红外图像的处理及其MATLAB实现
红外图像分割论文

红外图像分割论文基于MATLAB的红外图像分割算法研究摘要红外技术在20世纪的军事和民用领域发挥着至关重要的作用,而且随着21世纪未来战场的需要和红外技术在民用领域的不断扩展,红外技术将发挥着越来越重要的作用。
其中红外目标识别技术是世界各国学者研究的前沿和热点问题之一。
如何对红外图像进行有效的分割则关系到目标识别是否能够准确的根本。
本文在红外图像目标的预处理、分割两方面,进行了较为系统的研究。
本文概述了红外图像目标的增强、分割等技术在国内外的研究现状与发展趋势。
深入研究了图像增强算法和图像分割算法,并通过MATLAB软件实现。
通过对传统图像分割算法中常见的直方图双峰法、迭代法和最大熵法进行对比,提出了基于分水岭的分割算法,实验表明,该算法取得了较好的效果。
关键词:图像增强,图像分割Research on Infrared Image Segmentation Algorithm of Target DetectionabstractIn 21 century, infrared technology plays a vital role in military and civilian fields.As the demand of the battlefield in the future of 21st century and increasing expansion of infrared technology in the civil field,infrared technology will play an increasingly important role. Infrared target recognition technology is the frontier of academics around the world and one of the hot issues. How to segment infrared images effectively related to the accuracy of the recognition.This article made some systematic studies in image enhancement and segmentation.This article provides an overview of the actual research status and developing current of the study of target enhancement and segmentation of infrared image. An in-depth study of the algorithm of image enhancement and segmentation is made. And the algorithms are verified by MATLAB software. Aim at generally methods of image segmentation such as histogram double-hump method、iterated method,、maximum entropy method and region growing method, after abundant experiments, we presented an image segmentation based on watershed. And the result shows the new algorithm has its advantage.Keywords: Image enhancement, Image segmentation目录1 绪论 (1)1.1 课题研究意义 (1)1.2国内外研究现状和发展趋势 (3)1.3本文主要内容和安排 (6)2 红外图像的预处理 (7)2.1灰度变换增强 (7)红外图像直方图特性 (7)红外图像直方图均衡化 (9)2.2图像的平滑去噪处理 (12)空间滤波基础 (12)均值滤波 (13)中值滤波 (13)2.3图像锐化 (15)空域锐化滤波 (15)拉普拉斯算子 (16)梯度法 (18)3 红外图像分割算法研究 (21)3.1图像分割简述 (21)图像分割定义 (21)图像分割方法 (22)3.2边缘检测 (23)几种常用的边缘检测算子 (23)边缘检测 (26)matlab实现 (27)3.3基于阈值选取的图像分割方法 (28)灰度阈值分割 (28)直方图阈值 (29)迭代法 (31)最大熵阈值 (32)3.4基于区域的分割方法 (34)3.5基于形态学分水岭分割算法 (35)基本概念 (35)分水岭计算步骤 (36)3.6本章小结 (38)4 总结 (39)5 附录 (40)参考文献 (47)致谢 (48)1绪论1.1课题研究意义“红外辐射”又称“红外光”,也有人称它为“红外线”。
使用Matlab进行图像识别的基本方法

使用Matlab进行图像识别的基本方法引言随着计算机视觉的快速发展,图像识别技术正在不断成熟和应用于各个领域。
作为一种强大的科学计算工具,Matlab在图像处理和识别方面发挥着重要作用。
本文将介绍使用Matlab进行图像识别的基本方法,包括图像预处理、特征提取和分类器训练等方面。
一、图像预处理图像预处理是图像识别的首要步骤,可以提升图像质量和减少噪声的影响。
在Matlab中,我们可以使用一系列的函数和工具箱来进行图像预处理。
常见的图像预处理方法包括灰度化、平滑滤波、边缘检测等。
1. 灰度化灰度化是将彩色图像转换为灰度图像的过程。
在Matlab中,我们可以使用rgb2gray函数将RGB图像转化为灰度图像。
该函数将RGB图像的红、绿、蓝三个分量按一定的权重进行加权平均,得到一个表示灰度的单通道图像。
2. 平滑滤波平滑滤波可以去除图像中的噪声,提升图像的质量。
Matlab中提供了多种平滑滤波函数,如均值滤波、中值滤波和高斯滤波。
用户可以根据实际需求选择合适的滤波方法。
3. 边缘检测边缘检测是图像预处理中常用的技术之一。
Matlab中有多种边缘检测算法可供选择,如Sobel算子、Canny算子和Laplacian算子等。
用户可以根据具体情况选择适合的边缘检测方法。
二、特征提取特征提取是图像识别的关键步骤,是将图像中的信息转化为可供分类器识别的特征向量。
在Matlab中,我们可以使用各种特征提取算法和工具箱来提取特征。
常用的特征包括颜色直方图、纹理特征和形状特征。
1. 颜色直方图颜色直方图是一种常用的图像特征,可以反映图像中不同颜色的分布情况。
在Matlab中,我们可以使用imhist函数计算图像的颜色直方图。
通过统计图像中每个颜色值的像素个数,我们可以得到一个表示颜色分布的特征向量。
2. 纹理特征纹理特征是用来描述图像中的纹理信息的特征。
在Matlab中,我们可以使用局部二值模式(Local Binary Patterns, LBP)和灰度共生矩阵(Gray Level Co-occurrence Matrix, GLCM)等方法来提取纹理特征。
matlab高光谱影像分类

matlab高光谱影像分类高光谱影像分类是一种基于高光谱数据的图像分类方法,它可以通过对高光谱数据进行处理和分析,将图像中的不同物体或场景进行分类和识别。
在实际应用中,高光谱影像分类被广泛应用于农业、林业、环境监测、城市规划等领域,具有重要的应用价值和意义。
一、高光谱影像分类的基本原理高光谱影像分类的基本原理是利用高光谱数据中的光谱信息和空间信息,对图像中的不同物体或场景进行分类和识别。
高光谱数据是指在可见光和红外光波段内,对物体反射或辐射的光谱进行高精度采集和记录的数据。
高光谱数据包含了物体在不同波段内的反射率或辐射率,可以反映出物体的光谱特征,因此可以用于物体的分类和识别。
高光谱影像分类的基本流程包括数据预处理、特征提取、特征选择和分类器设计等步骤。
其中,数据预处理是指对高光谱数据进行去噪、辐射校正、大气校正等处理,以提高数据的质量和准确性;特征提取是指从高光谱数据中提取出有用的特征,如光谱特征、空间特征、纹理特征等;特征选择是指从提取出的特征中选择出最具有区分度和代表性的特征,以减少特征维数和提高分类准确率;分类器设计是指根据选定的特征和分类算法,设计出适合高光谱影像分类的分类器,如支持向量机、随机森林、神经网络等。
二、高光谱影像分类的应用高光谱影像分类在农业、林业、环境监测、城市规划等领域具有广泛的应用价值和意义。
1. 农业领域高光谱影像分类可以用于农作物的生长监测、病虫害识别、土壤质量评估等方面。
通过对农作物的高光谱数据进行分析,可以得到农作物的生长状态、叶绿素含量、水分含量等信息,从而实现对农作物的生长监测和管理。
同时,高光谱影像分类还可以识别出农作物中的病虫害,提高农作物的产量和质量。
2. 林业领域高光谱影像分类可以用于森林资源的调查、林木种类的识别、森林火灾的监测等方面。
通过对森林的高光谱数据进行分析,可以得到森林的植被覆盖度、植被类型、植被高度等信息,从而实现对森林资源的调查和管理。
用matlab实现数字图像处理几个简单例子

实验报告实验一图像的傅里叶变换(旋转性质)实验二图像的代数运算实验三filter2实现均值滤波实验四图像的缩放朱锦璐04085122实验一图像的傅里叶变换(旋转性质)一、实验内容对图(1.1)的图像做旋转,观察原图的傅里叶频谱和旋转后的傅里叶频谱的对应关系。
图(1.1)二、实验原理首先借助极坐标变换x=rcosθ,y=rsinθ,u=wcosϕ,v=wsinϕ,,将f(x,y)和F(u,v)转换为f(r,θ)和F(w,ϕ).f(x,y) <=> F(u,v)f(rcosθ,rsinθ)<=> F(wcosϕ,wsinϕ)经过变换得f( r,θ+θ。
)<=>F(w,ϕ+θ。
)上式表明,对f(x,y)旋转一个角度θ。
对应于将其傅里叶变换F(u,v)也旋转相同的角度θ。
F(u,v)到f(x,y)也是一样。
三、实验方法及程序选取一幅图像,进行离散傅里叶变换,在对其进行一定角度的旋转,进行离散傅里叶变换。
>> I=zeros(256,256); %构造原始图像I(88:168,120:136)=1; %图像范围256*256,前一值是纵向比,后一值是横向比figure(1);imshow(I); %求原始图像的傅里叶频谱J=fft2(I);F=abs(J);J1=fftshift(F);figure(2)imshow(J1,[5 50])J=imrotate(I,45,'bilinear','crop'); %将图像逆时针旋转45°figure(3);imshow(J) %求旋转后的图像的傅里叶频谱J1=fft2(J);F=abs(J1);J2=fftshift(F);figure(4)imshow(J2,[5 50])四、实验结果与分析实验结果如下图所示(1.2)原图像(1.3)傅里叶频谱(1.4)旋转45°后的图像(1.5)旋转后的傅里叶频谱以下为放大的图(1.6)原图像(1.7)傅里叶频谱(1.8)旋转45°后的图像(1.9)旋转后的傅里叶频谱由实验结果可知1、从旋转性质来考虑,图(1.8)是图(1.6)逆时针旋转45°后的图像,对比图(1.7)和图(1.9)可知,频域图像也逆时针旋转了45°2、从尺寸变换性质来考虑,如图(1.6)和图(1.7)、图(1.8)和图(1.9)可知,原图像和其傅里叶变换后的图像角度相差90°,由此可知,时域中的信号被压缩,到频域中的信号就被拉伸。
Matlab中的遥感图像处理与分析方法

Matlab中的遥感图像处理与分析方法遥感图像处理与分析是遥感技术的重要组成部分,它包括对获取的遥感图像进行预处理、增强、分类、信息提取等一系列操作。
Matlab作为一种强大的科学计算软件,提供了丰富的工具箱和函数,广泛应用于遥感图像处理与分析领域。
本文将介绍Matlab中一些常用的遥感图像处理与分析方法,并探讨其在实际应用中的价值。
一、遥感图像的读取与显示在进行遥感图像处理与分析之前,首先需要将遥感图像读取到Matlab中。
Matlab提供了多种读取图像的函数,如imread、multibandread等。
通过这些函数,可以将遥感图像以矩阵的形式存储在Matlab的变量中,方便后续的处理。
读取遥感图像后,我们可以使用imshow函数在Matlab中显示图像。
通过调整imshow函数的参数,可以实现对图像的缩放、亮度、对比度等的调整。
此外,Matlab还提供了imtool函数,可以在一个窗口中同时显示多幅图像,方便进行比较和分析。
二、遥感图像的预处理遥感图像的预处理是遥感图像处理与分析的重要步骤之一。
预处理的目的是消除图像中的噪声、增强图像的对比度、调整图像的亮度等,为后续的处理提供更好的数据基础。
在Matlab中,可以使用多种函数实现遥感图像的预处理。
例如,imadjust函数可以调整图像的亮度和对比度,imnoise函数可以在图像中添加噪声,medfilt2函数可以进行中值滤波,去除图像中的椒盐噪声等。
此外,Matlab还提供了一些专门用于遥感图像处理的工具箱,如Image Processing Toolbox、Computer Vision Toolbox等,这些工具箱提供了丰富的函数和工具,便于进行图像的预处理操作。
三、遥感图像的增强与融合遥感图像的增强与融合是遥感图像处理与分析的重要任务之一。
增强可以使图像中的细节更加清晰,对于提取图像中的信息非常有帮助。
融合可以将来自不同传感器或不同时刻的遥感图像融合在一起,得到更全面的信息。
MATLAB中高光谱图像处理

1651. 打开数据文件:datafile1=fopen('Terrain.hsi')。
2. 读入文件头的信息:cur=fread(datafile1,4,'int32')。
执行结果为(cur 的四个值:图像宽度,图像长度,波段数,像素所占字节数):307,500,210,2。
3. cur=fread(datafile1,inf,'int16')。
可通过”size(cur)”获得cur 的大小,这里为32235000(=307*500*210)。
4. 将一维数组变换成210x (307*500)大小的矩阵:array=reshape(cur,210,307*500)。
Array矩阵的每一列代表一个像素点在不同波段的值的大小,每一行为一个波段对应的全部数据。
5. 对每个波段求其标准差。
先将包含图像数据的矩阵转换成500*307)x210的矩阵,使每一列的数据为一波段的全部数据。
1.变换矩阵stdv=reshape(array',500*307,210);2.求方差stdv=std (stdv );3.画出标准差形成的曲线(图1):050100150200250050100150200250300350400图1由图像可大致分析出1-22、102-109、137-151、194-210可能为无用数据。
6. 到这里就可以用array 中的数据画出任意波段的图像。
例如,选取有用数据20个波段的图像:a.提取该波段的全部数据并将它转成307x500的矩阵:pic=reshape(array(175,1:500*307),307,500);b.将矩阵内的数据显示出来:imshow (pic,[])(图2):图27. 求出它对应的直方图:hist(pic)。
(画出矩阵的直方图)如图2。
050100150200250图3。
MATLAB环境下红外图像增强处理算法研究和仿真

图像一的处理及结果
f=imread('1.bmp'); w4=fspecial('laplacian',0); f=im2double(f); g4=f-imfilter(f,w4,'replicate'); figure,imshow(g4)
将处理后的结果和原图像进行比较
f=imread('1.bmp'); w8=[1 1 1;1 -8 1;1 1 1]; f=im2double(f); g8=f-imfilter(f,w8,'replicate'); figure,imshow(g8)
将两种处理结果进行比较
图像二的处理及结果
f=imread('2.bmp'); gm=medfilt2(f); figure,imshow(gm)
将处理后的结果和原图像进行比较
图像三的处理及结果
f=imread('3.bmp'); gm=medfilt2(f); figure,imshow(图像增强 结果分析
采集图像
采集图像并分析图像
图像一 模糊不清,没有噪声
采集图像并分析图像
图像二 有大量的噪声,称为 椒盐噪声
采集图像并分析图像
图像三 有大量的椒盐噪声, 而且模糊不清
算法研究
线形空间滤波 线形滤波源于频域中信号处理所使用的傅
立叶变换,线性运算包括将邻域中每个像素 与相应的系数相乘,然后将结果进行累加, 从而得到该点处的响应。这些系数排列为一 个矩阵,我们称其为滤波器或掩模。线性空 间滤波的过程仅是简单地在图像f中逐点移 动滤波掩模w的中心。在每个点处,滤波器 在该点处的响应是滤波掩模所限定的相应邻 域像素与滤波器系数的乘积结果的累加。所 有假设都是基于掩模的大小应均为奇数的原 则,有意义的掩模的最小尺寸是3*3。
如何进行MATLAB图像处理

如何进行MATLAB图像处理一、引言图像处理是计算机视觉和图像分析领域中的重要任务之一。
而MATLAB是一种强大的数学计算软件,也被广泛应用于图像处理。
本文将介绍如何使用MATLAB进行图像处理,并探讨一些常见的图像处理技术。
二、图像处理基础在开始使用MATLAB进行图像处理之前,我们需要了解一些基础知识。
一个图像通常由像素组成,每个像素都有一个灰度值或者RGB(红绿蓝)三个通道的值。
图像的处理可以分为两个主要方面:空间域处理和频域处理。
1. 空间域处理空间域图像处理是指直接对图像的像素进行操作,常见的处理方法包括亮度调整、对比度增强和图像滤波等。
MATLAB提供了一系列函数和工具箱来进行这些处理。
例如,要调整图像的亮度,可以使用imadjust函数。
该函数可以通过调整输入图像的灰度值范围,实现亮度的增强或者降低。
下面是一个简单的例子:```matlabI = imread('image.jpg'); % 读取图像J = imadjust(I,[0.2 0.8],[0 1]); % 调整亮度范围imshow(J); % 显示图像```2. 频域处理频域图像处理是指将图像从空间域转换到频域进行处理,常见的处理方法包括傅里叶变换和滤波等。
MATLAB提供了fft和ifft等函数来进行频域处理。
例如,要对图像进行傅里叶变换,可以使用fft2函数。
该函数将图像转换为频率域表示,可以进一步进行滤波等处理。
下面是一个简单的例子:```matlabI = imread('image.jpg'); % 读取图像F = fft2(I); % 傅里叶变换F = fftshift(F); % 频率域中心化imshow(log(1 + abs(F)),[]); % 显示频率域图像```三、图像处理技术了解了图像处理的基础知识后,我们可以探索一些常见的图像处理技术。
以下将介绍几个常用的技术,并给出相应的MATLAB代码示例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外图像的处理及其MATLAB 函数实现0.引言随着红外技术日新月异的发展,红外技术在军事及人们日常生活中有着越来越广泛的应用。
但由于红外探照灯及红外探测器件的限制,红外成像系统的成像效果仍然不够理想。
在民用监测应用中,主要表现为夜视距离近,图像背景与被监测目标之间对比度模糊,被监测目标细节难以辨认,图像特征信息不明确等方面。
为使图像更适于人眼观测、适用于图像后续目标识别及跟踪处理,有必要在红外图像采集和处理上做进一步的研究,来增强红外图像视觉效果。
1. 红外图像的获取及其特点1.1 红外图像的获取红外图像主要是由红外热像仪采集的。
红外热像仪是一种二维热图像成像装置。
热成像系统是一个光学一电子系统,可用于接收波长在m 100~75.0之间的电磁辐射,它的基本功能是将接收到的红外辐射转换成电信号,再将电信号的大小用灰度等级的形式表示,最后在显示器上显示出来。
图1.1就是一张采集到的红外图像。
图1.1 输入的红外图像1.2 红外图像的特点红外图像反映了目标和背景不可见红外辐射的空间分布,其辐射亮度分布主要由被观测景物的温度和发射率决定,因此红外图像近似反映了景物温度差或辐射差。
根据其成像原理,总结红外图像特点如下:(1)红外热图像表征景物的温度分布,是灰度图像,没有彩色或阴影(立体感觉),故对人眼而言,分辨率低、分辨潜力差;(2)由于景物热平衡、光波波长、传输距离远、大气衰减等原因,造成红外图像空间相关性强、对比度低、视觉效果模糊;(3)热成像系统的探测能力和空间分辨率低于可见光CCD阵列,使得红外图像的清晰度低于可见光图像;(4)外界环境的随机干扰和热成像系统的不完善,给红外图像带来多种多样的噪声,比如热噪声、散粒噪声、f1噪声、光子电子涨落噪声等等。
噪声来源多样,噪声类型繁多,这些都造成红外热图像噪声的不可预测的分布复杂性。
这些分布复杂的噪声使得红外图像的信噪比比普通电视图像低;(5)由于红外探测器各探测单元的响应特性不一致等原因,造成红外图像的非均匀性,体现为图像的固定图案噪声、串扰、畸变等。
由以上五点可知,红外图像一般较暗,且目标与背景对比度低,边缘模糊,视觉效果差。
通过以上比较分析,可以总结:可见光图像与红外图像的成像机理虽然不同(可见光图像是利用物体对光线的反射来获得的,而红外图像是靠物体自身的红外辐射获取的),但在低照度情况下,可见光图像与红外图像的视觉效果和直方图特征均相同,因此可以采用低照度可见光图像的处理方法来处理红外图像。
2. 红外图像的增强2.1 图像增强图像增强是指对图像的某些特征,如边缘、轮廓、对比度等进行强调或突显,以便于观察或做进一步的分析与处理。
图像增强不意味着能增加原始的信息,有时甚至会损失一些信息,但图像增强的结果却能加强对特定信息的识别能力,便图像中感兴趣的特征得以加强,从而使这些特征的检测和识别变得更加容易。
图像增强方法的分类如图2.1所示:图2.1 图像增强方法下面我们主要介绍其中的几种增强方法。
2.2 红外图像的直方图均衡化2.2.1 图像的直方图灰度直方图是用于表达图像灰度分布情况的统计图表,有一维直方图和二维直方图之分。
其中最常用的是一维直方图。
它具有以下三个性质:(1)图像与直方图之间是多对一的映射关系;(2)只表示图像每一灰度级出现的频数,而失去了具有该灰级的像素的位置信息;(3)一幅图像各子区直方图之和等于该图像的全图直方图。
一幅图像的直方图可以提供下列信息:(1)每个灰度级上像素出现的频数;(2)图像像素值的动态范围;(3)整幅图像的大致平均明暗;(4)图像的整体对比度情况。
因此,在图像处理中直方图是很有用的决策和评价工具。
直方图统计在对比度拉伸、灰度级修正、动态范围调整、图像灰度调整、模型化等图像处理方法中发挥了很大的作用,在本文后面的讨论中将可以看到直方图的重要作用。
比较红外图像与可见光图像的直方图,可以总结其直方图特点如下:(1)像素灰度值动态范围不大,很少充满整个灰度级空间;而可见光图像的像素则分布于几乎整个灰度级空间。
(2)绝大部分像素集中于某些相邻的灰度级范围,这些范围以外的灰度级上则没有或只有很少的像素;而可见光图像的像素分布则比较均匀。
(3)直方图中有明显的峰存在,多数情况下为单峰或双峰,若为双峰,则一般主峰为信号,次峰为噪声;而可见光图像直方图的峰不如红外图像明显,一般多个峰同时存在。
以上特点是大多数红外图像直方图所具备的,但也不绝对。
实际中的红外图像可能会由于气候条件、环境温度等因素的影响,呈现出与上述特点不完全一致的情形。
图2.2为原红外图像的灰度图和直方图直方图图2.2 原始图像的灰度图和直方图2.2.2 直方图的均衡化直方图均衡的作用是改变图像中灰度概率分布,使其均匀化.其实质是使图像中灰度概率密度较大的像素向附近灰度级扩展,因而灰度层次拉开,而概率密度较小的像素灰度级收缩,从而让出原来占有的部分灰度级,这样的处理使图像充分有效地利用各个灰度级,因而增强了图像对比度。
由前一章红外图像特点的分析可知,红外图像普遍存在着灰度级比较集中,层次感差等问题,采用直方图均衡算法来进行处理,可以使其灰度级尽量拉开,从而达到对比度增强的效果。
下面探讨一下直方图均衡的具体步骤。
设一幅图像的像素为n ,共有L 个灰度级,k n 代表灰度级为k r 的像素的数目,则第k 个灰度级出现的概率(对于灰度级为离散的数字图像,用频率来代替概率)可表示为: n n r P k k r =)( 其中,12,1,0,10-=≤≤L k r k 。
对其进行均衡化后的函数)(r T 的离散形式可表示为:∑∑=====k i i k r r k nn r P r T S 00)()( 式中,12,1,0,10-=≤≤L k r k 。
可见,均衡后各像素的灰度值k S 可直接由原图像的直方图得到。
(a)(b)(c)图2.3 均衡化后的图像对比实验证明,直方图均衡对大多数红外图像有效,效果明显,图像对比度大大增强,原本视觉效果模糊的图像变得清晰,目标的细节得到了突出,方法简单,容易实现,在实践中具有重要意义。
通过以上的理论分析和对具体红外图像的处理,可以得出关于直方图均衡的几个结论:(I)直方图均衡实质上减少灰度等级以换取对比度的加大。
直方图均衡化的处理过程中出现了相邻灰度级合并的现象,即原来直方图上频数较小的灰度级被归入很少几个或一个灰度级内,并且可能不在原来的灰度级上;(2)均衡后的直方图并非完全平坦,这是因为在离散灰度下,直方图只是近似的概率密度;(3)当被合并掉的灰度级构成的是重要细节,则均衡后细节信息损失较大。
因此可采用局部直方图均衡法来处理:(4)在对比度增强处理中,直方图均衡比灰度线性交换、指数、对数变换的运算速度慢,但比空间域处理和变换域处理的速度快。
因此在实时处理中,直方图均衡是一种常用的方法;(5)直方图均衡虽然增大了图像的对比度,但往往处理后的图像视觉效果生硬、不够柔和,有时甚至会造成图像质量的恶化。
另外,均衡后的噪声比处理前明显,这是因为均衡没有区分有用信号和噪声,当原图像中噪声较多时,噪声被增强。
2.3 Laplacian算子锐化算法Laplacian算子是线性二次微分算子,具有旋转不变性,可以满足不同走向的图像边界的锐化要求,对于图像),(y x F ,其Laplacian 算子为: 22222),(),(),(y y x F x y x F y x F ∂∂+∂∂=∇ Laplacian 算子锐化后的图像具有以下特征:(1)在灰度均匀区间或灰度斜坡部分F 2∇为零,在灰度斜坡的起始处和终点处不为零;(2) F 2∇对细节有较强的相应;正是由于F 2∇有这些特点,使其可以勾划出图像区域的边缘轮廓。
因此Laplacian 算子对边缘检测具有很好的功效。
图2.4 Laplacian 算法处理前后图像2.3 中值滤波算法中值滤波是常用的一种非线性平滑滤波。
它是一种邻域运算,类似于卷积,但不是加权求和计算,而是把邻域中的像素按灰度等级进行排序,然后选择改组的中间值作为输出像素值。
他能减弱或消除傅立叶空间的高频分量,但影响低频分量。
因为高频分量对应图像中的区域边缘和灰度值具有较大变化的部分,因此概率波可以将这些分量滤除,使图像平滑。
其主要原理是:首先确定一个以某个像素为中心点的邻域,一般为方形领域;然后将邻域中的各个像素的灰度值进行排序,取其中间值作为中心点像素灰度的新值,这里的邻域通常被称为窗口;当窗口在图像中上下左右进行移动后,利用中值滤波算法可以很好地对图像进行平滑处理。
操作步骤如下:(1)将模板在图像中移动,并将模板中心与图像中心某个像素的位置重合;(2)读取模板下各对应像素的灰度值;(3)将这些灰度值从小到大排列成一列;(4)找出排在中间的一个值;(5)将这个中间值赋给对应模板中心位置的像素。
中值滤波的输出像素是由邻域图像的中间值决定的,因而中值滤波对极限像素值(与周围像素灰度值差别较大的像素)远不如平均值那么敏感,从而可以消除孤立的噪声点,又可以保持图像的细节。
设),(y x f 表示数字图像像素点的灰度值,滤波窗口为A 的中值滤波器定义为:)},({),(),(y x G Median y x G Ay x ∈= 中值滤波的优势在于它能够保护图像的边缘信息,而且可以出去图像中含有的无用的图像噪声,通常要求窗宽的一半大于噪声的延续宽度。
中值滤波器的窗口形状和尺寸对滤波影响都很大,在不同的图像内容和不同的要求下,应该采用不同的形状和尺寸。
通常有线性、方形、十字形、圆环形等,而窗口的尺寸由小变大逐步增大点数,直到取得满意的滤波效果。
一般而言,对于变化缓慢的且具有较长轮廓线物体的图像,可采用方形或圆形。
而对于具有尖角物体的图像可采用十字窗口。
图2.5 中值滤波处理前后的图像3. 红外图像的边缘检测3.1 边缘检测边缘检测是图像处理的重要内容之一,它是图像分割、目标区域的识别、区域形状特征提取等图像分析的基础。
本节主要介绍边缘检测方法Robert ,Sobel ,ewitt Pr ,)(LOG Gaussian Laplacian -,Canny 和数学形态学法。
3.2 常用的边缘检测方法边缘是图像的最基本的特征,边缘中包含着有价值的目标边界信息,这些信息可以用作图像分析、目标识别。
常用的检测方法有:(1) Robert 算子Robert 算子是利用局部查分算子寻找边缘的算子,它是22⨯算子,对具有陡峭的低噪声图像响应最好,但是Robert 算子提取边缘的结果边缘较粗,因此边缘定位不很准确。
(2) Sobel 算子Sobel 算子是一阶微分算子,它利用像素临近区域的梯度来计算1个像素的梯度,然后根据一定的阈值来取舍,它是33⨯算子模版,对边缘的定位比较准确,对灰度渐变噪声较多的图像处理的较好。