《三角函数的有关计算》直角三角形的边角关系PPT课件四
合集下载
1.2 30度,45度,60度角的三角函数值 课件4--

2 2
3 sin A 5
4 cos A 5
A
4 ┌ C (1)
3
3 3 7 tan A 7 7 3 7 sin A cos A 4 4
4 A (2)
3
┌ C
回顾与思考 1
锐角三角函数定义
直角三角形中边与角的关系: 锐角三角函数.
在直角三角形中,若一个锐角确定,那 么这个角的对边,邻边和斜边之间的比 值也随之确定.
BБайду номын сангаас
┌
C
D
●
2.5
2.某商场有一自动 0 扶梯,其倾斜角为30 , 高为7m,扶梯的长度 是多少?
( 1 )计算: sin 30 cos 30
2 o 2 0
B
c
sin 2 45o cos2 450 sin 2 60o cos2 600 A
2 2
a
b ┌ C
(2)猜想:对于锐角 A, sin A cos A ?
(2) sin2600+cos2600-tan450
3 1 1 2 2
2 2
0.
3 1 1 4 4
6 随堂练习P12
计算:
(1)sin600-cos450; (2)cos600+tan600;
2 0 0 0 3. sin 45 3 sin 60 2 cos45 . 2
九年级数学(下)第一章 直角三角形的边角关系
0 0 0 2.30 ,45 ,60 角的三角函数值(1)
1.如图,根据图(1)求∠A的三角函数 值. 解:根据勾股定理: AB 3 4 5 B
2 2
3 tan A 4
3 sin A 5
4 cos A 5
A
4 ┌ C (1)
3
3 3 7 tan A 7 7 3 7 sin A cos A 4 4
4 A (2)
3
┌ C
回顾与思考 1
锐角三角函数定义
直角三角形中边与角的关系: 锐角三角函数.
在直角三角形中,若一个锐角确定,那 么这个角的对边,邻边和斜边之间的比 值也随之确定.
BБайду номын сангаас
┌
C
D
●
2.5
2.某商场有一自动 0 扶梯,其倾斜角为30 , 高为7m,扶梯的长度 是多少?
( 1 )计算: sin 30 cos 30
2 o 2 0
B
c
sin 2 45o cos2 450 sin 2 60o cos2 600 A
2 2
a
b ┌ C
(2)猜想:对于锐角 A, sin A cos A ?
(2) sin2600+cos2600-tan450
3 1 1 2 2
2 2
0.
3 1 1 4 4
6 随堂练习P12
计算:
(1)sin600-cos450; (2)cos600+tan600;
2 0 0 0 3. sin 45 3 sin 60 2 cos45 . 2
九年级数学(下)第一章 直角三角形的边角关系
0 0 0 2.30 ,45 ,60 角的三角函数值(1)
1.如图,根据图(1)求∠A的三角函数 值. 解:根据勾股定理: AB 3 4 5 B
2 2
3 tan A 4
九年级数学下册第1章直角三角形的边角关系230°,45°,60°角的三角函数值课件(新版)北师大版

◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆知识导航 ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
新北师大版九年级数学下册《三角函数的计算》优质ppt教学课件

上表的显示结果是以“度”为单位的,再按 ˚ ′ ″ 键即可显示 以“度、分、秒”为单位的结果.
根据上述方法你能求出问题1中∠A的大小吗?
sin A = 1 = 0.25. 按键顺序和显示结果为
4
SHIFT sin 0 · 2 5 = 14.477 512 19°
再按 ° ′ ″ 键可显示14˚28′39″,所以∠A=14˚28′39″.
正弦值随着角度的增大(或减小)而增大(或减小); 余弦值随着角度的增大(或减小)而减小(或增大); 正切值随着角度的增大(或减小)而增大(或减小).
知识点1 利用计算器求锐角三角函数值
1.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器 求边AC的长,则下列按键顺序正确的是( D )
D 39°
E
45°
C
A
【解析】(1)由题意,AC=AB=610 米.
(2)DE=AC=610米,
在Rt△BDE中,tan∠BDE= BE ,
DE
故BE=DEtan39°. 因为CD=AE,
所以CD=AB-DE·tan 39°
=610-610×tan 39°≈116(米). 答:大楼的高度CD约为116 米.
B.sin65°54′-sin35°54′=sin30°
C.2sin15°30′=sin31°
D.sin72°18′-sin12°18′=sin47°42′
•2. 已知sin α=1 ,求α,若用科学计算器计算且结果以“度、分、秒
2
”为单位,最后按键(D )
•A.AC/ON
B. SHIFT
C.MODE
(4)sin18°+cos55°-tan59°≈-0.7817.
北师大版九年级数学下册《三角函数的应用》精品课件PPT

都来当个小专家!
A
B 咋 办
2 如图,水库大坝的截面是梯形
ABCD,坝顶AD=6m,坡长CD=8m.坡底
D
BC=30m,∠ADC=1350. (1)求坡角∠ABC的大小;
(2)如果坝长100m,那么修建这个 C 大坝共需多少土石方(结果精确到
0.01m3 ).
先构造直 角三角形!
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
1 如图,有一斜坡AB长40m,坡顶离地面的
高度为20m,求此斜坡的倾斜角. 2.有一建筑物,在地面上A点测得其顶点 A
C的仰角为300,向建筑物前进50m至B处,又 A
测得C的仰角为450,求该建筑物的高度(结
果精确到0.1m).
B
3. 如图,燕尾槽的横断面是一个等腰梯 形,其中燕尾角∠B=550,外口宽AD=180mm, 燕尾槽的尝试是70mm,求它的里口宽BC(结 果精确到1mm).
北师大版九年级数学下册 2020年北师大版九年级数学下册1.5《三角函数的应用》课件(共16张ppt)
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
2020年北师大版九年级数学下册1.5《 三角函 数的应 用》课 件(共 16张pp t)
直角三角形的边角关系
看我露一手
解:要知道货轮继续向东航行途中有无触礁的危险,只
要过点A作AD⊥BC的延长线于点D,如果AD>10海里,则无
触礁的危险.根据题意可知,∠BAD=550,∠CAD=250,BC=
20海里.设AD=x,则
北
A
tan 550 BD , tan 250 CD ,
直角三角形复习课件

面积的多种计算方法
除了基本的面积公式外,还可以通过分割法、补形法等技巧来计算 面积。
利用相似三角形进行计算
在某些情况下,可以利用相似三角形的性质来简化计算过程。
05
直角三角形在实际生活中的应用
测量中的应用
确定物体的高度
通过测量影子的长度,利用相似三角 形的性质,可以计算出物体的高度。
计算距离
在航海、航空和地形测量中,利用直 角三角形可以计算出两点之间的距离 。
THANKS
感谢观看
建筑中的应用
建筑设计
在建筑设计中,直角三角形常被用于确定建筑物的比例和稳定性。
结构分析
在建筑结构分析中,利用直角三角形可以计算出结构的承载能力和稳定性。
其他应用
机械制造
在机械制造中,直角三角形被广泛应用 于各种机构的设计和制造中,如齿轮、 链条等。
VS
物理学
在物理学中,直角三角形被广泛应用于力 的合成与分解、速度和加速度的计算等。
毕达哥拉斯定理
在直角三角形中,斜边的 平方等于两直角边的平方 和。
角平分线定理
在直角三角形中,角平分 线将直角分为两个相等的 角。
射影定理
在直角三角形中,直角边 的长度等于斜边与其上高 线的乘积。
判定依据
根据定义
根据角边角法
如果一个三角形有一个角为90度,则 它是直角三角形。
如果两个角和它们所对的边分别相等 ,则它是直角三角形。
03
直角三角形的判定
判定方法
01
02
03
定义法
根据直角三角形的定义, 一个三角形如果有一个角 为90度,则它是直角三角 形。
勾股定理法
如果一个三角形的三边满 足勾股定理,即最长边的 平方等于其他两边的平方 和,则它是直角三角形。
除了基本的面积公式外,还可以通过分割法、补形法等技巧来计算 面积。
利用相似三角形进行计算
在某些情况下,可以利用相似三角形的性质来简化计算过程。
05
直角三角形在实际生活中的应用
测量中的应用
确定物体的高度
通过测量影子的长度,利用相似三角 形的性质,可以计算出物体的高度。
计算距离
在航海、航空和地形测量中,利用直 角三角形可以计算出两点之间的距离 。
THANKS
感谢观看
建筑中的应用
建筑设计
在建筑设计中,直角三角形常被用于确定建筑物的比例和稳定性。
结构分析
在建筑结构分析中,利用直角三角形可以计算出结构的承载能力和稳定性。
其他应用
机械制造
在机械制造中,直角三角形被广泛应用 于各种机构的设计和制造中,如齿轮、 链条等。
VS
物理学
在物理学中,直角三角形被广泛应用于力 的合成与分解、速度和加速度的计算等。
毕达哥拉斯定理
在直角三角形中,斜边的 平方等于两直角边的平方 和。
角平分线定理
在直角三角形中,角平分 线将直角分为两个相等的 角。
射影定理
在直角三角形中,直角边 的长度等于斜边与其上高 线的乘积。
判定依据
根据定义
根据角边角法
如果一个三角形有一个角为90度,则 它是直角三角形。
如果两个角和它们所对的边分别相等 ,则它是直角三角形。
03
直角三角形的判定
判定方法
01
02
03
定义法
根据直角三角形的定义, 一个三角形如果有一个角 为90度,则它是直角三角 形。
勾股定理法
如果一个三角形的三边满 足勾股定理,即最长边的 平方等于其他两边的平方 和,则它是直角三角形。
解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
三角函数的有关计算 直角三角形的边角关系PPT优秀课件4

7.由锐角的三角函数值反求锐角
填表:已知一个角的三角函数值,求这个 角的度数(逆向思维)
∠A= ∠A= ∠A= ∠A= ∠A= ∠A= ∠A= ∠A= ∠A=
1.(2010·丹东中考)计算:
24 2(2 cos 45 sin 60) 4
2 3 2 6 原式 2(2 ) 2 2 4
二、用直角三角形边和角 的关系解决实际问题
例1.如图,当登山缆车的吊 箱经过点A到达点B时,它走 过了200m.已知缆车行驶的 路线与水平面的夹角为 ∠α=160,那么缆车 垂直上升的距离是多少?
如图,在Rt△ABC中, ∠C=90°,BC=ABsin160 . 你知道sin160等于多少吗? 利用科学计算器可以求得: BC=ABsin160 ≈200×0.2756≈55.12.
当缆车继续从点B到达点D时,它 又走过了200m.缆车由点B到点D的 行驶路线与水平面的夹角为 ∠β=420,由此你不能计算什么?
在Rt△BED中, DE=DBsin42°
BC=200sin42° 所以山高为: BC+DE=200sin42°+ 200sin16° =200(sin42°+ sin16°)
0.275635355 0.743144825 11.4300523 0.954450312
计算器的型号与功能可能不同,请按相应的说明书使用.
练一练
1 用计算器求下列各式的值: (1)sin560,(2)sin15049′, (3)cos200,(4)tan290, (5)tan44059′59″,(6)sin150+cos610+tan760.
a
A
α β
B
C A
β ┌
直角三角形的边角关系三角函数的计算讲课课件

B c a A b ┌ C
互余两角之间的三角函数关系: sinA=cosB,tanA*tanB=1.
同角之间的三角函数关系:
sin2A+cos2A=1.
sin A tan A . cos A
特殊角300,450,600角的三角函数值.
例1 小山顶上有一电视塔,在 山脚C处测得塔顶A、塔底B的 仰角分别为45°和30°. 若塔高AB = 40m,则山高BD ≈ m(精确到1m);
第一章 直角三角形的边角关系
1.3.1 三角函数的有关计算
回顾与思考
直角三角的边角关系
直角三角形三边的关系: 勾股定理 a2+b2=c2. A+B=900. 直角三角形两锐角的关系:两锐角互余
a sin A cos B , c
直角三角形边与角之间的关系:锐角三角函数
b cos A sin B , c
a sin A , c b cos A , c a tan A , b
a c sin A. b c cos A.
a b tan A.
a c . sin A b c . cos A a b . tan A
A
作业布置
习题1.4 1,2题;
A
B
C 图1-13
D
1 如图,根据图中已知数据,求△ABC其余各 边的长,各角的度数和△ABC的面积.
A
4cm
450 300
B
C
2 如图,根据图中已知数据,求△ABC其余 各边的长,各角的度数和△ABC的面积.
A
0 300 45 ┌ B 4cm C D
小结拓展 直角三角形中的边角关系
已知两边求角 已知一边一角 已知一边一角 及其三角函数 求另一边 求另一边 B c ┌ b C a
互余两角之间的三角函数关系: sinA=cosB,tanA*tanB=1.
同角之间的三角函数关系:
sin2A+cos2A=1.
sin A tan A . cos A
特殊角300,450,600角的三角函数值.
例1 小山顶上有一电视塔,在 山脚C处测得塔顶A、塔底B的 仰角分别为45°和30°. 若塔高AB = 40m,则山高BD ≈ m(精确到1m);
第一章 直角三角形的边角关系
1.3.1 三角函数的有关计算
回顾与思考
直角三角的边角关系
直角三角形三边的关系: 勾股定理 a2+b2=c2. A+B=900. 直角三角形两锐角的关系:两锐角互余
a sin A cos B , c
直角三角形边与角之间的关系:锐角三角函数
b cos A sin B , c
a sin A , c b cos A , c a tan A , b
a c sin A. b c cos A.
a b tan A.
a c . sin A b c . cos A a b . tan A
A
作业布置
习题1.4 1,2题;
A
B
C 图1-13
D
1 如图,根据图中已知数据,求△ABC其余各 边的长,各角的度数和△ABC的面积.
A
4cm
450 300
B
C
2 如图,根据图中已知数据,求△ABC其余 各边的长,各角的度数和△ABC的面积.
A
0 300 45 ┌ B 4cm C D
小结拓展 直角三角形中的边角关系
已知两边求角 已知一边一角 已知一边一角 及其三角函数 求另一边 求另一边 B c ┌ b C a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
∠A=
600 sin A 2
2
∠A= 450
cos A 1 2
∠A= 600 cos A
2 2
∠A=
450 cos A
3 2
∠A= 300
tan A 3 3
∠A=
300 tan A
3 ∠A= 600
tan A 1 ∠A= 450
1.(2010·丹东中考)计算: 【解析】
2(2 cos 45 sin 60) 24 4
原式 2(2 2 3 ) 2 6 22 4
2 6 6 22
2
2.(2010·眉山中考)如图,已知在梯形ABCD中,
AD∥BC,∠B=30°,∠C=60°,AD=4,AB=3 3 ,
则下底BC的长为 __________.
【答案】10
A
30° B
D
60° C
3.(2010 ·巴中中考)已知如图所示,在梯形ABCD中,
当缆车继续从点B到达点D时,它 又走过了200m.缆车由点B到点D的 行驶路线与水平面的夹角为 ∠β=420,由此你不能计算什么?
在Rt△BED中, DE=DBsin42°
E
BC=200sin42°
所以山高为:
BC+DE=200sin42°+ 200sin16°
=200(sin42°+ sin16°)
所以避雷针的长度 DC=DB-CB=29.652-23.836≈5.82(m).
如图,物华大厦离小伟家60m,小伟从自家的窗中眺望大厦, 并测得大厦顶部仰角是450,而大厦底部的俯角是370,求该 大厦的的高度 (结果精确到0.1m).
A
如图,在Rt△AOC中,∠C=90°, AC=OCtan450 .
=
11.4300523
sin720 sin 7 2 DMS 3 8
38′25″ DMS 2 5 DMS
=
0.954450312
计算器的型号与功能可能不同,请按相应的说明书使用.
练一练
1 用计算器求下列各式的值: (1)sin560,(2)sin15049′, (3)cos200,(4)tan290, (5)tan44059′59″,(6)sin150+cos610+tan760.
二、用直角三角形边和角 的关系解决实际问题
例1.如图,当登山缆车的吊 箱经过点A到达点B时,它走 过了200m.已知缆车行驶的 路线与水平面的夹角为 ∠α=160,那么缆车 垂直上升的距离是多少?
如图,在Rt△ABC中, ∠C=90°,BC=ABsin160 .
你知道sin160等于多少吗?
利用科学计算器可以求得: BC=ABsin160 ≈200×0.2756≈55.12.
1 2
3
3
2
3
2
2
450
2
2
1
600
3 2
1 2
3
0°<α<90°
0<sinα<1
0<cosα<1 tanα>0
• 正弦函数是增函数 • 余弦函数是减函数 • 正切行数是增函数
7.由锐角的三角函数值反求锐角
填表:已知一个角的三角函数值,求这个 角的度数(逆向思维)
sin A 1 2
∠A= 300 sin A 3
九年级数学(下)第一章 直角三角形的边角关系
3.三角函数 的有关计算
直角三角形的边角关系
1、直角三角形三边的关系:
勾股定理 a2+b2=c2.
2、直角三角形两锐角的关系: 两锐角互余 ∠A+∠B=90°.
3、直角三角形边与角之间的关系: B
ቤተ መጻሕፍቲ ባይዱ锐角三角函数
sin A cosB a ,
c
A
tan A cot B a , cot A tan B b .
b
a
c
a
┌
b
C
回顾与思考
4.互余两角之间的三角函数关系:
sinA=cosB,
B
tan A tan B 1
c
5.同角之间的三角函数关系:
sin2A+cos2A=1.
tan
A
sin A cos A
.
A
a
┌
b
C
回顾与思考
6.特殊角的三角函数值表
三角函数
锐角α
正弦sinα 余弦cosα 正切tanα
300
当堂检测
课本17页 3,题 课本18页 2,题
3..求图中避雷针的长度(结果精确到0.01m).
解:如图,根据题意,可知 AB=20m,∠CAB=50°,∠DAB=56°
在Rt△DBA中,DB=ABtan56° ≈20×1.4826 =29.652(m);
在Rt△CBA中,CB=ABtan50° ≈ 20×1.1918 =23.836(m)
AD∥BC,AB=AD=DC=8,∠B=60°,连接AC.
(1)求cos∠ACB的值;
A
D
【解析】(1)∵∠B=60°,
∴∠BCD=60°,又∵AB=AD=DC
B
C
∴∠DAC=∠DCA,∵AD∥BC,
∴∠DAC=∠BCA,∴∠DCA=∠BCA
∴∠ACB=30°
cos∠ACB=cos30°=3 2
一、用计算器求三角函数值
用科学计算器求锐角的三角函数值,要用到三个键:
sin cos tan 例如,求sin16°,cos42°, tan85°和sin72° 38′25″ 的按键盘顺序如下:
按键的顺序
显示结果
Sin160 sin 1 6
=
0.275635355
Cos420 cos 4 2
=
0.743144825
tan850 tan 8 5
在Rt△OCB中,∠C=90°,
0
C
CB=OCtan370 .
AB=AC+BC=60tan500+60×tan37º B ≈5.82m
真知在实践中诞生
如图,根据图中已知数据,求△ABC其余各边的 长,各角的度数和△ABC的面积. A
300 450 ┌
B 4cm C
D
1.如图,根据图中已 知数据,求AD.
走过的水平距离为:
AC+BE=200cos42°+ 200cos16° =200(cos42°+ cos16°)
老师提示:用计算器求三 角函数值时,结果一般有 10个数位.本书约定,如无 特别声明,计算结果一般 精确到万分位.
随堂练习
课本17页 2,题
2 一个人由山底爬到山顶,需先爬400的山坡 300m,再爬300 的山坡100m,求山高(结果精确 到0.01m).
解:如图,根据题意,可知 BC=300 m,BA=100 m, ∠C=40°,∠ABF=30°.
在Rt△CBD中,BD=BCsin40°≈300×0.6428 =192.8(m)
在Rt△ABF中,AF=ABsin30° =100× 1 =50(m).
2
所以山高AE=AF+BD=192.8+50=242.8(m).
∠A=
600 sin A 2
2
∠A= 450
cos A 1 2
∠A= 600 cos A
2 2
∠A=
450 cos A
3 2
∠A= 300
tan A 3 3
∠A=
300 tan A
3 ∠A= 600
tan A 1 ∠A= 450
1.(2010·丹东中考)计算: 【解析】
2(2 cos 45 sin 60) 24 4
原式 2(2 2 3 ) 2 6 22 4
2 6 6 22
2
2.(2010·眉山中考)如图,已知在梯形ABCD中,
AD∥BC,∠B=30°,∠C=60°,AD=4,AB=3 3 ,
则下底BC的长为 __________.
【答案】10
A
30° B
D
60° C
3.(2010 ·巴中中考)已知如图所示,在梯形ABCD中,
当缆车继续从点B到达点D时,它 又走过了200m.缆车由点B到点D的 行驶路线与水平面的夹角为 ∠β=420,由此你不能计算什么?
在Rt△BED中, DE=DBsin42°
E
BC=200sin42°
所以山高为:
BC+DE=200sin42°+ 200sin16°
=200(sin42°+ sin16°)
所以避雷针的长度 DC=DB-CB=29.652-23.836≈5.82(m).
如图,物华大厦离小伟家60m,小伟从自家的窗中眺望大厦, 并测得大厦顶部仰角是450,而大厦底部的俯角是370,求该 大厦的的高度 (结果精确到0.1m).
A
如图,在Rt△AOC中,∠C=90°, AC=OCtan450 .
=
11.4300523
sin720 sin 7 2 DMS 3 8
38′25″ DMS 2 5 DMS
=
0.954450312
计算器的型号与功能可能不同,请按相应的说明书使用.
练一练
1 用计算器求下列各式的值: (1)sin560,(2)sin15049′, (3)cos200,(4)tan290, (5)tan44059′59″,(6)sin150+cos610+tan760.
二、用直角三角形边和角 的关系解决实际问题
例1.如图,当登山缆车的吊 箱经过点A到达点B时,它走 过了200m.已知缆车行驶的 路线与水平面的夹角为 ∠α=160,那么缆车 垂直上升的距离是多少?
如图,在Rt△ABC中, ∠C=90°,BC=ABsin160 .
你知道sin160等于多少吗?
利用科学计算器可以求得: BC=ABsin160 ≈200×0.2756≈55.12.
1 2
3
3
2
3
2
2
450
2
2
1
600
3 2
1 2
3
0°<α<90°
0<sinα<1
0<cosα<1 tanα>0
• 正弦函数是增函数 • 余弦函数是减函数 • 正切行数是增函数
7.由锐角的三角函数值反求锐角
填表:已知一个角的三角函数值,求这个 角的度数(逆向思维)
sin A 1 2
∠A= 300 sin A 3
九年级数学(下)第一章 直角三角形的边角关系
3.三角函数 的有关计算
直角三角形的边角关系
1、直角三角形三边的关系:
勾股定理 a2+b2=c2.
2、直角三角形两锐角的关系: 两锐角互余 ∠A+∠B=90°.
3、直角三角形边与角之间的关系: B
ቤተ መጻሕፍቲ ባይዱ锐角三角函数
sin A cosB a ,
c
A
tan A cot B a , cot A tan B b .
b
a
c
a
┌
b
C
回顾与思考
4.互余两角之间的三角函数关系:
sinA=cosB,
B
tan A tan B 1
c
5.同角之间的三角函数关系:
sin2A+cos2A=1.
tan
A
sin A cos A
.
A
a
┌
b
C
回顾与思考
6.特殊角的三角函数值表
三角函数
锐角α
正弦sinα 余弦cosα 正切tanα
300
当堂检测
课本17页 3,题 课本18页 2,题
3..求图中避雷针的长度(结果精确到0.01m).
解:如图,根据题意,可知 AB=20m,∠CAB=50°,∠DAB=56°
在Rt△DBA中,DB=ABtan56° ≈20×1.4826 =29.652(m);
在Rt△CBA中,CB=ABtan50° ≈ 20×1.1918 =23.836(m)
AD∥BC,AB=AD=DC=8,∠B=60°,连接AC.
(1)求cos∠ACB的值;
A
D
【解析】(1)∵∠B=60°,
∴∠BCD=60°,又∵AB=AD=DC
B
C
∴∠DAC=∠DCA,∵AD∥BC,
∴∠DAC=∠BCA,∴∠DCA=∠BCA
∴∠ACB=30°
cos∠ACB=cos30°=3 2
一、用计算器求三角函数值
用科学计算器求锐角的三角函数值,要用到三个键:
sin cos tan 例如,求sin16°,cos42°, tan85°和sin72° 38′25″ 的按键盘顺序如下:
按键的顺序
显示结果
Sin160 sin 1 6
=
0.275635355
Cos420 cos 4 2
=
0.743144825
tan850 tan 8 5
在Rt△OCB中,∠C=90°,
0
C
CB=OCtan370 .
AB=AC+BC=60tan500+60×tan37º B ≈5.82m
真知在实践中诞生
如图,根据图中已知数据,求△ABC其余各边的 长,各角的度数和△ABC的面积. A
300 450 ┌
B 4cm C
D
1.如图,根据图中已 知数据,求AD.
走过的水平距离为:
AC+BE=200cos42°+ 200cos16° =200(cos42°+ cos16°)
老师提示:用计算器求三 角函数值时,结果一般有 10个数位.本书约定,如无 特别声明,计算结果一般 精确到万分位.
随堂练习
课本17页 2,题
2 一个人由山底爬到山顶,需先爬400的山坡 300m,再爬300 的山坡100m,求山高(结果精确 到0.01m).
解:如图,根据题意,可知 BC=300 m,BA=100 m, ∠C=40°,∠ABF=30°.
在Rt△CBD中,BD=BCsin40°≈300×0.6428 =192.8(m)
在Rt△ABF中,AF=ABsin30° =100× 1 =50(m).
2
所以山高AE=AF+BD=192.8+50=242.8(m).