北京市西城区八年级数学上册第11章三角形全章测试题(新版)新人教版

合集下载

人教版八年级数学上册第十一章三角形单元测试卷-(含答案)

人教版八年级数学上册第十一章三角形单元测试卷-(含答案)

人教版八年级数学上册第十一章三角形单元测试卷一、单选题(共30分,每小题3分)1.能用三角形的稳定性解释的生活现象是()A.B.C.D.2.如图,BE、CF都是ABC的角平分线,且115BDC∠=︒,则A∠=()A.45°B.50°C.65°D.70°3.如果一个多边形的每一个外角都是90︒,那么这个多边形的内角和是()A.180︒B.360︒C.540︒D.720︒4.若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.135.一个多边形截去一个角后,得到的多边形的内角和为1980,那么原来的多边形的边数为().A.12或13取14B.13或14C.12或13D.13或14或15 6.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60︒C.直角三角形仅有一条高D .直角三角形斜边上的高等于斜边的一半7.下列各组线段,能构成三角形的是( )A .1,3,5cm cm cmB .2,4,6cm cm cmC .4,4,1cm cm cmD .8,8,20cm cm cm8.在三角形的①三条中线;①三条角平分线;①三条高中,一定相交于一点的是( )A .①①①B .①C .①D .①① 9.如图,在①ABC 中,D 是BC 延长线上一点,①B =40°,①ACD =120°,则①A 等于A .60°B .70°C .80°D .90° 10.如图在△ABC 中,BO ,CO 分别平分①ABC ,①ACB ,交于O ,CE 为外角①ACD 的平分线,BO 的延长线交CE 于点E ,记①BAC =①1,①BEC =①2,则以下结论①①1=2①2,①①BOC =3①2,①①BOC =90°+①1,①①BOC =90°+①2正确的是( )A .①①①B .①①①C .①①D .①①①二、填空题(共24分,每小题3分) 11.若一个多边形的内角和是 1980°,则这个多边形的边数为________. 12.等腰三角形一边长为5,另一边长为7,则周长为__________.13.如图,①BCD =145°,则①A +①B +①D 的度数为_____.14.一个多边形的每一个外角都等于60°,则这个多边形的内角和为_____度. 15.如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点可以连___________条对角线.16.小华从点A 出发向前走10m ,向右转36︒然后继续向前走10m ,再向右转36︒,他以样的方法继续走下去,当他走回到点A 时共走_________米.17.如图,在①ABC 中,①CAD =①CDA ,①CAB −①ABC =30°,则①BAD =________︒.18.如图,在ABC 中,12∠=∠,34∠=∠,80A ∠=︒,则x =______.三、解答题(共66分) 19.如图,ABCD 是四根木条钉成的四边形,为了使它不变形,小明加了根木条AE ,小明的做法正确吗?说说你的理由.(共6分)20.如图①A =20°,①B =45°,①C =40°,求①DFE 的度数.(共6分)21.已知,如图,在ABC ∆中,AD 、AE 分别是ABC ∆的高和角平分线,若30ABC ∠=,60ACB ∠=(共8分)(1)求DAE ∠的度数;(2)写出DAE ∠与C B ∠-∠的数量关系 ,并证明你的结论22.若一个多边形的内角和比外角和多540°,求这个多边形的边数.(共8分)23.如图:(共8分)(1)画出△ABC 的BC 边上的高线AD ;(2)画出△ABC 的角平分线CE .24.已知在△ABC 中,∠A :∠B :∠C =2:3:4,CD 是∠ACB 平分线,求∠A 和∠CDB 的度数.(共10分)25.如图,已知:点P 是ABC ∆内一点.(共10分)(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数.26.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求①CAD的度数.(共10分)答案第1页,共1页 参考答案:1.C2.B3.B4.C5.A6.B7.C8.D9.C10.C 11.1312.17或1913.145°14.72015.616.10017.1518.13020.小明的做法正确,21.105°22.(1)15°;(2)()12DAE C B ∠=∠-∠, 23.724.略25.∠A =40°,∠CDB =80°.26.(1)略;(2)110°27.①CAD =36°.。

人教版初中八年级数学上册第十一章《三角形》测试(含答案解析)

人教版初中八年级数学上册第十一章《三角形》测试(含答案解析)

一、选择题1.已知实数x 、y 满足|x -4|+ 8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 2.一个多边形的外角和是360°,这个多边形是( ) A .四边形B .五边形C .六边形D .不确定 3.若过六边形的一个顶点可以画n 条对角线,则n 的值是( ) A .1B .2C .3D .4 4.下列长度的三条线段能构成三角形的是( ) A .1,2,3 B .5,12,13 C .4,5,10 D .3,3,6 5.如图,ABC 中,BC 边上的高是( )A .AEB .ADC .CD D .CF6.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40° 7.下列长度的线段能组成三角形的是( ) A .2,3,5B .4,6,11C .5,8,10D .4,8,4 8.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( ) A .2mB .3mC .5mD .7m 9.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( )A .15B .20C .30D .40 10.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°11.下列说法正确的有( )个①把一个角分成两个角的射线叫做这个角的角平分线;②连接C 、D 两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形.A .3B .2C .1D .012.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .4013.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .72米B .80米C .100米D .64米 14.以下列各组线段为边,能组成三角形的是( ) A .1,2,3 B .2,3,4 C .2,5,8 D .6,3,3 15.如图,在ABC 中,48BAC ∠=︒,点 I 是ABC ∠、ACB ∠的平分线的交点.点D 是ABC ∠、 ACB ∠的两条外角平分线的交点,点E 是内角ABC ∠、外角ACG ∠的平分线的交点,则下列结论 不正确...的是( )A .180BDC BIC ∠+∠=︒B .85ICE ∠=︒C .24E ∠=︒D .90DBE ∠=︒二、填空题16.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.17.从n 边形的一个顶点出发,连接其余各顶点,可以将这个n 边形分割成17个三角形,则n =______.18.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________. 19.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.20.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.21.用边长相等的正三角形和正六边形铺满地面,一个结点周围有m 块正三角形,n 块正六边形,则m+n =______.22.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.23.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.24.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.25.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.26.如图,AB BE ,分别是ABC 中,BC AC 边上的高,6cm BC ,4cm AC =,若3cm =AD ,则BE 的长为__________cm .三、解答题27.如图,已知BP 是△ABC 的外角∠ABD 的平分线,延长CA 交BP 于点P .射线CE 平分∠ACB 交BP 于点E .(1)若∠BAC=80°,求∠PEC 的度数;(2)若∠P=20°,分析∠BAC 与∠ACB 的度数之差是否为定值?(3)过点C 作CF ⊥CE 交直线BP 于点F .设∠BAC=α,求∠BFC 的度数(用含α的式子表示).28.如图,∠CBF ,∠ACG 是△ABC 的外角,∠ACG 的平分线所在的直线分别与∠ABC ,∠CBF 的平分线BD ,BE 交于点D ,E .(1)若∠A=70°,求∠D 的度数;(2)若∠A=a ,求∠E ;(3)连接AD ,若∠ACB=β,则∠ADB= .29.如图,在BCD △中,D 为BC 上一点,12∠=∠,34∠=∠,60BAC ∠=︒,求DAC ∠,ADC ∠的度数.30.如图,有一块直角三角板XYZ 置在ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .ABC 中,30A ∠=︒.(1)ABC ACB ∠+∠=________.(2)ABX ACX ∠+∠=________.(说明理由)。

【精品】人教版八年级数学上册第11章三角形单元检测题(有答案)【3套】试题

【精品】人教版八年级数学上册第11章三角形单元检测题(有答案)【3套】试题

人教版八年级数学上册第11章三角形单元检测题(有答案)一.选择题(共10小题,每小题3分,满分30分)1.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形2.若线段AM、AN分别是△ABC中BC边上的高线和中线,则()A.AM>AN B.AM>AN或AM=ANC.AM<AN D.AM<AN或AM=AN3.下列图形具有稳定性的是()A.B.C.D.4.下列各组数可能是一个三角形的边长的是()A.4,4,9 B.2,6,8 C.3,4,5 D.1,2,3 5.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=18°,则∠1的度数为()A.50°B.98°C.75°D.80°6.在△ABC中,∠A==∠C,则这个三角形是()A.锐角三角形B.等腰三角形C.钝角三角形D.含30°角的直角三角形7.在△ABC中,若满足下列条件,则一定不是直角三角形的是()A.∠A=∠B+∠CB.∠A=∠C﹣∠BC.一个外角等于与它相邻的内角D.∠A:∠B:∠C=1:3:58.如图所示,在△ABC中,∠C=90°,则∠B为()A.15°B.30°C.50°D.60°9.将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5 B.6 C.7 D.810.设BF交AC于点P,AE交DF于点Q.若∠APB=126°,∠AQF=100°,则∠A ﹣∠F=()A.60°B.46°C.26°D.45°二.填空题(共8小题,每小题3分,满分24分)11.三角形的三边之比是3:4:5,周长是36cm,则最长边比最短边长.12.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD 的周长是.13.空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是.14.若△ABC的周长为18,其中一条边长为4,则△ABC中的最长边x的取值范围为.15.如图,在△ABC中,∠B=60°,∠BAC与∠BCA的三等分线分别交于点D、E两点,则∠ADC的度数是.16.如图,CE平分∠ACD,∠A=40°,∠B=30°,∠D=104°,则∠BEC=.17.如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠2=70°,∠1=.18.如果一个多边形的边数增加1,它的内角和就增加十分之一,那么这个多边形的边数,三.解答题(共8小题,满分66分)19.(6分)“五一”黄金周,小梦一家计划从家B出发,到景点C旅游,由于BC之间是条湖,无法通过,如图所示只有B﹣A﹣C和B﹣P﹣C两条路线,哪一条比较近?为什么?(提示:延长BP交AC于点D)20.(6分)若三角形的三边长分别是2,x,10,且x是不等式的正偶数解,试求第三边的长x.21.(6分)如图,已知,在△ABC中,∠C=∠ABC,BE⊥AC,∠DBE=60°,求∠C 的度数.22.(6分)如图∠A=∠B,∠C=α,DE⊥AC于点E,FD⊥AB于点D.(1)若∠EDA=25°,则∠EDF=°;(2)若∠A=65°,则∠EDF=°;(3)若α=50°,则∠EDF=°;(4)若∠EDF=65°,则α=°;(5)∠EDF与α的关系为.23.(8分)如图,在四边形ABCD中,∠B=50°,∠C=110°,∠D=90°,AE⊥BC,AF是∠BAD的平分线,与边BC交于点F.求∠EAF的度数.24.(10分)如图,已知六边形ABCDEF的每个内角都相等,连接AD.(1)若∠1=48°,求∠2的度数;(2)求证:AB∥DE.25.(12分)已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM 平分∠ABC,E为射线BM上一点.如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACB,求∠BEC的度数.26.(12分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM 平分∠AEF交CD于点M,且∠FEM=∠FME.(1)直线AB与直线CD是否平行,说明你的理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD 于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=60°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.参考答案一.选择题1.解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.故选:C.2.解:如图,∵AM⊥BC,∴根据垂线段最短可知:AM≤AN,故选:D.3.解:∵三角形具有稳定性,∴A选项符合题意而B,C,D选项不合题意.故选:A.4.解:A、因为4+4<9,所以本组数不能构成三角形.故本选项错误;B、因为2+6=8,所以本组数不能构成三角形.故本选项错误;C、因为3+4>5,所以本组数可以构成三角形.故本选项正确;D、因为1+2=3,所以本组数不能构成三角形.故本选项错误;故选:C.5.解:∵∠A=65°,∠B=75°,∴∠C=180°﹣∠A﹣∠B=180°﹣65°﹣75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,∵∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=18°,∴∠3+18°+∠4+40°+40°=180°,∴∠3+∠4=82°,∴∠1=180°﹣82°=98°.故选:B.6.解:∵∠A==∠C,∴∠B=2∠A,∠C=3∠A,又∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,解得:∠A=30°,∴∠C=3∠A=3×30°=90°,故选:D.7.解:A、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故本选项不符合题意.B、∵∠A=∠C﹣∠B,∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故本选项不符合题意.C、∵一个外角等于与它相邻的内角,又这两个角互补,∴相邻的内角是90°,∴三角形是直角三角形,故本选项不符合题意.D、∵∠A:∠B:∠C=1:3:5,∴∠A=20°,∠B=60°,∠C=100°,∴△ABC是钝角三角形,故本选项符合题意,故选:D.8.解:如图所示,在△ABC中,∠C=90°,则x+2x=90°.x=30°.所以2x=60°,即∠B为60°.故选:D.9.解:如图可知,原来多边形的边数可能是5,6,7.不可能是8.故选:D.10.解:如图:∵∠1=∠APB﹣∠A=126°﹣∠A,∠2=180°﹣∠AQF﹣∠F=180°﹣100°﹣∠F =80°﹣∠F;∵∠1=∠2,∴126°﹣∠A=80°﹣∠F;∴∠A﹣∠F=46°.故选:B.二.填空题11.解:由题意,设三边分别为3xcm,4xcm,5xcm,则3x+4x+5x=36,解得x=3,三边分别为9cm,12cm,15cm.故最长的边长比最短的边长长6cm.故答案是:6cm.12.解:∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为11,AB=5,BC=3,∴△BCD的周长是11﹣(5﹣3)=9,故答案为9.13.解:这种方法应用的数学知识是:三角形的稳定性,故答案为:三角形具有稳定性.14.解:∵△ABC的周长为18,其中一条边长为4,这个三角形的最大边长为x,∴第三边的长为:18﹣4﹣x=14﹣x,∴x>4且x>14﹣x,∴x>7,根据三角形的三边关系,得:x<14﹣x+4,解得:x<9;∴7<x<9,故答案为:7<x<9.15.解:∵在△ABC中,∠B=60°,∴∠BAC+∠BCA=180°﹣∠B=120°.∵∠BAC与∠BCA的三等分线分别交于点D、E两点,∴∠DAC=∠BAC,∠DCA=∠BCA,∴∠DAC+∠DCA=(∠BAC+∠BCA)=80°,∴∠ADC=180°﹣(∠DAC+∠DCA)=180°﹣80°=100°.故答案为:100°.16.解:延长CD交AB于F,∠BDC是△BDF的一个外角,则∠BFD=∠BDC﹣∠B=104°﹣30°=74°,同理,∠ACF=∠BFD﹣∠A=74°﹣40°=34°,∵CE平分∠ACD,∴∠ECA=∠ACF=17°,∴∠BEC=∠A+∠ECA=40°+17°=57°,故答案为:57°.17.解:∵a∥b,∴∠3=∠2=70°,∴∠1=180°﹣90°﹣70°=20°,故答案为:20°.18.解:设多边形的边数是n,根据题意得:180(n+1﹣2)=180(n﹣2)(1+),解得:n=12.故答案是:12.三.解答题19.解:如图,延长BP交AC于点D.∵△ABD中,AB+AD>BD=BP+PD,△CDP中,PD+CD>CP,∴AB+AD+PD+CD>BP+PD+CP,即AB+AD+CD>BP+CP,∴AB+AC>BP+CP,∴B﹣P﹣C路线较近.20.解:原不等式可化为5(x+1)>20﹣4(1﹣x),解得x<11,∵x是它的正整数解,∴根据三角形第三边的取值范围,得8<x<12,∵x是正偶数,∴x=10.∴第三边的长为10.21.解:∵BE⊥AC,∴∠AEB=90°,∵∠DBE=60°,∴∠A=90°﹣60°=30°,∴∠C=∠ABC=(180°﹣30°)=75°.22.解:(1)∵DF⊥AB,∴∠ADF=90°,∴∠EDF=90°﹣∠EDA=65°.(2)∵DE⊥AC,∴∠AED=90°,∴∠ADE=90°﹣65°=25°,∴∠EDF=65°.(3)∵α=50°,∴∠A=∠B=(180°﹣50°)=65°,∴∠DEF=65°.(4)∵∠EDF=65°,∴∠ADE=90°﹣65°=25°,∴∠A=∠B=65°,∴α=180°﹣130°=50°(5)∵∠A=∠B,∠C=α∴∠A=∠B=(180°﹣α)=90°﹣α,∵DE⊥AC于点E,FD⊥AB于点D,∴∠AED=∠FDB=90°∴∠EDA=∠BFD=90°﹣(90°﹣α)=α,∴∠EDF=90°﹣∠EDA=90°﹣α.故答案为(1)65°;(2)25°;(3)65°;(4)50°;(5)90°﹣0.5a;23.解:∵AE⊥BC,∴∠AEC=∠AEB=90°,∵∠B=50°,∴∠BAE=180°﹣90°﹣50°=40°,∵∠C=110°,∠D=90°,∴∠DAE=360°﹣∠D﹣∠C﹣∠AEC=70°,∴∠DAB=∠BAE+∠DAE=40°+70°=110°,∵AF平分∠DAB,∴∠FAB=∠DAB=110°=55°,∴∠EAF=∠FAB﹣∠BAE=55°﹣40°=15°.24.解:(1)∵六边形ABCDEF的各内角相等,∴一个内角的大小为,∴∠E=∠F=∠BAF=120°.∵∠FAB=120°,∠1=48°,∴∠FAD=∠FAB﹣∠DAB=120°﹣48°=72°.∵∠2+∠FAD+∠F+∠E=360°,∠F=∠E=120°,∴∠ADE=360°﹣∠FAD﹣∠F﹣∠E=360°﹣72°﹣120°﹣120°=48°.(2)证明:∵∠1=120°﹣∠DAF,∠2=360°﹣120°﹣120°﹣∠DAF=120°﹣∠DAF,∴∠1=∠2,∴AB∥DE.25.解:①如图1,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②如图2,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=∠ABC=40°,∠ECB=∠ACB=20°,∴∠BEC=180°﹣∠ECB﹣∠CBE=180°﹣20°﹣40°=120°.26.解:(1)结论:AB∥CD.理由:如图1中,∵EM平分∠AEF交CD于点M,∴∠AEM=∠MEF,∵∠FEM=∠FME.∴∠AEM=∠FME,∴AB∥CD.(2)①如图2中,∵AB∥CD,∴∠BEG=∠EGH=β=60°,∴∠AEG=120°,∵∠AEM=∠EMF,∠HEF=∠HEG,∴∠HEN=∠MEF+∠HEF=∠AEG=60°,∵HN⊥EM,∴∠HNE=90°,∴∠EHN=90°﹣∠HEN=30°.②猜想:α=β.理由:∵AB∥CD,∴∠BEG=∠EGH=β,∴∠AEG=180°﹣β,∵∠AEM=∠EMF,∠HEF=∠HEG,∴∠HEN=∠MEF+∠HEF=∠AEG=90°﹣β,∵HN⊥EM,∴∠HNE=90°,∴α=∠EHN=90°﹣∠HEN=β.人教版八年级上册第十一章三角形单元测试(3)一、选择题(每题3分,共30分)1.如图,∠1的大小等于()A.40°B.50°C.60°D.70°(第1题)(第4题)2.下列长度的三条线段,能组成三角形的是()A.2 cm,3 cm,4 cm B.2 cm,3 cm,5 cmC.2 cm,5 cm,10 cm D.8 cm,4 cm,4 cm3.在△ABC中,能说明△ABC是直角三角形的是()A.∠A:∠B :∠C=1 :2 :2 B.∠A :∠B :∠C=3 :4 :5 C.∠A :∠B :∠C=1 :2 :3 D.∠A :∠B :∠C=2 :3 :4 4.如图,在△ABC中,∠A=80°,∠B=40°,D,E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是()A.40°B.60°C.80°D.120°5.在下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()6.如图,△ABC的角平分线BE,CF相交于点O,且∠FOE=121°,则∠A的度数是()A.52°B.62°C.64°D.72°(第6题) (第7题)(第9题) (第10题)7.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC.下列说法不正确...的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是()A.8 B.7 C.6 D.59.如图,在△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.180°C.255°D.145°10.如图,∠A,∠B,∠C,∠D,∠E五个角的和等于()A.90°B.180°C.360°D.540°二、填空题(每题3分,共24分)11.人站在晃动的公交车上,若分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了___________________________________________________.12.正十边形每个外角的度数是________.13.已知三角形三边长分别为1,x,5,则整数x=________.14.将一副三角尺按如图所示放置,则∠1=________.(第14题)(第16题)(第18题)15.一个多边形从一个顶点出发可以画9条对角线,则这个多边形的内角和为________.16.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.17.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.若一个“半角三角形”的“半角”为20°,则这个“半角三角形”最大内角的度数为________. 18.已知△ABC ,有下列说法:(1)如图①,若P 是∠ABC 和∠ACB 的平分线的交点,则∠P =90°+12∠A ; (2)如图②,若P 是∠ABC 和外角∠ACE 的平分线的交点,则∠P =90°-∠A ; (3)如图③,若P 是外角∠CBF 和∠BCE 的平分线的交点,则∠P =90°-12∠A . 其中正确的有______个.三、解答题(23题12分,24题14分,其余每题10分,共66分)19.如图,一艘轮船在A 处看见巡逻艇C 在其北偏东62°的方向上,此时一艘客船在B 处看见巡逻艇C 在其北偏东13°的方向上.试求此时在巡逻艇上看这两艘船的视角∠ACB 的度数.(第19题)20.如图,BD ,CE 是△ABC 的两条高,它们交于O 点. (1)∠1和∠2的大小关系如何?并说明理由. (2)若∠A =50°,∠ABC =70°,求∠3和∠4的度数.(第20题)21.如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD,CE相交于点P,∠BAC=66°,∠BCE=40°.求∠ADC和∠APC的度数.(第21题)22.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证AF∥CD.(第22题)23.如图,在△ABC中,∠A=30°,一块直角三角尺XYZ放置在△ABC上,恰好三角尺XYZ的两条直角边XY,XZ分别经过点B,C.(1)∠ABC+∠ACB=________,∠XBC+∠XCB=________,∠ABX+∠ACX=________.(2)若改变直角三角尺XYZ的位置,但三角尺XYZ的两条直角边XY,XZ仍然分别经过点B,C,则∠ABX+∠ACX的大小是否变化?请说明理由.(第23题)24.已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(点A,B,C均不与点O重合),连接AC交射线OE于点D,设∠OAC=x°.(1)如图①,若AB∥ON,则①∠ABO的度数是________.②当∠BAD=∠ABD时,x=________;当∠BAD=∠BDA时,x=________.(2)如图②,若AB⊥OM,是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.(第24题)答案一、1.D 2.A 3.C 4.B 5.B 6.B7.C8.B9.C10.B二、11.三角形具有稳定性12.36°13.514.105°15.1 800°16.617.120°18.2三、19.解:由题意可得AD∥BF,∴∠BEA=∠DAC=62°.∵∠BEA是△CBE的一个外角,∴∠BEA=∠ACB+∠CBE.∴∠ACB=∠BEA-∠CBE=62°-13°=49°.答:此时在巡逻艇上看这两艘船的视角∠ACB的度数为49°.20.解:(1)∠1=∠2.理由如下:∵BD,CE是△ABC的两条高,∴∠AEC=∠ADB=90°.∵∠A+∠1+∠ADB=180°,∠2+∠A+∠AEC=180°,∴∠1=∠2.(2)∵∠A=50°,∠ABC=70°,∠A+∠ABC+∠ACB=180°,∴∠ACB=60°.∵在△AEC中,∠A+∠AEC+∠2=180°,∴∠2=40°.∴∠3=∠ACB-∠2=20°.∵在四边形AE O D中,∠A+∠AE O+∠4+∠AD O=360°,∠A=50°,∠AE O=∠AD O=90°,∴∠4=130°.21.解:∵CE是△ABC的高,∴∠AEC=90°.∴∠ACE=180°-∠BAC-∠AEC=24°.∵AD是△ABC的角平分线,∴∠DAC=12∠BAC=33°.∵∠BCE=40°,∴∠ACB=40°+24°=64°.∴∠ADC=180°-∠DAC-∠ACB=83°.∴∠A P C=∠ADC+∠BCE=83°+40°=123°.22.(1)解:∵六边形ABCDEF的内角都相等,内角和为(6-2)×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.∵CF∥AB,∴∠B+∠BCF=180°.∴∠BCF=60°.∴∠FCD=∠BCD-∠BCF=60°.(2)证明:∵CF∥AB,∴∠A+∠AFC=180°.∴∠AFC=180°-120°=60°.∴∠AFC=∠FCD.∴AF∥CD.23.解:(1)150°;90°;60°(2)∠ABX+∠ACX的大小不变.理由:在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=30°,∴∠ABC+∠ACB=180°-30°=150°.∵∠YXZ=90°,∴∠X BC+∠X CB=90°.∴∠AB X+∠AC X=(∠ABC-∠X BC)+(∠ACB-∠X CB)=(∠ABC+∠ACB)-(∠X BC+∠X CB)=150°-90°=60°.∴∠AB X+∠AC X的大小不变.24.解:(1)①20°②120;60(2)存在.①当点D在线段O B上时,若∠BAD=∠ABD,则x=20;若∠BAD=∠BDA,则x=35;若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,易知∠ABE=110°,又三角形的内角和为180°,∴只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20,35,50或125.人教版八年级上册第十一章三角形单元测试(2)一、选择题(每题3分,共30分)1.三角形的三条高所在的直线相交于一点,这个交点的位置在()(A)三角形内(B)三角形外(C)三角形边上(D)要根据三角形的形状才能定2.下列长度的各组线段中,能组成三角形的是()(A)1、2、3(B)1、4、2(C)2、3、4(D)6、2、33.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°4.一个多边形只有27条对角线,则这个多边形的边数为()(A)8(B)9(C)10(D)115.若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°6.已知一个多边形的内角和为540°,则这个多边形为A.三角形 B.四边形 C.五边形 D.六边形7.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°8.一个三角形的两边的长分别为3和8,第三边的长为奇数,则第三边的长为()(A) ①5或7 (B) 7 (C) 9 (D) 7或99.如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.1310.如图,AB∥CD,AD,BC相交于O,∠BAD=35°,∠BOD=76°,则∠C的度数是( )(A) 31° (B) 35° (C) 41° (D) 76°二、填空题(每题3分,共30分)11.如果三条线段a、b、c,可组成三角形,且a=3,b=5,c是偶数,则c的值为.第10题12.△ABC中,已知∠A=800,∠B=700,则∠C= .13.有四条线段,长分别为3cm、5cm、7cm、9cm,如果用这些线段组成三角形,可以组成个三角形.14.如果一个三角形的三个内角的度数比为1∶2∶3,则这个三角形是三角形.15.一个直角三角形两锐角的平分线所夹的钝角为.16.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为度.17.一个多边形的每一个外角都等于360,则该多边形的内角和等于18.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.19.如图2,将一副直角三角板叠在一起,使直角顶点重合于点O ,则 ∠AOB+∠DOC= .20.如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10则在第nn 的代数式表示).三、解答题(共60分) 21.(本题6分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A →C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______.(2)小明绝对不会走③,因为③路程最长,即AC +BC >AD +DB ,你能说明其原因吗?22.(本题6分)正在修建的中山路有一形状如图13所示的三角形空地需要绿化,拟从点A出发,将ABC △分成面积相等的四个三角形,以便种上不同的花草,请你帮助规划出图案.23.(本题7分)一个多边形的内角和比外角和多360度,这是几边形? 24.(本题7分)如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O BAC =50°,∠C =70°.求∠DAC 和∠BOA 的度数.DABCPIO图1 第20题图 图3 第21题图 DE AB C图1325.(本题8分)如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.26.(本题8分)分别测量如图所示的△ABC 和△DEF 的内角 (1)你发现了什么?(2)你有何猜想? (3)通过什么途径说明你的猜想?27.(本题9分)如图,△ABC 中,∠C=90°,∠A=30°. (1)作图:作AB 边上的高CD ,垂足为D ; (2)求∠ACD ,∠BCD ,∠B 的度数;(3)用刻度尺测量BC 和AB ,CD 和AC ,DB 和BC ,将三组线段分别相除(即将BC •的长度除以AB 的长度,CD 的长度除以AC 的长度,DB 的长度除以BC 的长度),你发现了什么规律?28.(本题9分)一块三角形优良品种试验田,现引进四种不同的种子进行对比试验,需要将这块地分成面积相等的四块,请你设计出两种划分方案供选择,画图说明。

新人教版八年级数学第11章全等三角形单元试卷及参考答案.docx

新人教版八年级数学第11章全等三角形单元试卷及参考答案.docx

新人教版八年级数学第—章单元考试试卷一、选择题(每小题3分,共30分)1.在ZV1BC 中,ZB=ZC,与AABC 全等的三角形有一个角是100。

,那么在△ABC 中 与这100。

角对应相等的角是()4•如图,L1^AB = DC, AD = BC, E, F 在 DB 上两点J=L BF=DE,若ZAEB=120。

,ZADB = 30°,则 ZBCF=() A.15O 0 B.40° C.80°D.90°5. 如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等B.不相等C.互余或相等D.互补或相等6. 如图,丄BC, BE±AC t Z1 = Z2, AD=AB f 贝U ( )A.Z1 = ZEFDB.BE=EC C ・BF=DF=CD D.FD//BC7.如图所示,BE 丄AC 于点 且 =BD = ED,若ZABC=54°,则ZE=()A.25°B.27。

C.30°D.45°8. 如图所示,亮亮书上的三角形被黒迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.ZAB.ZBC.ZCD.ZB 或ZC 2. 如图,在CD 上求一点P, 使它到O 久OB 的距离和等,则P 点是( A.线段CD 的中点C.OA 与CD 的中乖线的交点B.OA 与OB 的中垂线的交点 D.CZ )与ZAOB 的平分线的交点3.如图所示,竺△CDB,A.AABD 和△CDS 的面积和等 卜•面四个结论屮,不正确的是()B.AABD 和△CDB 的周长和等C.ZA+ZABD= ZC+ZCBDD.AD//BC, HAD=BCA. SSSB.SASC. AASD.ASA第3题图A第4题图 第7题图9. 如图,在厶ABC 中,4Q 平分ABAC,过B 作BE 丄AQ 于& 过E 作EF 〃AC 交AB 10•将一张长方形纸片按如图所示的方式折叠,BC 、BQ 为折痕,则ZCBD 的度数为()A. 60°B. 75°C. 90°D. 95°二、填空题(每题3分,共15分)11・能够 ___________________ 的两个图形叫做全等图形.12.已知,如图,AD=AC, BD=BC, O 为AB h 一点,那么,图屮共有 对全等三用形.ZBAD 二40。

人教版八年级数学上册《第11章三角形》单元测试题含答案

人教版八年级数学上册《第11章三角形》单元测试题含答案

第十一章三角形测试题一、选择题(每小题3分,共30分)1.三角形按边分类可分为( )A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2.如图1,图中三角形的个数是( )图1A.6 B.7 C.8 D.93.如图2,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )图2A.△AGC中,CF是AG边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高4.如图3,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案( )图3图45.如图5,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为( )图5A.118° B.119° C.120° D.121°6.如图6是六边形ABCDEF,则该图形的对角线的条数是( )图6A.6 B.9 C.12 D.187.如图7,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字型通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是( )图7A.75° B.80° C.85° D.90°8.如图8,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是( )图8A.x=y+z B.x=y-zC.x=z-y D.x+y+z=1809.如图9,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形(含三角形).若这两个多边形的内角和分别为M和N,则M+N不可能是( )图9A.360° B.540° C.720° D.630°10.某木材市场上木棒规格与对应价格如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m价格(元/根)101520253035小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场上购买一根木棒.则小明的爷爷至少带的钱数应为( )A.10元 B.15元 C.20元 D.25元请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是________.12.如图10,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为________cm.图1013.如图11,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是________.1114.有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图12方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为________.图1215.有一程序,如果机器人在平地上按如图13所示的步骤行走,那么机器人回到A点处行走的路程是________.图1316.如图14所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,D,E分别为垂足.若∠AFD=158°,则∠EDF=________°.图14三、解答题(共52分)17.(6分)如图15,佳佳和音音住在同一小区(A点),每天一块去学校(B点)上学.一天,佳佳要先去文具店(C点)买练习本再去学校,音音要先去书店(D点)买书再去学校.这天两人从家到学校谁走的路远?为什么?图1518.(6分)已知一个多边形的内角和与外角和之比为11∶2.(1)求这个多边形的内角和;(2)求这个多边形的边数.19.(6分)如图16,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB =60°,∠ADB=97°,求∠A和∠ACE的度数.图1620.(6分)如图17,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出橡皮筋长x的取值范围吗?图1721.(6分)如图18,它是一个大型模板,设计要求BA与CD相交成20°角,DA与CB 相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?图1822.(7分)已知△ABC的周长是20,三边分别为a,b,c.(1)若b是最大边,求b的取值范围;(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c 均为整数,求△ABC的三边长.23.(7分)如图19,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)如图①,作∠BAC的平分线AD,分别交CB,BE于点D,F.求证:∠EFD=∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD,交CB的延长线于点D,反向延长AD 交BE的延长线于点F,则(1)中的结论是否仍然成立?为什么?图1924.(8分)已知:如图20,在四边形ABCD中,∠D=90°,∠ABC=∠BCD,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.(1)如图20①,若AE平分∠BAD,求证:EF⊥AE;(2)如图20②,若AE平分四边形ABCD的外角,其余条件不变,则(1)中的结论是否仍然成立?并说明理由.图20答案1.D 2.C 3.C . 4.B . 5.C 6.B . 7.C 8.A . 9.D 10.C 11.15 12.19 13.190° 14.105° . 15.30米 16.68 .17.解:佳佳从家到学校走的路远. 理由:佳佳从家到学校走的路是AC +CD +BD ,音音从家到学校走的路是AD +BD.∵在△ACD 中,AC +CD >AD ,∴AC +CD +BD >AD +BD ,即佳佳从家到学校走的路远.18.解:(1)360°×112=1980°.即这个多边形的内角和为1980°.(2)设该多边形的边数为n,则(n-2)×180°=1980°,解得n=13.即这个多边形的边数为13.19.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.20.解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得橡皮筋长x的取值范围为3<x<19.21.解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.符合设计要求,故这块模板是合格的.22.解:(1)依题意有b≥a,b≥c.∵a +c >b ,∴a +b +c ≤3b 且a +b +c >2b ,则2b <20≤3b ,解得203≤b <10. (2)∵203≤b <10,b 为整数, ∴b =7,8,9.∵b =3c ,且c 为整数,∴b =9,c =3,∴a =20-b -c =8.故△ABC 的三边长分别为a =8,b =9,c =3.23.解:(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC 仍然成立.理由:∵AD 平分∠BAG ,∴∠BAD =∠GAD.∵∠FAE =∠GAD ,∴∠FAE =∠BAD.∵∠EFD =∠AEB -∠FAE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.24.解:(1)证明:∵∠BAE =180°-∠ABC -∠AEB ,∠EFC =180°-∠BCD -∠CEF ,且∠ABC =∠BCD ,∠AEB =∠CEF ,∴∠BAE =∠EFC.∵AE 平分∠BAD ,∴∠BAE=∠DAE,∴∠EFC=∠DAE.∵∠EFC+∠EFD=180°,∴∠DAE+∠EFD=180°,∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.(2)EF⊥AE仍成立.理由如下:如图.∵∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠1=∠F.∵AE平分四边形ABCD的外角,∴∠1=∠2,∴∠F=∠2.∵∠2+∠EAD=180°,∴∠F+∠EAD=180°,∴∠AEF+∠D=360°-(∠F+∠EAD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.。

部编数学八年级上册第11章《三角形》全章检测题(含答案)含答案

部编数学八年级上册第11章《三角形》全章检测题(含答案)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第十一章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为( C )A.3 B.4 C.5 D.6 ,第3题图) ,第6题图) 2.(2015·泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( B ) A.11 B.5 C.2 D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是( B )A.30° B.40° C.50° D.60°4.若△ABC有一个外角是钝角,则△ABC一定是( D )A.钝角三角形B.锐角三角形C.直角三角形D.以上都有可能5.(2015·广元)一个多边形的内角和是外角和的2倍,这个多边形的边数为( B )A.5 B.6 C.7 D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于( B )A.110° B.105° C.100° D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于( A )A.16 B.14 C.12 D.10,第7题图) ,第9题图) ,第10题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是( C )A.七边形B.八边形C.九边形D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△F MN,若MF∥AD,FN∥DC,则∠D的度数为( C )A.115° B.105° C.95° D.85°10.如图,∠1,∠2,∠3,∠4恒满足的关系是( D )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.(2015·南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是__60__度.,第11题图) ,第12题图) ,第13题图) ,第18题图) 12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD__=__∠ACE(填“>”“<”或“=”),∠A+∠DOE=__180__度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有__稳定__性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为__7或9或11__.15.(2015·烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是__540°_ _.16.一个等腰三角形的底边长为5cm,一腰上的中线把这个三角形的周长分成的两部分之差是3cm,则它的腰长是__8_cm__.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C 点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是__95°__.18.如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=__α22016__.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB=2∠B ,求∠ACD的度数.解:设∠B=x°,可得∠DCB=∠ACD=2x°,则x+2x+2x=90,∴x=18,∴∠A CD=2x°=36°20.(8分)如图,在△ABC中,AD是高,AE是角平分线,∠B=70°,∠DAE=18°,求∠C的度数.解:∵∠BAD=90°-∠B=20°,∴∠BAE=∠BAD+∠DAE=38°.∵AE是角平分线,∴∠CAE=∠BAE=38°,∴∠DAC=∠DAE+∠CAE=56°,∴∠C=90°-∠DA C=34°21.(9分)已知等腰三角形的周长为18 cm,其中两边之差为3 cm,求三角形的各边长.解:设腰长为x cm,底边长为y cm,则{2x+y=18,x-y=3,或{2x+y=18,y-x=3,解得{x=7,y=4,或{x=5,y=8,经检验均能构成三角形,即三角形的三边长是7 cm,7 cm,4 cm或5 cm,5 cm,8 cm22.(9分)如图,小明从点O出发,前进5 m后向右转15°,再前进5 m后又向右转15°……这样一直走下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?解:(1)所经过的路线正好构成一个外角是15度的正多边形,360÷15=24,24×5=120 (m),则小明一共走了120米(2)(24-2)×180°=3960°23.(10分)如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10 cm,BC=8 cm,AC=6 cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.解:(1)24 cm2(2)S△ABC=12×10×CD=24,∴CD=4.8 cm(3)作图略,S△ABE=12 cm224.(10分)(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB=__150°__,∠XBC+∠XCB=__90°__;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.解:(2)∵∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°,∴∠ABX+∠ACX的大小不变,其大小为60°25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C +∠D+∠E=180°。

人教版八年级上数学《第11章三角形》检测卷(含答案)

第11章检测卷(45分钟100分)一、选择题(本大题共8小题,每小题4分,满分32分)1.点P-3,-2位于A.第一象限B.第二象限C.第三象限D.第四象限2.已知A(0,-6),B(0,3),则A,B两点间的距离是A.-9B.9C.-3D.33.在平面直角坐标系中,把△ABC经过平移得到△A'B'C',若A(1,m),B(4,2),点A的对应点A'(3,m+2),则点B对应点B'的坐标为A.(6,5)B.(6,4)C.(5,m)D.(6,m)4.已知在平面直角坐标系中,点P(a,b)在第四象限,则ab的值不可能为A.5B.-1C.-1.5D.-105.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(4,2),点B的坐标为(-2,-2),则点C的坐标为A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1)6.将点A(x,1-y)向下平移5个单位长度得到点B(1+y,x),则点(x,y)在平面直角坐标系的A.第一象限B.第二象限C.第三象限D.第四象限7.平面直角坐标系中,点A(-3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为A.6,(-3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)8.动点P从点(3,0)出发,沿如图所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(0,3),…,第2018次碰到长方形边上的坐标为A.(1,4)B.(5,0)C.(8,3)D.(7,4)二、填空题(本大题共4小题,每小题4分,满分16分)9.已知P点坐标为(2a+1,a-3),若点P在x轴上,则a=3.10.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(-4,0),则“马”位于(3,3).11.同学们玩过五子棋吗?它的比赛规则是只要同色连续的五子先成一条直线就算胜利,如图是两人玩的一盘棋,若白的位置是(1,-5),黑的位置是(2,-4),现轮到黑棋走,你认为黑棋放在(2,0)或(7,-5)位置就获得胜利了.12.在学校,每一位同学都对应着一个学籍号.在数学中也有一些对应.现定义一种对应关系f,使得数对(x,y)和数z是对应的,此时把这种关系记作:f(x,y)=z.对于任意的数m,n(m>n),对应关系f由如表给出:如:f(1,2)=2+1=3,f(2,1)=2-1=1,f(-1,-1)=-1,则使等式f(1+2x,3x)=2成立的x的值是-1.三、解答题(本大题共5小题,满分52分)13.(8分)按下列要求写出点的坐标.(1)点F在第三象限,点F到x轴的距离为4,到y轴的距离为6;(2)直线AB,点A(-2,y),B(x,3).若AB∥x轴,且A,B之间的距离为6个单位,写出点A,B的坐标.解:(1)∵点F在第三象限,点F到x轴距离为4,到y轴距离为6,∴点F的横坐标为-6,纵坐标为-4,∴点F(-6,-4).(2)∵AB∥x轴,∴y=3,∴点A(-2,3),当点B在点A的左边时,x=-2-6=-8,点B的坐标为(-8,3);当点B在点A的右边时,x=-2+6=4,点B的坐标为(4,3).∴点A(-2,3),B(-8,3)或B(4,3).14.(10分)在平面直角坐标系中,把点向右平移2个单位,再向上平移1个单位记为一次“跳跃”.点A(-6,-2)经过第一次“跳跃”后的位置记为A1,点A1再经过一次“跳跃”后的位置记为A2,…,以此类推.(1)写出点A3的坐标;(2)写出点A n的坐标.(用含n的代数式表示)解:(1)根据题意知,A 1的坐标为(-6+2,-2+1),即(-4,-1),A 2的坐标为(-6+2×2,-2+1×2),即(-2,0),A 3的坐标为(-6+2×3,-2+1×3),即(0,1).(2)由(1)知,点A n 的坐标为(-6+2n ,-2+n ).15.(10分)如图,A (-1,0),C (1,4),点B 在x 轴上,且AB=4.(1)求点B 的坐标.(2)求△ABC 的面积.(3)在y 轴上是否存在点P ,使以A ,B ,P 三点为顶点的三角形的面积为7?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)∵A (-1,0),点B 在x 轴上,且AB=4,∴-1-4=-5,-1+4=3,∴点B 的坐标为(-5,0)或(3,0).(2)∵C (1,4),AB=4,∴S △ABC =1AB ·|y C |=1×4×4=8.(3)假设存在,设点P 的坐标为(0,m ),∵S △ABP =12AB ·|y P |=12×4×|m|=7, ∴m=±7.∴在y 轴上存在点P 0,72 或 0,-72 ,使以A ,B ,P 三点为顶点的三角形的面积为7.16.(12分)对于平面直角坐标系xOy 中的点P (a ,b ),若点P'的坐标为(a+kb ,ka+b )(其中k 为常数,且k ≠0),则称点P'为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为P'(1+2×4,2×1+4),即P'(9,6).(1)点P (-1,6)的“2属派生点”P'的坐标为 (11,4) ;(2)若点P 的“3属派生点”P'的坐标为(6,2),则点P 的坐标 (0,2) ;(3)若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P'点,且线段PP'的长度为线段OP 长度的2倍,求k 的值.解:(3)∵点P 在x 轴的正半轴上,∴b=0,a>0,∴点P 的坐标为(a ,0),点P'的坐标为(a ,ka ),∴线段PP'的长为P'到x 轴距离为|ka|.∵P 在x 轴正半轴,线段OP 的长为a ,∴|ka|=2a ,即|k|=2,∴k=±2.17.(12分)在平面直角坐标系中(单位长度为1 cm),已知点M (m ,0),N (n ,0),且m +m -3+|2m+n|=0.(1)求m ,n 的值.(2)若点E 是第一象限内一点,且EN ⊥x 轴,点E 到x 轴的距离为4,过点E 作x 轴的平行线a ,与y 轴交于点A.点P 从点E 处出发,以每秒2 cm 的速度沿直线a 向左移动,点Q 从原点O 同时出发,以每秒1 cm 的速度沿x 轴向右移动.①经过几秒PQ 平行于y 轴?②若某一时刻以A ,O ,Q ,P 为顶点的四边形的面积是10 cm 2,求此时点P 的坐标.解:(1)依题意,得 m +n -3=0,2m +n =0,解得 m =-3,n =6.(2)①设经过x 秒PQ 平行于y 轴,依题意,得6-2x=x ,解得x=2.②当点P 在y 轴右侧时,依题意,得(6-2x )+x 2×4=10, 解得x=1,此时点P 的坐标为(4,4),当点P 在y 轴左侧时,依题意,得(2x -6)+x 2×4=10, 解得x=113,此时点P 的坐标为 -43,4 .。

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如果一个多边形的内角和等于360度,那么这个多边形的边数为( )A .4B .5C .6D .72.已知三角形的两边长分别为4和9,则此三角形的第三边长可以是( )A .4B .5C .9D .133.如图,在△ABC 中,∠C =90°,若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( )A .40°B .60°C .70°D .80°4.如图,在 ABC 中,点 D 是 BC 边的延长线上一点, ABC ∠ 与 ACD ∠ 的平分线相交于点 E ,若 50A ∠=︒ ,则 E ∠= ( )A .25°B .30°C .40°D .45°5.在△ABC 中,如图,CD 平分∠ACB ,BE 平分∠ABC ,CD 与BE 交于点F ,若∠DEF=120°,则∠A=( )A .30°B .45°C .60°D .90°6.如图,在五边形ABCDE 中,∠A+∠B+∠E=∠EDC+∠BCD+140°,DF ,CF 分别平分∠EDC 和∠BCD ,则∠F 的度数为( )A .100°B .90°C .80°D .70°7.如图,在ABC 中AB AC =,中线AD 与角平分线CE 相交于点F ,已知40ACB ∠=︒,则AFC ∠的度数为( )A .100︒B .110︒C .120︒D .130︒8.如图,从ABC 各顶点作平行线AD EB FC ,各与其对边或其延长线相交于点D ,E ,F.若ABE 的面积为1S ,AFC 的面积为2S ,EDC 的面积为3S ,只要知道下列哪个值就可以求出DEF 的面积( )A .12S S +B .123S S S ++C .3SD .1232S S S ++二、填空题:(本题共5小题,每小题3分,共15分.)9.为了使做好的木门窗在运输、安装过程中不变形,木工师傅在木门窗上斜着加钉了一根木条.其原理是10.从一个多边形的顶点出发,分别连接这个点与其余各个顶点,得到分割成的十个三角形,那么,这个多边形为 边形.11.已知 ABC 的高为 AD , ∠BAD=65°,∠CAD=25° ,则 BAC ∠ 的度数是 .12.如图,小明在操场上从A 点出发,沿直线前进5米后向左转40°,再沿直线前进5米后,又向左转40°,照这样走下去,他第一次回到出发地A 点时,一共走了 米.13.纸片△ABC 中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C 落在△ABC 内(如图),若∠1=20°,则∠2的度数为 .三、解答题:(本题共5题,共45分)14.在△ABC 中,∠ADB=100°,∠C=80°,∠BAD= ∠DAC ,BE 平分∠ABC ,求∠BED 的度数15.如图,已知AD 是△ABC 的角平分线,CE 是△ABC 的高,AD 与CE 相交于点P ,∠BAC=66°,∠BCE=40°,求∠ADC 和∠APC 的度数.16.如图所示,在 ABC ∆ 中,∠A=38° ,∠ABC=70° , CD AB ⊥ 于点 D , CE 平分 ACB ∠ , DF CE ⊥ 于点 F ,求 CDF ∠ 的度数.17.如图,AD 为△ABC 的中线,BE 为△ABD 的中线,过点E 作EF 垂直BC ,垂足为点F .(1)∠ABC=35°,∠EBD=18°,∠BAD=30°,求∠BED的度数;(2)若△ABC的面积为30,EF=5,求CD的长度.18.在△ABC中,∠C=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C 三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)如图,当点P在线段AC上时,说明∠PDE=∠PED.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.参考答案:1.A 2.C 3.C 4.A 5.C 6.C 7.B 8.C9.三角形的稳定性10.十二11.90°或40°12.4513.60°14.解答:∵∠ADB=100°,∠C=80°∴∠DAC=∠ADB-∠C=100°-80°=20°∵∠BAD= ∠DAC∴∠BAD= ×20°=10°在△ABD 中,∠ABC=180°-∠ADB-∠BAD=180°-100°-10°=70° ∵BE 平分∠ABC∴∠ABE= ∠ABC= ×70°=35°∴∠BED=∠ABE+∠BAD=35°+10°=45°.15.解:∵AD 是△ABC 的角平分线,∠BAC=66°∴∠BAD=∠CAD= 12∠BAC=33° ∵CE 是△ABC 的高∴∠BEC=90°∵∠BCE=40°∴∠B=50°∴∠ADC=∠BAD+∠B=33°+50°=83°;∠APC=∠ADC+∠BCE=83°+40°=123°16.∵在 ABC 中, ∠A=38°, ∠ABC=70°∴∠ACB =180°−∠A −∠ABC =72°∵CE 平分 ACB ∠∴∠ECB =12∠ACB =36°∵CD AB ⊥ 于点 D∴90CDB ∠=︒∴在 CDB 中∴∠FCD =∠ECB −∠DCB =36°−20°=16°∵DF CE ⊥ 于点 F∴∠CDF =90°−∠FCD =74°17.(1)解:∵∠ABC =35°,∠EBD =18°∴∠ABE =35°﹣18°=17°∴∠BED =∠ABE+∠BAD =17°+30°=47°(2)解:∵AD 是△ABC 的中线∴S△ABD=12S△ABC又∵S△ABC=30∴S△ABD=12×30=15又∵BE为△ABD的中线∴S△BDE=12S△ABD∴S△BDE=12×15=152∵EF⊥BC,且EF=5∴S△BDE=12•BD•EF∴12•BD×5=152∴BD=3∴CD=BD=3.18.(1)解:∵PQ⊥AB∴∠EQB=∠C=90°∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°∵BD为∠ABC的平分线∴∠CBD=∠EBQ∵∠PED=∠BEQ∴∠PDE=∠PED(2)解:当P在线段AC上时,如图1所示,此时PF∥BD理由为:∵∠PDE=∠PED∴PD=PE∵PF为∠CPQ的平分线,∠CPQ为△PDE的外角∴∠CPF=∠QPF=∠PDE=∠PED∴PF∥BD;当P在线段AC延长线上时,如图2所示,PF⊥BD 理由为:∵∠PDE=∠PED∴PD=PE∵PM为∠CPQ的平分线∴PF⊥BD。

新人教版八年级数学上册第11章《三角形》单元综合测试卷含答案

第11《三角形》单元综合测试卷满分120分班级:姓名:学号:成绩:一.选择题(共10小题,满分30分,每小题3分)1.下列长度的3条线段,能首尾依次相连接组成三角形的是()A. 1, 2, 4B. 8, 6, 4C. 15, 5, 6D. 1, 3, 42.三角形的三条中线、三条角平分线、三条高都是()A,直线 B.射线 C.线段D,射线或线段3.若一个多边形的内角和等于1800度,则这个多边形是()A.十二边形B.十边形C.九边形D.八边形4.如图,在△ABC 中,NA = 50° , Zl=30° , N2=40" , NO 的度数是()A. 110°B. 120°C.130°D. 140°5.如图,一只蚂蚁从点A出发每向前爬行5厘米,就向左边偏转9。

,则这只A. 100厘米B. 200厘米C. 400厘米D.不能回到点46.如图,五边形43coE的一个内角N4= 110°,则N1+N2+N3+N4等于()A. 360°B. 290°C. 270°D. 250°7.如图,在△A8C中,ZACB=90°,点。

在A8上,将沿CO折叠,点8落在AC边上的点夕处,若N4O夕=20° ,则NA的度数为(8.已知三角形的三边长分别为化简la+b - cl - 21〃- /? - cl+la+〃+c〃等() A. 4a - 2c B. 2a ・ 2b ・ c C. 4b+2c D. 2a - 2b+c9. 一个多边形截取一个角后,形成另一个多边形的内角和是1620。

,则原来多边形的边数是()A. 10B. 11C. 12D.以上都有可能10.如图,在△A8C中,ZA=a. NABC与NACO的平分线交于点A”得NA|; N48c与乙4C。

的平分线相交于点4,得NA?,…,NA/C与N4CD的平分线相交于点4,得乙射,则N4=()32 64 128 256二.填空题(共6小题,满分24分,每小题4分)11.如图,点。

人教版八年级上册数学第11章《三角形》单元测试卷(含答案解析)

人教版八年级上册数学第11章《三角形》单元测试卷班级_________ 姓名__________ 考号_____________ 得分____________一、选择题(每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A.2cm,5 cm,8cm B.3 cm,3 cm,6 cmC.3 cm,4 cm,5 cm D.1 cm,2cm,3 cm2.在△ABC中,∠A=80°,∠B=50°,则∠C的余角是()A.130°B.50°C.40°D.20°3.如第3题图,∠C=25°,∠AED=150°,则∠CDE为()第3题图A.100°B.115°C.125°D.155°4.如第4题图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC的大小为()第4题图A.25°B.50°C.65°D.70°5.如第5 题图,工人师傅砌门时,常用木条EF固定长方形门框,使其不变形,这样做的根据是()第5题图A.三角形具有稳定性B.两点确定一条直线C.两点之间线段最短D.三角形内角和180°6.如果将一副三角板按如第6题图方式叠放,那么∠1=()第6题图A.90°B.100°C.105°D.135°7.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有()A.1个B.2个C.3个D.4个8.一个正多边形的一个内角是它相邻外角的5倍,则这个正多边形的边数是()A.12 B.10 C.8 D.69.如第9题图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为()第9题图A.40°B.41°C.42°D.43°10.在△ABC中,∠A=150°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如第10题图1.第二步:在△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如第10题图2.照此下去,至多能进行()步.第10题图1 第10题图2A.3 B.4 C.5 D.6二、填空题(每小题4分,共24分)11.如果三角形的一个外角等于与它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形最小内角的度数是.12.如第12题图,∠A+∠B+∠C+∠D+∠E+∠F=度.第12题图13.下列第13题图1、图2、图3中,具有稳定性的是图.图1 图2 图3第13题图14.如第14题图是由射线AB、BC、CD、DE、EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
三角形
一.填空题
1.三角形的三边之间的关系: .
2.顶点是A、B、C的三角形,记作: .
3.图(1)中有 三角形,用符号表示为 ,
以CD为边的三角形是 ,△ABC的三个内角分别
是 ,△ADC的三条边分别是 .
4.三角形的两条边的长分别为4和5,第三边为x,则x的取值
范围 .
5.三角形有 条高线, 条中线, 条角平分线.

6.如图(2)①AD是△ABC的角平分线,则∠ =∠ =21∠ ,

②AE是△ABC的中线,则 = =21 ,
③AF是△ABC的高线,则∠ =∠ =900.
7.如图(3)小亮的爸爸在院子的门板上钉了一个加固板,从
数学的角度看,这样做的道理是 .
8.三角形的内角和为 0 ,外角和为 0 .
9.三角形的一个外角等于 ,
三角形的一个外角大于 .
10.王老师拿出一个三角形的纸片,用剪刀依次剪去一个角,则每一次剪掉的图形是 .
11.①从七边形的一个顶点出发,可以引 条对角线,它们将七边形分为 个三角形,
七边形的内角和等于1800× .
②从八边形的一个顶点出发,可以引 条对角线,它们将八边形分为 个三角形,
八边形的内角和等于1800× .
③从n边形的一个顶点出发,可以引 条对角线,它们将n边形分为 个三角形,
n边形的内角和等于1800× .
12.n边形内角和等于 0 ,外角和等于 0 .
二、选择题
13.要组成一个三角形,三条线段的长度可取 ( )
A.1,2,3 B.2,3,5 C.3,4,5 D.3,5,10
14.如图(4),共有多少个三角形? ( )
A.3个 B.4个 C.5个 D.6个
15.下列说法错误的是 ( )。
A.任意三角形都有三条高线、中线、角平分线。
B.钝角三角形有两条高线在三角形的外部。
C.直角三角形只有一条高线。
D.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点。
16.下列正多边形材料中,不能单独用来铺满地面的是 ( )

A
B
C

E D F

(2)

A
B
C

D
(1)

(3)

A
B
C
D

E

(4)
2

A.正三角形 B.正四边形 C.正五边形 D.正六边形
17.一定在三角形内部的线段是 ( )
A.三角形的角平分线、中线、高线 B.三角形的角平分线
C.三角形的三条高线 D.以上都不对

18.适合条件∠A=∠B=21∠C的是△ABC是 ( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定
19.在长方形、正方形、菱形、等腰梯形中,是正多边形的有 ( )
A. 1个 B.2个 C.3个 D.4个
20.多边形的内角和不可能的是 ( )
A. 8100 B.3600 C.7200 D.21600
21.从n边形的一个顶点引对角线,将这个n边形分成的三角形的个数为 ( )
A.n B.n-1 C.n-2 D.n-3
22.六边形的对角线的条数是 ( )
A. 7 B.8 C.9 D.10
三、解答题
23.(1)若多边形的内角和为23400,求此多边形的边数.

(2)一个多边形的每个外角都相等,如果它的内角与外角的度数之比为13:2,求这个多边形
的边数.

24.如图(5):△ABC中,BO、CO平分∠ABC和∠ACB,
若∠A=500,求∠BOC的度数.

A

B
C

O

(5)
3

答案
一、1.两边之和大于第三边,两边之差小于第三边。2.△ABC 3.3;△ABC,△DBC,△
ADC ;△DBC,△ADC;∠A,∠B,∠ACB;AD,AC,DC. 4.1<x<9
5.三条,三条,三条 6.①∠CAD, ∠BAD,∠BAC ②BE,EC,BC ③∠AFC,∠AFB 7.三
角形的稳定性 8.180,360 9.与它不相邻的两个内角的和,与它不相邻的任何一个内角
10.三角形 11.①四,五,5 ;②五,六,6 ③n-3,n-2,(n-2) 12.(n-2)·1800,
3600
二、13.C 14.C 15.C 16.C 17.B 18.B 19.A 20.A 21.C 22.C 三、
23.(1)n=15,15边形 24.1150

相关文档
最新文档