10时,面积最大,是75cm2.(2)当x=EB=5时,S=62.5cm2,故当50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S≤75时,这样的三角形有一个.【点评】熟练运用等腰直角三角形的性质和相似三角形的判定和性质进行求解.26. (2018年江苏省盐城市第26题)(1)【发现】如图①,已知等边,将直角三角形的角顶点任意放在边上(点不与点、重合),使两边分别交线段、于点、.①若,,,则________;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.(2017四川省内江市,第12题,3分)如图,过点A (2,0)作直线l :33y x的垂线,垂足为点A 1,过点A 1作A 1A 2⊥x 轴,垂足为点A 2,过点A 2作A 2A 3⊥l ,垂足为点A 3,…,这样依次下去,得到一组线段:AA 1,A 1A 2,A 2A 3,…,则线段A 2016A 2107的长为( )A .20153() B .20163()2 C .20173()2D .20183() 【答案】B .【分析】根据含30°的直角三角形的性质结合图形即可得到规律“OA n =3()2n OA =2×3()2n ”,依此规律即可解决问题.点睛:本题考查了规律型中点的坐标以及含30度角的直角三角形,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”结合图形找出变化规律OA n =3)2n OA =2×32n 是解题的关键. 考点:一次函数图象上点的坐标特征;规律型;综合题.2.(2017四川省绵阳市,第12题,3分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则193211111a a a a ++++ 的值为( )A.2120 B .8461C .840589D .760421 【答案】C .【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可. 【解析】a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2); ∴193211111a a a a ++++ =11111 (132435461921)+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=840589,故选C . 点睛:此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题. 考点:规律型:图形的变化类;综合题.3.(2017四川省达州市,第9题,3分)如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB =4,AD =3,则顶点A 在整个旋转过程中所经过的路径总长为( )A .2017πB .2034πC .3024πD .3026π 【答案】D .【分析】首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可. 【解析】∵AB =4,BC =3,∴AC =BD =5,转动一次A 的路线长是:904180π⨯ =2π,转动第二次的路线长是:905180π⨯ =52π,转动第三次的路线长是:903180π⨯ =32π,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为:52π+32π+2π=6π,∵2017÷4=504…1,∴顶点A转动四次经过的路线长为:6π×504+2π=3026π,故选D.点睛:本题主要考查了探索规律问题和弧长公式的运用,掌握旋转变换的性质、灵活运用弧长的计算公式、发现规律是解决问题的关键.考点:轨迹;矩形的性质;旋转的性质;规律型;综合题.学科#网4.(2017临沂,第11题,3分)将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n个图形中“○”的个数是78,则n的值是()A.11B.12C.13D.14【答案】B.【分析】根据小圆个数变化规律进而表示出第n个图形中小圆的个数,进而得出答案.【解析】第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n个图形有1+2+3+…+n=(1)2n n+个小圆;∵第n个图形中“○”的个数是78,∴78=(1)2n n+,解得:n1=12,n2=﹣13(不合题意舍去),故选B.点睛:此题主要考查了图形变化类,正确得出小圆个数变化规律是解题关键.考点:规律型:图形的变化类;综合题.5.(2017广西贺州市,第12题,3分)2,26,221010进行排列:2,26,22103144,3225…若2的位置记为(1,2),32,1)38)A.(5,4)B.(4,4)C.(4,5)D.(3,5)【答案】B.【分析】先找出被开放数的规律,然后再求得38的位置即可.【解析】这组数据可表示为:2,4,6,8,10;12,14,16,18,20;…∵19×2=38,∴38为第4行,第4个数字.故选B.点睛:本题主要考查的是数字的变化规律,找出其中的规律是解题的关键.考点:算术平方根;规律型.6.(2017江苏省连云港市,第8题,3分)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.23C.2D.0【答案】A.【分析】根据题意求得OA1=4,OA2=23OA3=2,OA4=3OA5=2,OA6=0,OA7=4,…于是得到A2017与A1重合,即可得到结论.【解析】如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=3,OA3=2,OA4=3OA5=2,OA6=0,OA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.点睛:本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键. 考点:规律型:图形的变化类;综合题.7.(2017浙江省温州市,第10题,4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P 1P 2,P 2P 3,P 3P 4,…得到螺旋折线(如图),已知点P 1(0,1),P 2(﹣1,0),P 3(0,﹣1),则该折线上的点P 9的坐标为( )A .(﹣6,24)B .(﹣6,25)C .(﹣5,24)D .(﹣5,25) 【答案】B .【分析】观察图象,推出P 9的位置,即可解决问题.【解析】由题意,P 5在P 2的正上方,推出P 9在P 6的正上方,且到P 6的距离=21+5=26,所以P 9的坐标为(﹣6,25),故选B .点睛:本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P 9的位置. 考点:规律型:点的坐标;推理填空题.8.(2017湖北省十堰市,第9题,3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如123a a a ,表示123a a a =+,则1a 的最小值为( )A.32B.36C.38D.40【答案】D.【分析】由a1=a7+3(a8+a9)+a10知要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10中不能有6,据此对于a7、a8,分别取8、10、12检验可得,从而得出答案.【解析】∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1取得最小值,则a8+a9应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a7=10、a10=12,则a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合题意;综上,a1的最小值为40,故选D.点睛:本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.考点:规律型:数字的变化类;最值问题.9.(2017贵州省黔东南州,第10题,4分)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017B.2016C.191D.190【答案】D.【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数;【解析】找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+20=190.故选D.点睛:此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.考点:完全平方公式;规律型;综合题.10.(2017重庆,第10题,4分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73B.81C.91D.109【答案】C.【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑨个图形中菱形的个数.【解析】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=91.故选C.点睛:此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.考点:规律型:图形的变化类;综合题.11.(2017重庆B,第10题,4分)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116B.144C.145D.150【答案】B.【分析】根据题意图形得出小星星的个数变化规律,即可的得出答案.【解析】∵4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选B.点睛:此题主要考查了图形变化规律,正确得出每个图形中小星星的变化情况是解题关键.考点:规律型:图形的变化类.12.(2017贵州省铜仁市,第10题,4分)观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064B.8065C.8066D.8067【答案】D.【分析】由①②③三个等式可得,减数是从1开始连续奇数的平方,被减数是从1开始连续自然数的平方的4倍,由此规律得出答案即可.点睛:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.考点:规律型:数字的变化类;有理数的混合运算.13.(2017贵州省黔西南州,第9题,4分)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71B.78C.85D.89【答案】D.【分析】观察图形可知,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,进而得出答案.【解析】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第8个图形共有小正方形的个数为:9×9+8=89.故选D.点睛:本题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.考点:规律型:图形的变化类.学科#网14.(2016山东省日照市)一个整数的所有正约数之和可以按如下方法求得,如: 6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=223⨯,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28; 36=2223⨯,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91. 参照上述方法,那么200的所有正约数之和为( )A .420B .434C .450D .465 【答案】D .【分析】在类比推理中,200的所有正约数之和可按如下方法得到:根据200=3225⨯,可得200的所有正约数之和为232(1222)(155)+++++,即可得出答案.【解析】200的所有正约数之和可按如下方法得到:因为200=3225⨯,所以200的所有正约数之和为(232(1222)(155)+++++=465.故选D . 考点:规律型:数字的变化类.15.(2016湖南省娄底市)“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH 4,乙烷的化学式是C 2H 6,丙烷的化学式是C 3H 8,…,设碳原子的数目为n (n 为正整数),则它们的化学式都可以用下列哪个式子来表示( ) A .C n H 2n +2 B .C n H 2n C .C n H 2n ﹣2 D .C n H n +3 【答案】A .【分析】设碳原子的数目为n (n 为正整数)时,氢原子的数目为a n ,列出部分a n 的值,根据数值的变化找出变化规律“a n =2n +2”,依次规律即可解决问题.【解析】设碳原子的数目为n (n 为正整数)时,氢原子的数目为a n ,观察,发现规律:a 1=4=2×1+2,a 2=6=2×2+2,a 3=8=2×3+2,…,∴a n =2n +2,∴碳原子的数目为n (n 为正整数)时,它的化学式为C n H 2n +2.故选A . 考点:规律型:数字的变化类.16.(2016湖南省邵阳市)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .21y n =+B .2ny n =+ C .12n y n +=+ D .21n y n =++【答案】B .【分析】由题意可得下边三角形的数字规律为:2nn +,继而求得答案.【解析】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,...,2n ,下边三角形的数字规律为:1+2,222+, (2)n +,∴2ny n =+.故选B .考点:规律型:数字的变化类.17.(2016四川省内江市)一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2016B 2016C 2016D 2016的边长是( )A .20151()2B .20161()2C .201633D .20153(3【答案】D .【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案. 【解析】∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin 30°=12,则B 2C 2=22cos30B E =313(),同理可得:B 3C 3=13=23(,故正方形A n B n C n D n 13n -,则正方形A 2016B 2016C 2016D 201620153,故选D.考点:正方形的性质;全等三角形的判定与性质;相似三角形的判定与性质;规律型.18.(2016四川省凉山州)观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【答案】D.【分析】根据图形中对应的数字和各个数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本题得以解决.【解析】∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.考点:规律型:点的坐标;规律型.19.(2016四川省达州市)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25B.33C.34D.50【答案】B.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解析】∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个; 第三次操作后,三角形共有4+3+3=10个; …∴第n 次操作后,三角形共有4+3(n ﹣1)=3n +1个; 当3n +1=100时,解得:n =33,故选B . 考点:规律型:图形的变化类;操作型.20.(2016山东省临沂市)用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是( )A .2n +1B .21n -C .22n n + D .5n ﹣2 【答案】C .【分析】由第1个图形中小正方形的个数是221-、第2个图形中小正方形的个数是231-、第3个图形中小正方形的个数是241-,可知第n 个图形中小正方形的个数是2(1)1n +-,化简可得答案.【解析】∵第1个图形中,小正方形的个数是:221-=3; 第 2个图形中,小正方形的个数是:231-=8; 第 3个图形中,小正方形的个数是:241-=15; …∴第n 个图形中,小正方形的个数是:2(1)1n +-=22n n +;故选C .考点:规律型:图形的变化类.21.(2016河南省)如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为( ))A.(1,﹣1)B.(﹣1,﹣1)C.(2,0)D.(0,2【答案】B.【分析】根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.【解析】菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(1,1).每秒旋转45°,则第60秒时,得:45°×60=2700°,2700°÷360=7.5周,OD旋转了7周半,菱形的对角线交点D的坐标为(﹣1,﹣1),故选B.考点:坐标与图形变化-旋转;菱形的性质;规律型.22.(2016湖北省荆州市)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671B.672C.673D.674【答案】B.【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.【解析】∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2017,解得:n=672,故选B.考点:规律型:图形的变化类.23.(2016福建省南平市)如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、A n(n,0),作垂直于x轴的直线交l于点B1、B2、…、B n,将△OA1B1,四边形A1A2B2B1、…、四边形A n﹣1A n B n B n﹣1的面积依次记为S1、S2、…、S n,则S n=()A.n2B.2n+1C.2n D.2n﹣1【答案】D.【分析】根据直线l的解析式以及三角形的面积可以找出部分S n的值,根据数的变化找出变化规律“S n=2n ﹣1”,此题得解.【解析】观察,得出规律:S1=12OA1•A1B1=1,S2=12OA2•A2B2﹣12OA1•A1B1=3,S3=12OA3•A3B3﹣12OA2•A2B2=5,S4=12OA4•A4B4﹣12OA3•A3B3=7,…,∴S n=2n﹣1.故选D.考点:一次函数图象上点的坐标特征;规律型.24.(2016贵州省六盘水市)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A.702nB.1702n+C.1702n-D.2702n+【答案】C.【分析】根据三角形外角的性质及等腰三角形的性质分别求出∠B1A2A1,∠B2A3A2及∠B3A4A3的度数,找出规律即可得出∠A n﹣1A n B n﹣1的度数.【解析】∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1=12∠BA1A=35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3=12×17.5°=354,∴∠A n﹣1A n B n﹣1=1702n-.故选C.考点:等腰三角形的性质;规律型.学科#网25.(2016青海省)如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为( )A .61()2B .71()2C .62()D .72() 【答案】A .【分析】根据等腰直角三角形的性质可得出S 2+S 2=S 1,写出部分S n 的值,根据数的变化找出变化规律“S n =31()2n -”,依此规律即可得出结论.【解析】在图中标上字母E ,如图所示.∵正方形ABCD 的边长为2,△CDE 为等腰直角三角形,∴222DE CE CD +=,DE =CE ,∴S 2+S 2=S 1. 观察,发现规律:S 1=22=4,S 2=12S 1=2,S 3=12S 2=1,S 4=12S 3=12,…,∴S n =31()2n -. 当n =9时,S 9=931()2-=61()2,故选A .考点:勾股定理;规律型.26.(2016重庆市)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .85 【答案】D .【分析】观察图形特点,从中找出规律,小圆圈的个数分别是231+,262+,2103+,2154+,…,总结出其规律为21(1)(2)2n n n +++,根据规律求解. 【解析】通过观察,得到小圆圈的个数分别是:第一个图形为:21(12)212+⨯+=4,第二个图形为:21(13)322+⨯+=6,第三个图形为:21(14)432+⨯+=10,第四个图形为:21(15)542+⨯+=15,…,所以第n 个图形为:21(1)(2)2n n n +++,当n =7时,21(72)(71)72+⨯++=85,故选D . 考点:规律型:图形的变化类.27.(2016重庆市)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A .43B .45C .51D .53 【答案】C .【分析】设图形n 中星星的颗数是a n (n 为自然是),列出部分图形中星星的个数,根据数据的变化找出变化规律“a n =2+1(1)(6)2n n -+”,结合该规律即可得出结论. 【解析】设图形n 中星星的颗数是a n (n 为自然是),观察,发现规律:a 1=2,a 2=6=a 1+3+1,a 3=11=a 2+4+1,a 4=17=a 3+5+1,…,∴a n =2+1(1)(6)2n n -+.令n =8,则a 8=2+1(81)(86)2-+=51.故选C . 考点:规律型:图形的变化类.28.(2016黑龙江省牡丹江市)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是( )A .71B .78C .85D .89 【答案】D .【分析】观察图形可知,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n 个图形共有小正方形的个数为(n +1)2+n ,进而得出答案.【解析】第1个图形共有小正方形的个数为2×2+1; 第 2个图形共有小正方形的个数为3×3+2; 第 3个图形共有小正方形的个数为4×4+3; …;则第n 个图形共有小正方形的个数为2(1)n n ++,所以第8个图形共有小正方形的个数为:9×9+8=89. 故选D .考点:规律型:图形的变化类.29.(2016黑龙江省牡丹江市)如图,在平面直角坐标系中,A (﹣8,﹣1),B (﹣6,﹣9),C (﹣2.﹣9),D (﹣4,﹣1).先将四边形ABCD 沿x 轴翻折,再向右平移8个单位长度,向下平移1个单位长度后,得到四边形A 1B 1C 1D 1,最后将四边形A 1B 1C 1D 1,绕着点A 1旋转,使旋转后的四边形对角线的交点落在x 轴上,则旋转后的四边形对角线的交点坐标为( )A .(4,0)B .(5,0)C .(4,0)或(﹣4,0)D .(5,0)或(﹣5,0) 【答案】D .【分析】根据题意画出图形,发现有两种情况:①对角线交点落在x 轴正半轴上,②对角线交点落在x 轴负半轴上;先求平移后的四边形A 1B 1C 1D 1对角线交点E 1的坐标,求OE 1的长,从而求出结论.【解析】由题意得:A 1(0,0),C 1(6,8),根据四个点的坐标可知:四边形ABCD 是平行四边形,∴对角线交点E 1是A 1C 1的中点,∴E 1(3,4),由勾股定理得:A 1E 1=2234 =5,当对角线交点落在x 轴正半轴上时,对角线的交点坐标为(5,0),当对角线交点落在x 轴负半轴上时,对角线的交点坐标为(﹣5,0),故选D .考点:坐标与图形变化-旋转;坐标与图形变化-对称;坐标与图形变化-平移;规律型.学科#网 30.(2015绵阳)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n =( )A .14B .15C .16D .17 【答案】C .考点:1.规律型:图形的变化类;2.综合题.31.(2015十堰)如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是( )A .222B .280C .286D .292 【答案】D . 【解析】试题分析:设连续搭建三角形x 个,连续搭建正六边形y 个.由题意得,215120166x y x y +++=⎧⎨-=⎩,解得:292286x y =⎧⎨=⎩.故选D . 考点:规律型:图形的变化类.32.(2015重庆市)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .21B .24C .27D .30 【答案】B . 【解析】试题分析:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…,第n 个图形有3+3n =3(n +1)个圆圈,当n =7时,3×(7+1)=24,故选B . 考点:1.规律型:图形的变化类;2.综合题.33.(2015重庆市)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是( )A.32 B.29 C.28 D.26【答案】B.考点:1.规律型:图形的变化类;2.综合题.34.(2015崇左)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有()A.160B.161C.162D.163【答案】B.【解析】试题分析:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,故答案为:161.考点:1.规律型;2.综合题.35.(2015宜宾)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、 (20)阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为()A .231πB .210πC .190πD .171π 【答案】B . 【解析】试题分析:由题意可得:阴影部分的面积和为:222222(21)(32)...(2019)πππ-+-++- =3π+7π+11π+15π+…+39π=5(3π+39π)=210π.故选B . 考点:1.规律型:图形的变化类;2.综合题.36.(2015鄂州)在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .201421)( B .201521)( C .201533)(D .201433)(【答案】D .考点:1.正方形的性质;2.规律型;3.综合题.37.(2015庆阳)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n 是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,3)B.(2n﹣1,3)C.(4n+1,3)D.(2n+1,3)【答案】C.…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,-A2n+13∵当n为奇数时,A n3,当n为偶数时,A n的纵坐标是3∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+13).故选C.考点:1.坐标与图形变化-旋转;2.规律型;3.综合题;4.压轴题.= 38.(2015宁德)如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y x 上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是()A .(20142,20142)B .(20152,20152)C .(20142,20152)D .(20152,20142) 【答案】A .考点:1.一次函数图象上点的坐标特征;2.等腰直角三角形;3.规律型;4.综合题.39.(2015河南省)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1、O 2、O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( )A .(2014,0)B .(2015,﹣1)C .(2015,1)D .(2016,0) 【答案】B . 【解析】试题分析:半径为1个单位长度的半圆的周长为:121=2ππ⨯⨯,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,∴点P 1秒走12个半圆,当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,﹣1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0),…,∵2015÷4=503…3,∴A 2015的坐标是(2015,﹣1),故选B .考点:1.规律型:点的坐标;2.规律型;3.综合题;4.压轴题.学科#网40.(2015邵阳)如图,在矩形ABCD 中,已知AB =4,BC =3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是( )A .2015πB .3019.5πC .3018πD .3024π 【答案】D . 【解析】试题分析:转动一次A 的路线长是:90331802ππ⨯=,转动第二次的路线长是:90551802ππ⨯=,转动第三次的路线长是:9042180ππ⨯=,转动第四次的路线长是:0,转动五次A 的路线长是:90331802ππ⨯=,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:32π+52π+2π=6π,2015÷4=503余3,顶点A 转动四次经过的路线长为:6π×504=3024π.故选D . 考点:1.旋转的性质;2.弧长的计算;3.规律型.41.(2015威海)如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 10B 10C 10D 10E 10F 10的边长为( )A .92432 B 813 C .9812 D 813【答案】D .考点:1.正多边形和圆;2.规律型;3.综合题.42.(2015宁波)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 2处,称为第1次操作,折痕DE 到BC 的距离记为h 1;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为h 2015,到BC 的距离记为h 2015.若h 1=1,则h 2015的值为( )A .201521 B .201421 C .2015211-D .2014212-【答案】D .考点:1.相似三角形的判定与性质;2.三角形中位线定理;3.翻折变换(折叠问题);4.规律型;5.综合题.43.(2015荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m =(i ,j )表示正奇数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2015=( )A .(31,50)B .(32,47)C .(33,46)D .(34,42) 【答案】B . 【解析】试题分析:2015是第201512+=1008个数,设2015在第n 组,则1+3+5+7+…+(2n ﹣1)≥1008,即(121)10082n n+-≥,解得:1008n ≥当n =31时,1+3+5+7+…+61=961;当n =32时,1+3+5+7+…+63=1024;故第1008个数在第32组,第1024个数为:2×1024﹣1=2047,第32组的第一个数为:2×962﹣1=1923,则2015是(2015192312-+)=47个数.故A 2015=(32,47).故选B .考点:1.规律型:数字的变化类;2.综合题;3.压轴题.44.(2015包头)观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为( ) A .2531 B .3635 C .47 D .6263【答案】C .。

相关文档
最新文档