教师资格考试中学数学学科知识

合集下载

2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案

2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案

2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案第1卷一.全考点押密题库(共100题)1.(单项选择题)(每题 5.00 分)我国古代关于求解一次同余式组的方法被西方称作“中国剩余定理”,这一方法的首创者是()。

A. 贾宪B. 刘徽C. 朱世杰D. 秦九韶2.3.(单项选择题)(每题 1.00 分)关于倍立方体问题中最重大的成就是柏拉图学派的()为解决倍立方体问题而发现了圆锥曲线。

A. 梅内赫莫斯B. 泰勒斯C. 欧几里得D. 阿基米德4.(单项选择题)(每题5.00 分)下列说法正确的是()。

A. 单调数列必收敛B. 收敛数列必单调C. 有界数列必收敛D. 收敛数列必有界5.(单项选择题)(每题 5.00 分) 一元三次方程x3 -3x-4 = 0的解的情况是()。

A. 方程有三个不相等的实根B. 方程有一个实根,一对共轭复根C. 方程有三个实根,其中一个两重根D. 无解6.(单项选择题)(每题 5.00 分) 我国现行法律认为,教师职业是一种()。

A. 私人职业B. 从属职业C. 专门职业D. 附加职业7.(单项选择题)(每题 1.00 分)下列关于椭圆的论述,正确的是()。

A. 平面内到两个定点的距离之和等于常数的动点轨迹是椭圆B. 平面内到定点和定直线距离之比小于1的动点轨迹是椭圆C. 从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆另一个焦点D. 平面与圆柱面的截线是椭圆8.(单项选择题)(每题 1.00 分)设4阶矩阵A与B仅有第3行不同,且|A|=1,|B|=3,则|A+B|=()。

A. 3B. 6C. 12D. 329.(单项选择题)(每题 5.00 分) 设向量a,b满足:|a| = 3,|b| = 4, a.b=0。

以a,b,a-b的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()。

A. 3B. 4C. 5D. 610.(单项选择题)(每题 1.00 分)《义务教育数学课程标准(2011 年版)》从四个方面阐述了课程目标,这四个目标是()。

中学数学教资科目三考试内容

中学数学教资科目三考试内容

中学数学教资科目三考试内容
中学数学教资科目三考试主要涵盖以下内容:
1. 中学数学学科知识:考察中学数学课程的基本知识、原理和教学方法。

包括数学分析、高等代数、解析几何、概率与数理统计等知识点。

2. 教学能力:考察教学设计、组织、实施和评价等方面的能力。

包括教学目标设定、教学方法选择、教学过程管理、学生评估等。

3. 教育心理学:考察教育心理学的基本原理和在数学教学中的应用。

包括学生心理发展、学习动机、教学心理氛围等。

4. 教育法律法规:考察教育法律法规的基本知识和在数学教学中的应用。

包括教育政策、教育法规、教育纪律等。

5. 数学教学法:考察数学教学的基本原则、方法、手段等方面的内容。

包括教学策略、教学模式、教学评价等。

6. 教育教学案例分析:分析数学教学中的实际案例,考察考生运用教育理论解决实际问题的能力。

7. 教学设计:考察考生的教学设计能力,包括教学内容、教学目标、教学方法、教学过程等。

8. 教学评价:考察考生的教学评价能力,包括学生评价、教学效果评价、教学方法评价等。

2024年教师资格之中学数学学科知识与教学能力真题精选附答案

2024年教师资格之中学数学学科知识与教学能力真题精选附答案

2024年教师资格之中学数学学科知识与教学能力真题精选附答案单选题(共45题)1、维生素K缺乏和肝病导致凝血障碍,体内因子减少的是A.Ⅱ、Ⅶ、Ⅸ、ⅩB.Ⅱ、Ⅴ、Ⅶ、ⅩC.Ⅲ、Ⅴ、Ⅶ、ⅩD.Ⅳ、Ⅴ、Ⅶ、ⅩE.Ⅳ、Ⅶ、Ⅸ、Ⅹ【答案】 A2、创立解析几何的主要数学家是().A.笛卡尔,费马B.笛卡尔,拉格朗日C.莱布尼茨,牛顿D.柯西,牛顿【答案】 A3、男性,28岁,农民,头昏乏力半年有余。

体检:除贫血貌外,可见反甲症。

检验:外周血涂片示成熟红细胞大小不一,中央淡染;血清铁7.70μmol/L(43μg/dl),总铁结合力76.97μmol/L(430μg/dl);粪便检查有钩虫卵。

其贫血诊断为A.珠蛋白生成再生障碍性贫血B.慢性肾病C.缺铁性贫血D.慢性感染性贫血E.维生素B【答案】 C4、以下不属于初中数学课程目标要求的三个方面的是( )A.知识与技能目标B.情感态度与价值观目标C.体验目标D.过程与方法目标【答案】 C5、关于心肌梗死,下列说法错误的是A.是一种常见的动脉血栓性栓塞性疾病B.血管内皮细胞损伤的检验指标增高C.生化酶学和血栓止血检测是诊断的金指标D.较有价值的观察指标是分子标志物检测E.血小板黏附和聚集功能增强【答案】 C6、下列关于高中数学课程变化的内容,说法不正确的是()。

A.高中数学课程中的向量既是几何的研究对象,也是代数的研究对象B.高中数学课程中,概率的学习重点是如何计数C.算法是培养逻辑推理能力的非常好的载体D.集合论是一个重要的数学分支【答案】 B7、外周免疫器官包括A.脾脏、淋巴结、其他淋巴组织B.扁桃腺、骨髓、淋巴结C.淋巴结、骨髓、脾脏D.胸腺、脾脏、粘膜、淋巴组织E.腔上囊、脾脏、扁桃体【答案】 A8、我国古代关于求解一次同余式组的方法被西方称作“中国剩余定理”,这一方法的首创者是()。

A.贾宪B.刘徽C.朱世杰D.秦九韶【答案】 D9、最早使用“函数”(function)这一术语的数学家是()。

2023年教师资格之中学数学学科知识与教学能力真题精选附答案

2023年教师资格之中学数学学科知识与教学能力真题精选附答案

2023年教师资格之中学数学学科知识与教学能力真题精选附答案单选题(共30题)1、下列说法错误的是( )A.义务教育阶段的课程内容要反映社会的需求、数学的特点,要符合学生的认知规律B.有效的教学活动是学生学和教师教的统一C.教师教学要发挥主体作用,处理好讲授与学生自主学习的关系D.评价既要关注学生学习的结果,也要重视学习的过程【答案】 C2、利用细胞代谢变化作为增殖指征来检测细胞因子生物活性的方法称为A.放射性核素掺入法B.NBT法C.细胞毒测定D.MTT比色法E.免疫化学法【答案】 D3、细胞膜型Ig合成中恒定区基因所连接的外显子是()A.CμB.SC.MCD.σE.Cγ【答案】 C4、传染性单核细胞增多症的实验室特点是A.EBV抗体阴性B.外周血中无异形淋巴细胞C.嗜异性凝集试验阳性D.骨髓中单核细胞明显增加E.骨髓象中可见异形淋巴细胞,原始、幼稚淋巴细胞增多【答案】 C5、世界上讲述方程最早的著作是()。

A.中国的《九章算术》B.阿拉伯花拉子米的《代数学》C.卡尔丹的《大法》D.牛顿的《普遍算术》【答案】 A6、实验室常用的补体灭活方法是A.45℃,30minB.52℃,30minC.56℃,30minD.50℃,25minE.37℃,25min【答案】 C7、患儿,男,7岁。

患血友病5年,多次使用Ⅶ因子进行治疗,近2个月反复发热,口服抗生素治疗无效。

实验室检查:Anti-HIV阳性。

选择符合HIV诊断的结果A.CD4T细胞↓,CD8T细胞↓,CD4/CD8正常B.CD4细胞↓,CD8T细胞正常,CD4/CD8↓C.CD4T细胞正常,CD8T细胞↓,CD4/CD8↑D.CD4T细胞↑,CD8T细胞正常,CD4/CD8↑E.CD4T细胞正常,CD8T细胞↑,CD4/CD8↓【答案】 B8、关于骨髓纤维化下列说法不正确的是A.脾大B.原发性骨髓纤维化,也可Ph染色体阳性C.末梢血可出现幼红/粒细胞。

初中数学教师资格证数学学科知识

初中数学教师资格证数学学科知识

初中数学教师资格证数学学科知识摘要:一、初中数学教师资格证的重要性1.提升教师专业素质2.保证教育质量3.提高学生学习效果二、初中数学学科知识要求1.初中数学课程标准2.初中数学教材分析3.初中数学教学方法三、初中数学教师资格证备考建议1.熟悉考试大纲和命题规律2.掌握重点知识点3.加强教学实践能力正文:初中数学教师资格证数学学科知识是提升教师专业素质、保证教育质量以及提高学生学习效果的重要因素。

作为一名初中数学教师,不仅要具备扎实的数学基础知识,还要掌握教育教学的相关理论。

本文将从初中数学教师资格证的重要性、初中数学学科知识要求以及初中数学教师资格证备考建议三个方面进行详细阐述。

首先,初中数学教师资格证对于提升教师专业素质具有重要意义。

随着教育改革的不断深入,对教师的专业素质要求越来越高。

教师资格证考试是对教师基本素质的考察,只有通过考试,才能证明具备了从事教育教学工作的基本能力。

同时,教师资格证也是选拔优秀教师的重要依据。

其次,初中数学学科知识要求是确保教育质量的关键。

教师需要熟悉初中数学课程标准,了解课程目标和教学要求。

此外,教师还应掌握初中数学教材分析方法,能够根据教材的特点和学生需求进行教学设计。

在教学过程中,教师需要运用恰当的教学方法和手段,提高学生的学习兴趣和能力。

最后,针对初中数学教师资格证备考,建议考生首先要熟悉考试大纲和命题规律,了解考试重点和难点。

其次,要掌握重点知识点,多做练习题,形成自己的知识体系。

此外,还要加强教学实践能力,通过参加教育培训、教学实习等活动,提高自己的教育教学水平。

总之,初中数学教师资格证数学学科知识是教师专业素质的重要组成部分,熟悉和掌握这些知识对于提高教育教学质量具有重要意义。

2023年教师资格之中学数学学科知识与教学能力真题精选附答案

2023年教师资格之中学数学学科知识与教学能力真题精选附答案

2023年教师资格之中学数学学科知识与教学能力真题精选附答案单选题(共35题)1、Ⅰ型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.Ⅵ型超敏反应【答案】 D2、荧光着色主要在细胞核周围形成荧光环的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】 C3、典型的T细胞缺陷型疾病半甲状腺功能低下的是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】 B4、就红细胞生成素(EP)而言,下述错误的是()A.是一种糖蛋白,主要由肾产生,而人工无制备B.能刺激造血多能干细胞,使形成红细胞系祖细胞C.能促进幼红细胞增殖和成熟D.缺氧状态时,肾产生红细胞素增加E.胎儿时期肝脏也可产生【答案】 A5、临床有出血症状且APTT延长和PT正常可见于A.痔疮B.FⅦ缺乏症C.血友病D.FⅩⅢ缺乏症E.DIC【答案】 C6、外伤时,引起自身免疫性交感性眼炎A.隐蔽抗原的释放B.自身成分改变C.与抗体特异结合D.共同抗原引发的交叉反应E.淋巴细胞异常增殖【答案】 A7、ELISA是利用酶催化反应的特性来检测和定量分析免疫反应。

ELISA中的酶结合物是指A.免疫复合物B.结合在固相载体上的酶C.酶与免疫复合物的结合D.酶标记抗原或抗体E.酶与底的结合【答案】 D8、逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的()。

A.标准B.认知规律C.基本保证D.内涵【答案】 C9、反复的化脓性感染伴有慢性化脓性肉芽肿形成的是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】 D10、使用口服抗凝剂时PT应维持在A.正常对照的1.0~1.5倍B.正常对照的1.5~2.0倍C.正常对照的2.0~2.5倍D.正常对照的2.5~3.0倍E.正常对照的3倍以上【答案】 B11、下列语句是命题的是()。

2025年教师资格考试初级中学学科知识与教学能力数学试题及解答参考

2025年教师资格考试初级中学学科知识与教学能力数学试题及解答参考

2025年教师资格考试初级中学数学学科知识与教学能力复习试题(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、下列哪个函数是偶函数?A.f(x)=2x3−3x2+1B.g(x)=frac1xC.ℎ(x)=sinx+cosxD.j(x)=√x2−4x+52、下列哪个数列是等差数列?A.1,3,6,10,15B.0,2,4,6,8C.1,2,3,5,8D.2,3,5,7,113、下列关于平面图形的叙述,错的是 ( )A. 平行四边形不一定对角互补B. 等腰三角形的两条边的长度相等C. 矩形的对角线相等且垂直互相平分D. 放射图形的面积等于原来的图形的面积4、一个几何图形的特征是“两条相边的长度都相等”,则这个图形可能是 ( )A. 平行四边形B. 等腰三角形C. 长方形D. 以上都是5、下列选项中的四个数字均来自教师资格考试题库中填空题试题的参考答案,其中不是整数的是:A. 1B. 3C. 0.7D. 99.996、在“同分母分数相加减”的教学中,教师让学生通过分物操作经历“同分母分数相加”的过程,这里教师采用的教学方法是:A. 练习法B. 探究法C. 实验法D. 讨论法7、下列数学定理不属于勾股定理的应用范畴的是()A.直角三角形的斜边平方等于两直角边的平方和。

B.已知三角形三边长度,求三角形的面积。

C.解决某些与几何图形相关的最优化问题。

D.三角形相似的判定定理。

8、在解决初中数学应用题时,下列哪种方法不是常用的策略?()A.建立数学模型。

B.直接套用公式。

C.逻辑推理分析。

D.猜测答案。

二、简答题(本大题有5小题,每小题7分,共35分)第一题题目:简述二次函数的性质,并举例说明。

答案及解析:第二题小明在学习函数时,将下列函数:y = 2x + 3 与 y = (x + 2)^2 用相同的方式进行图像变换,得出两个新的函数。

其中一个新的函数的图像与 y = 2x + 3 的图像平移,另一个新的函数的图像与 y = (x + 2)^2 的图像平移。

2024年教师资格之中学数学学科知识与教学能力通关考试题库带答案解析

2024年教师资格之中学数学学科知识与教学能力通关考试题库带答案解析

2024年教师资格之中学数学学科知识与教学能力通关考试题库带答案解析单选题(共40题)1、下列数学成就是中国著名数学成就的是()。

A.①②③B.①②④C.①③④D.②③④【答案】 C2、在新一轮的数学教育改革中,逐渐代替了数学教学大纲,成为数学教育指导性文件的是()。

A.数学教学方案B.数学课程标准C.教学教材D.数学教学参考书【答案】 B3、下列函数不属于初中数学课程内容的是()。

A.一次函数B.二次函数C.指数函数D.反比例函数【答案】 C4、下面是关于学生数学学习评价的认识:A.③④B.①②③C.①②④D.①②③④【答案】 D5、下列划分正确的是()。

A.有理数包括整数、分数和零B.角分为直角、象限角、对顶角和同位角C.数列分为等比数列、等差数列、无限数列和递减数列D.平行四边形分为对角线互相垂直的平行四边形和对角线不互相垂直的平行四边形【答案】 D6、下列命题不正确的是()。

A.有理数对于乘法运算封闭B.有理数可以比较大小C.有理数集是实数集的子集D.有理数集是有界集【答案】 D7、新课程标准对于运算能力的基本界定是()。

A.正确而迅速的运算B.正确运算C.正确而灵活地运算D.迅速而灵活地运算【答案】 B8、柯萨奇病毒感染引起糖尿病A.隐蔽抗原的释放B.自身成分改变C.与抗体特异结合D.共同抗原引发的交叉反应E.淋巴细胞异常增殖【答案】 D9、冷球蛋白沉淀与复溶解的温度通常为A.-20℃,4℃B.-4℃,37℃C.-4℃,0℃D.0℃,37℃E.-20℃,37℃【答案】 B10、中性粒细胞碱性磷酸酶(NAP)积分正常参考值为A.140~174分B.30~130分C.105~139分D.71~104分E.7~51分【答案】 B11、免疫球蛋白含量按由多到少的顺序为A.IgG,IgM,IgD,IgE,IgAB.IgG,IgA,IgM,lgD,IgEC.lgG,IgD,lgA,IgE,IgMD.IgD,IgM,IgG,IgE,IgAE.IgG,IgM,IgD,IgA,IgE【答案】 B12、血小板生存期缩短见于下列哪种疾病A.维生素K缺乏症B.原发性血小板减少性紫癜C.蒙特利尔血小板综合征D.血友病E."蚕豆病"【答案】 B13、“等差数列”和“等比数列”的概念关系是()A.交叉关系B.同一关系C.属种关系D.矛盾关系【答案】 A14、Ⅳ型超敏反应中最重要的细胞是A.B细胞B.肥大细胞C.CD4D.嗜酸性粒细胞E.嗜碱性粒细胞【答案】 C15、定量检测病人外周血免疫球蛋白常用的方法是()A.间接血凝试验B.双向琼脂扩散C.单向琼脂扩散D.外斐试验E.ELISA【答案】 C16、正常情况下血液中不存在的是A.因子ⅢB.因子ⅤD.因子ⅩE.因子Ⅸ【答案】 A17、下列对向量学习意义的描述:A.1 条B.2 条C.3 条D.4 条【答案】 D18、教学方法中的发现式教学法又叫()教学法A.习惯B.态度C.学习D.问题【答案】 D19、男性,30岁,黄疸,贫血4年,偶见酱油色尿。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V数学学科知识初中阶段的十个核心概念:数感;符号意识,空间观念,几何观念,数据分析观念;运算能力,推理能力;模型思想;创新思想(提出问题,独立思考,归纳验证);应用意识。

义务教育阶段数学课程总目标1)获得适应生活必要的知识技能思想和经验2)体会数学与生活,其他学科的联系。

分析解决问题能力培养。

3)了解数学价值,增加兴趣,信心,爱好。

养成良好习惯,初步形成科学态度。

数学在义务教育的地位。

义务教育具有基础性发展性和普及性。

数学课程能使学生掌握以后生活工作必备的基本知识,基本技能,思想方法;抽象能力和推理能力;促进情感态度价值观健康发展。

为今后的生活,学习打下基础。

二次根式:就是开根号目标:了解意义,掌握字母取值问题,掌握性质灵活运用通过计算,培养逻辑思维能力领悟数学的对称性和规律美。

重点:根式意义;难点;字母取值范围勾股定理探索证明的基础上,联系实际,归纳抽象,应用解决实际问题。

通过探索分析归纳过程,提高逻辑能力和分析解决问题能力。

数学好奇心,热爱数学。

重点:应用难点:实际问题转化为数学问题平行四边形及性质经历探索平行四边形性质和概念,掌握性质,能够判别体会操作转化的思想过程,积累问题解决的思想。

与他人交流,积极动手的习惯四边形内角和:量角器;内部做三角形;按照边做三角形;按照定点做三角形。

一次函数和二元一次方程的关系。

数形结合数学思想为主体;问题为贯穿;数形结合为工具;提高问题解决能力。

数学课程理念内涵:人人获得良好数学教育,在数学上得到不同发展内容:符合数学特点,认知规律,社会实际。

层次性和多样性。

间接与直接。

过程:师生交往评价:多元发展信息技术与课程:现在信息技术改进教学方法,资源。

1)信息技术开发资源,注重整合2)教学方式的改善3)理解原理的基础上,利用计算器,计算机4)不能完全替代原有的有段。

合情推理:根据已有的结论,实践结果,直观等推测某些结论。

便于发现问题。

(归纳法:n=1和n大于1成立的证明)演绎推理:根据已有的结论,严格按照逻辑进行推理,用于证明。

从一般到特殊直接证明:原命题直接逐步推理的到新命题。

间接证明:反证法数学教学目标明确解决三个问题:为什么学习数学,应当学那些,将给学生带来什么。

数据课程核心概念数感,符号意识,空间概念,几何观念,数据分析观念,运算能力,推理能力,模型思想,应用意识,创新意识。

论述:数学学科内涵是影响数学课程的主义因素,以一元二次论述内涵的意义。

1)数学本身的内涵即知识方法和意义。

2)一元二次方程有关概念基本解法和其他知识的联系,模型应用等。

3)学科内涵作为教育任务,学习中可能存在困难。

过程性目标与结果性目标分析初中数学学段目标的知识技能。

数与代数:体验具体情景中数学符号的抽象过程,理解有理数,无理数,实数,方程,函数等;掌握必要的运算技能;探索变化规律,掌握表达方法。

包含了过程性和结果性目标。

体验探索…….为过程性目标;掌握……为结果性目标图形与几何:掌握三角形,平行线,园,四边形基本性质判断,掌握基本作图技能,理解探索图形变化,投影,理解坐标系和位置。

包含了包含了过程性和结果性目标。

体验探索…….为过程性目标;掌握,理解……为结果性目标统计与概率:体验收集处理分析推断过程,理解抽样方法,体验用样本估计总体过程;进一步认识随机现象和概率。

包含了包含了过程性和结果性目标。

体验探索…….为过程性目标;掌握,理解……为结果性目标函数集中安排在不等式方程学习后不合理,函数学习不仅仅是掌握知识本身,还有认识现象,解决问题的方法;函数知识本身的内涵不单纯的包括定理定义等,还有内部的联系。

代数,方程,不等数与函数的联系密切相关,认识过程要经历感性到理性的过程,不能仅仅的抽象符号利用。

举例子说明统计相关概念的教学重心。

例如平均数,重心在于帮助学生理解内涵,特点,可以表达的数据信息,容易产生的误导原因;而不是简单的快速计算公示。

综合与实践在初中课程中的作用,谈一谈。

1)自主学习以问题为载体;将综合运用数与代数,图形与几何,统计与概率等知识和方法解决问题。

目的在与培养学生解决实际问题的问题意识,创新意识和应用意识等。

2)有效的调动了学生的积极性主动性,发展学生个性,提高多方面能力,促进学生情感态度价值观发展。

对丰富学生经验,形成对自然,学科,自我整体的认识,发展创新实践精神。

3)数与代数,图形与几何,统计与概率与综合实践内容都是数学课程的重要组成部分,可以课堂上完成,可以内外课堂结合。

统计与概率中数据随机性的内涵1)同样的事情每次收集的数据可能不同;足够的数据可以发现规律。

2)举例子:红球。

让学生感悟数据是随机的,数据很多时又具有稳定性,知道大概能出现多少次。

学习图形与几何的重点是培养几何证明能力错误图形与几何的内容包括图形的性质,变化和坐标。

其中证明性质知识其中一部分。

其他两方面也很重要,例如。

举例子说明课堂教学发生状况处理情况1)在处理状况时将情感态度目标落实。

2)例如:学生练习错误又不努力改正时,教师要求学生字句独立完成修改;自己对自己的事情负责;并且相信学生能够完成,增加学生改正错误的自信心。

3)例如:学生不能正确回到问题时,要引导,不能简单的打断错误回答,要让学生理解自己哪里的理解认识是错误的,而不是简单的否定。

数学教学中预设与生成的关系1)教学方案是预设,老师要理解钻研在钻研理解,以《义务教育数学课程标准》为依据,把握教材编写意图,和内容的教育价值。

2)对教材的再创造,根据班级实际情况,选择贴切的教学素材和教学流程,体现基本理念和内容规定的要求。

3)教学活动:将预设转为实际活动,会生成新的资源,要求老师即时把握,因势利导,即时调整,使活动收到更好的效果。

面向全体与关注个性差异的关系1)努力让全体达到目标要求,同时关注差异,促进在原有基础上发展。

2)有苦难的,即时帮助,鼓励自己解决问题,点滴进步给予肯定;耐心引导错误原因,增加信心。

3)有余力的学生,提供足够的思维空间和材料,发展才能。

4)方式多样化,评价多样化,问题情境,主动参与,交流合作。

合情推理与演绎推理1)推理贯穿于整个数学教学的始终,形成和提高是一个长期的循序渐进的过程。

2)年龄不同程度不同,注重条理性,不要过分强调形式。

3)推理包括合情和演绎推理。

4)设计适当的活动,通过观察,类比等发现规律,猜测结论,发展合情推理能力;通过实例让学生逐步意识到,结论的正确性需要演绎推理的确认。

5)合情推理和演绎推理是相辅相成的。

证明的教学应关注学生对证明必要性的感受,对证明基本方法掌握和体验。

证明过程应注重符合逻辑性,条理性,清晰性。

多种思路。

举例说明教学活动中,如何引导积累数学活动,感悟思想1)《义务教育数学课程标准》建议:引导学生积累经验,感悟思想。

2)例如分类是一种重要的数学思想。

数学学习中经常用分类问题,例如图形,代数式,函数分类等。

3)实际问题中:通过分类解决实际问题,理解共性和抽象过程。

4)逐步体会怎么分类,如何分类,标准,性质。

5)反复积累,才能逐步感悟思想。

评语以定性为主,实际上是一情感交流,学生阅读评语时,能够获得成功的体验,树立自信心,也能知道自己的不足和能力方向。

评价形式1)口头测试2)书面测试3)开放式问题研究4)活动报告5)课堂观察6)课后访谈7)作业8)成长记录数学思考评价的重心和重点1)数学思考并非简单的知识,而是学生能力的发展。

2)重心在于:关注是否能进行思考。

3)重点:用数学来表达交流信息;观察现象;运动数学进行推理;根据特质推测,猜测;有条理的表达自己观点。

书面测试注意事项1)知识技能到达情况。

必须符合标准要求2)选学内容不列入3)基本技能要注重考察本质的理解和应用,不出怪题,淡化解题技巧4)设计试题,注重标准的思路核心词体验:数感,符号意识,运算能力,模型能力,空间观念,几何观念,推理能力数据,分析能力。

5)根据评价目的合理设计6)积极探索可以考察学生学习过程的试题发现式教学1)问题教学法,是布鲁纳提出的。

让学生主动发现问题解决,获取知识的教学方法。

从学生的好奇,好学,好问,动手中提出在老师指导下,通过解决问题,引导学生像科学家发现定理那样发现知识,,培养学生的观察,探讨,研究创造能力。

2)步骤:创设问题情景,激发主动积极性;寻找问题答案,探讨解法;完善解答,总结思路;进行知识综合,改善问题结构。

3)思考这个题目时,能够获得a+b平方公示猜想,进一步验证。

可以从几何角度面积出发证明,也可以从代数角度出发证明;发现法从多个角度解决问题,培养灵活的思维,而灵活的思维有利于创造性。

概念的内涵和外延1)内涵:反映事物本质属性总和。

质2)外延:概念反应事物的总和。

量3)除了要理解内涵外延,还要明白两者的关系。

4)等腰三角形的内涵比三角形多;外延少。

概念间的逻辑关系1)相容关系:全同关系,交叉关系(等腰三角形与直角三角形),从属关系。

2)不相容关系:矛盾关系(内涵互斥)和对立关系(反对关系,外延互斥)定义是揭示概念内涵的逻辑方法1)被定义项:内涵揭示的概念2)定义项:确定被定义项的概念3)定义联项:联结两者。

“是”“称为”1)属加种差定义项:一个和几个本质属性叫做种差。

两组平行的四边形叫平行四边形。

概念=临近属概念+种差2)揭示外延定义:a不等于13)描述性定义:直接定义数学概念的获得方式1)同类事物的不同例证中,独立发现同类事物的关键特性,概念形成。

2)直接展示定义,利用原有认知结构理解同化。

概念同化。

概念教学的要求1)明确内涵外延和表达方式。

使用合适的数学语言:符号,图形和图像。

原始概念为出发点2)正确理解使用概念3)了解概念关系,形成体系概念教学方法(教学设计材料分析题,都有优点和缺点)1)认知水平和数学逻辑起点要匹配互相衔接,正迁移。

2)创设合适的问题情景。

互动,学生主体3)自主探究要有实际,素材,发挥主导作业。

命题:简单命题和复核命题(逻辑关联词)理解命题,运用解决问题,掌握相关联系。

命题引入:直接引入,素材引入。

证明:思路分析;多种论证;体系化系统化;数学思想方法。

命题的巩固离不开解题,越多越好错误1)大量习题占用大量时间,加重负担,失去兴趣。

2)反复演练,无暇思考总结,不利于能力提高。

3)同一类型反复演练,思维定势,无灵活和创新。

4)应使用自己的语言描述理解,自己给出反正例,实际应用加强理解,命题间加深关系的联系理解,形成体系。

策略:整体性策略;准备性策略(把握目标,起点,模式);问题性策略;情景化;过程化(理解联系关系体系);产生式(通过是什么为什么,来解决怎么办)举例说明问题解决,解决问题和解答习题1)已知三角形180,求四边形。

解答习题,四边形内画三角2)解决问题:求四边形内角和,学生有各种方法3)问题解决:学生根据四边形的方法找出规律,自己找出多边形内角和的方法,包括发现问题,探索结论,形成规律,形成结论。

相关文档
最新文档