高考数学复数知识点、公式

合集下载

高考数学复数知识点总结及解题思路方法

高考数学复数知识点总结及解题思路方法

r1 (cos1 r2 (cos 2
i sin 2 ) i sin 2 )
r1 r2
[cos(1
2 )
i sin(1
2 )]
棣莫弗定理:[r(cos i sin )]n r n (cos n i sin n )
3 1, 2 , 1 ,1 2 0, n n1 n2 0(n Z)
22

.
5. ⑴复数 z 是实数及纯虚数的充要条件:
①zR z z.
②若 z 0 , z 是纯虚数 z z 0 .
⑵模相等且方向相同的向量,不管它的起点在哪里,都认为是相等的,
而相等的向量表示同一复数. 特例:零向量的方向是任意的,其模为
2
2
⑵复数的代数形式与三角形式的互化:
a bi r(cos i sin ) , r a 2 b 2 , cos a , sin b .
r
r
⑶几类三角式的标准形式:
r(cos i sin ) r[cos( ) i sin( )]
r(cos i sin ) r[cos( ) i sin( )]
§15. 复 数 知识要点 1. ⑴复数的单位为 i,它的平方等于-1,即 i2 1. ⑵复数及其相关概念: ① 复数—形如 a + bi 的数(其中 a,bR ); ② 实数—当 b = 0 时的复数 a + bi,即 a; ③ 虚数—当 b 0 时的复数 a + bi; ④ 纯虚数—当 a = 0 且 b 0 时的复数 a + bi,即 bi. ⑤ 复数 a + bi 的实部与虚部—a 叫做复数的实部,b 叫做虚部(注意
r( cos i sin ) r[cos( ) i sin( )]

复数的四则运算——高中数学湘教版(2019)必修二

复数的四则运算——高中数学湘教版(2019)必修二
所得结果中把i2换成-1,再把实部、虚部分别合并.
2.两个复数的积仍为复数,可推广,任意多个复数的积仍然是一个复数.
微思考
in(n∈N+)有什么规律?
提示 i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N+),即in(n∈N+)是以4为周期的.
微练习
(1)(4-i)(3+2i)=
(2)由已知得z=(6+2i)-(1-3i)=5+5i.
探究二
复数的乘法与除法运算
例 2 计算下列各题:
(1)(1-2i)(3+6i);(2)(5-2i)
6
(4)( 3-i) ;(5)
4+4i
2
(2-i)
;(6)
2-i
;(3)-4-3i ;
2
1+i 8
.
1-i
分析按照复数乘法与除法的运算法则进行计算.
母实数化”,这个过程与“分母有理化”类似.
(2)复数除法运算的结果要进行化简,通常要写成复数的代数形式,即实部
与虚部要完全分开的形式.
变式训练 2 计算下列各题:
(1)(1+i)(1-i)+(-1+i);
(2)
1
2
+
3
i
2
3
2
+
1
i
2
(1+i);
(3)(-2+3i)÷(1+2i);
3+2i
(4)
2-3i
第3章
3.2
复数的四则运算
任何两个实数都可以相加,而且实数中的加法运算还满足交换律与结合律,

《高考数学常考知识点之复数》

《高考数学常考知识点之复数》

复数考试内容:复数的概念.复数的加法和减法.复数的乘法和除法.数系的扩充.考试要求:(1)了解复数的有关概念及复数的代数表示和几何意义.(2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算.(3)了解从自然数系到复数系的关系及扩充的基本思想.§15. 复数知识要点1. ⑴复数的单位为i,它的平方等于-1,即.⑵复数及其相关概念:复数—形如a + bi的数(其中);实数—当b = 0时的复数a + bi,即a;虚数—当时的复数a + bi;纯虚数—当a = 0且时的复数a + bi,即bi.复数a + bi的实部与虚部—a叫做复数的实部,b叫做虚部(注意a,b都是实数)复数集C—全体复数的集合,一般用字母C表示.⑶两个复数相等的定义:.⑷两个复数,如果不全是实数,就不能比较大小.注:①若为复数,则若,则.(×)[为复数,而不是实数]若,则.(√)②若,则是的必要不充分条件.(当,时,上式成立)2. ⑴复平面内的两点间距离公式:.其中是复平面内的两点所对应的复数,间的距离.由上可得:复平面内以为圆心,为半径的圆的复数方程:.⑵曲线方程的复数形式:①为圆心,r为半径的圆的方程.②表示线段的垂直平分线的方程.③为焦点,长半轴长为a的椭圆的方程(若,此方程表示线段).④表示以为焦点,实半轴长为a的双曲线方程(若,此方程表示两条射线).⑶绝对值不等式:设是不等于零的复数,则①.左边取等号的条件是,右边取等号的条件是.②.左边取等号的条件是,右边取等号的条件是.注:.3. 共轭复数的性质:,(a + bi)()注:两个共轭复数之差是纯虚数. (×)[之差可能为零,此时两个复数是相等的]4 ⑴①复数的乘方:②对任何,及有③注:①以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如若由就会得到的错误结论.②在实数集成立的. 当为虚数时,,所以复数集内解方程不能采用两边平方法.⑵常用的结论:若是1的立方虚数根,即,则.5. ⑴复数是实数及纯虚数的充要条件:①.②若,是纯虚数.⑵模相等且方向相同的向量,不管它的起点在哪里,都认为是相等的,而相等的向量表示同一复数. 特例:零向量的方向是任意的,其模为零.注:.6. ⑴复数的三角形式:.辐角主值:适合于0≤<的值,记作.注:①为零时,可取内任意值.②辐角是多值的,都相差2的整数倍.③设则.⑵复数的代数形式与三角形式的互化:,,.⑶几类三角式的标准形式:7. 复数集中解一元二次方程:在复数集内解关于的一元二次方程时,应注意下述问题:①当时,若>0,则有二不等实数根;若=0,则有二相等实数根;若<0,则有二相等复数根(为共轭复数).②当不全为实数时,不能用方程根的情况.③不论为何复数,都可用求根公式求根,并且韦达定理也成立.8. 复数的三角形式运算:棣莫弗定理:。

高考数学一轮总复习 第五章 5.5 复 数

高考数学一轮总复习 第五章  5.5 复 数

∴ -x+y=3,
x=1,
解得
故 x+y=5.
2x-y=-2,
y=4,
3 课时作业
PART THREE
基础保分练
1.已知复数z1=6-8i,z2=-i,则
z1 z2
等于
A.-8-6i
B.-8+6i
√C.8+6i
D.8-6i
解析 ∵z1=6-8i,z2=-i,
∴zz12=6--8i i=6--i82ii=8+6i.
②对角线C→A所表示的复数; 解 ∵C→A=O→A-O→C,∴C→A所表示的复数为(3+2i)-(-2+4i ③B点对应的复数. 解 O→B=O→A+A→B=O→A+O→C, ∴O→B所表示的复数为(3+2i)+(-2+4i)=1+6i,
即B点对应的复数为1+6i.
思维升华
复平面内的点、向量及向量对应的复数是一一对应的,要求 的复数时,只要找出所求向量的始点和终点,或者用向量相 论即可.
A.20
B.12
√C.2 5
D.2
解析 设z=+bi,a,b∈R,
则由z2=12+16i,得a2-b2+2abi=12+16i,
a2-b2=12,
a=4, a=-4,

解得

2ab=16,
b=2
b=-2,
即|z|= a2+b2= 16+4=2 5.故选 C.
8.已知集合M={1,m,3+(m2-5m-6)i},N={-1,3},若M 数m的值为_3_或__6___.
基础自测
JICHUZICE
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)方程x2+x+1=0没有解.( × ) (2)复数z=a+bi(a,b∈R)中,虚部为bi.( × ) (3)复数中有相等复数的概念,因此复数可以比较大小.( × ) (4)原点是实轴与虚轴的交点.( √ ) (5)复数的模实质上就是复平面内复数对应的点到原点的距离

高考数学虚数知识点

高考数学虚数知识点

高考数学虚数知识点一、虚数的定义及性质虚数是指不存在的数,用i表示,即虚数单位。

虚数的平方等于-1,即i^2=-1。

二、复数的表示形式复数由实部和虚部组成,一般表示为a+bi,其中a为实部,bi 为虚部。

三、复数的运算法则1.复数加法:将实部与实部相加,虚部与虚部相加,得到结果的实部和虚部。

2.复数减法:将实部与实部相减,虚部与虚部相减,得到结果的实部和虚部。

3.复数乘法:使用分配律,乘法法则对实部和虚部分别进行运算,得到结果的实部和虚部。

4.复数除法:将除式和被除式分别乘以共轭复数,再按照乘法法则计算,得到结果的实部和虚部。

四、复数的共轭复数的共轭,通过改变虚部的符号得到。

例如,对于复数a+bi,它的共轭为a-bi。

五、虚数在方程中的应用虚数在解决某些无解的方程中起到关键作用,如x^2+1=0,它的解为x=±i。

六、复数平面复数可以表示为平面上的点,实部为x轴坐标,虚部为y轴坐标,可以用来描述向量和几何图形。

七、虚数的应用领域虚数在物理、工程学、电路分析等领域中有广泛的应用,如交流电路中的电感和电容等。

八、复数的三角形式复数可以用三角函数的形式表示,即a+bi=r(cosθ+isinθ),其中r为复数的模,θ为辐角。

九、欧拉公式欧拉公式将指数和三角函数联系起来,表达为e^(iθ)=cosθ+isinθ。

总结:虚数是数学中的一种特殊概念,通过引入虚数单位i,使得一些原本无解的方程可以有解。

虚数在解决数学问题、物理应用以及工程学中都有重要作用,是数学高考中的一个重要知识点。

通过深入理解虚数的定义、性质以及运算法则,我们可以更好地应用虚数解决实际问题。

同时,复数的三角形式和欧拉公式可以帮助我们更加直观地理解虚数的运算规律。

新高考数学知识点公式汇总

新高考数学知识点公式汇总

新高考数学知识点公式汇总数学是一门既有逻辑性又有创造性的学科,在新高考中扮演着重要的角色。

掌握数学知识点和公式是学生取得好成绩的关键之一。

本文将对新高考数学中的一些重要知识点和公式进行系统的汇总,帮助学生更好地备考。

一. 几何1. 直角三角形直角三角形的边长关系:勾股定理a² + b² = c²2. 距离公式两点之间的距离:已知坐标(x₁,y₁)和(x₂,y₂)d = √((x₂ - x₁)² + (y₂ - y₁)²)3. 向量向量的模:已知向量(x,y)|v| = √(x² + y²)4. 平行四边形相邻两边相等:已知边长a和高hA = a × h5. 圆周长公式:已知半径rC = 2πr面积公式:已知半径rA = πr²二. 代数1. 一元二次方程解一元二次方程:已知方程ax² + bx + c = 0 x = (-b ± √(b² - 4ac)) / 2a2. 指数与对数指数的性质:aⁿ × aᵐ = a^(n+m)(aⁿ)ᵐ= a^(n×m)a⁰ = 1aⁿ / aᵐ = a^(n-m)对数的性质:logₐ(xy) = logₐx + logₐylogₐ(x/y) = logₐx - logₐylogₐ(x^m) = mlogₐxlogₐ₁₀x = logₐx / logₐ₁₀3. 等比数列通项公式:已知首项a₁和公比raₙ = a₁ × r^(n-1)求和公式:Sₙ = a₁(1 - rⁿ) / (1 - r)4. 复数复数的运算:加法:(a + bi) + (c + di) = (a + c) + (b + d)i 减法:(a + bi) - (c + di) = (a - c) + (b - d)i乘法:(a + bi) × (c + di) = (ac - bd) + (ad + bc)i除法:(a + bi) ÷ (c + di) = (ac + bd)/(c² + d²) + (bc - ad)i/(c² + d²)三. 概率与统计1. 随机事件随机事件发生的几率:已知样本空间S和随机事件EP(E) = E的可能性数 / S的可能性数2. 概率的计算加法原理:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)乘法原理:P(A ∩ B) = P(A) × P(B|A)3. 排列与组合排列公式:从n个不同的元素中取出m个元素A(n,m) = n! / (n-m)!组合公式:从n个不同的元素中取出m个元素,不考虑顺序C(n,m) = n! / (m!(n-m)!)四. 数列与数集1. 等差数列通项公式:已知首项a₁和公差daₙ = a₁ + (n-1)d求和公式:Sₙ = (a₁ + aₙ) × n / 22. 集合并集:A ∪ B 表示A和B中的元素组成的集合交集:A ∩ B 表示A和B共有的元素组成的集合差集:A - B 表示在A中但不在B中的元素组成的集合以上仅是新高考数学中的一部分重要知识点和公式汇总,希望能对广大学生备考有所帮助。

上海高考数学复数知识点

上海高考数学复数知识点

上海高考数学复数知识点复数,作为高考数学中的一个重要概念,广泛应用于各个数学分支中。

对于上海高考来说,对复数的理解和应用是考生必备的数学知识之一。

本文将全面介绍上海高考数学中的复数知识点,帮助考生更好地掌握这一内容。

一、复数的引入1. 实数的不完备性在高中数学中,我们知道实数是由有理数与无理数构成的。

然而,即便是把这两类数合并在一起,仍然有些问题无法解决。

例如,方程x²=-1在实数范围内无解,这就引出了复数的概念。

2. 复数的定义复数由实部和虚部构成,形如a+bi。

其中,a为实数部分,bi为虚数部分,i为虚数单位,满足i²=-1。

复数可以用平面上的点表示,实部对应的是点在实轴上的投影,虚部对应的是点在虚轴上的投影。

二、复数的运算1. 加法和减法复数的加法就是实部相加,虚部相加。

例如,(3+2i)+(5+4i)=8+6i。

减法同理,即实部相减,虚部相减。

2. 乘法和除法复数的乘法则是根据分配律展开进行计算。

例如,(a+bi)(c+di)=(ac-bd)+(ad+bc)i。

复数的除法可以通过有理化的方法进行,具体推导与实数的除法类似。

3. 共轭复数一个复数的共轭复数由实部保持不变,虚部变号得到。

例如,对于复数a+bi,它的共轭复数为a-bi。

共轭复数的应用十分广泛,例如求复数的模、求复数的平方等等。

三、复数的性质和定理1. 关于复数的模复数的模是指复数到原点的距离,记作|z|。

对于复数a+bi,它的模为√(a²+b²)。

复数的模具有非负性、三角不等式和模的性质等特点。

2. 欧拉公式欧拉公式是数学中一条重要的公式,被广泛应用于各个领域。

它的表达形式为e^(ix)=cos(x)+isin(x),其中e表示自然对数的底,i为虚数单位,x为实数。

3. 复数根的性质对于复数z的n次方根,一共有n个解。

这些解在平面上均匀分布在一个圆周上,称为复数单位圆。

复数根的求解可以利用欧拉公式和三角函数理论来处理。

高考数学 复数知识点总结

高考数学 复数知识点总结

高考数学复数知识点总结近年来,高考数学的难度一直不容小觑。

其中,复数知识点作为高考数学中的一项重要内容,经常出现在试卷中。

复数的引入为解决一元二次方程的根的问题提供了新的解决思路,并且在实际应用中也有广泛的运用。

本文将对高考数学中的复数知识点进行总结和归纳,以期帮助同学们加深对复数的理解和掌握。

一、复数的定义和表示方法复数的引入是为了求解无理根而产生的一种数。

它是由实数和虚数构成的,虚数以“i” 表示。

复数一般表示为 a+bi 的形式,其中 a 为实数部分,bi 为虚数部分。

例如,2+3i 就是一个典型的复数。

需要注意的是,虚数部分的“i” 在运算过程中有特殊的运算规则,即“i^2=-1”。

二、共轭复数共轭复数是指复数 a+bi 中,将虚数部分取相反数而得到的复数a-bi。

共轭复数的一个重要性质是:两个复数的乘积的虚数部分等于两个复数的虚数部分相乘的相反数,即 (a+bi)(a-bi)=a^2+b^2。

这个性质在复数的乘法运算中经常用到,可以简化计算过程。

三、复数的运算复数的运算分为加法、减法、乘法和除法四种基本运算。

加法和减法的运算规则和实数的运算一致,即实部和虚部分别相加或相减。

乘法的运算规则为:将实部进行相乘,并将虚部进行相乘,最后将两部分相加得到结果的实部,将实部与虚部进行相乘,然后将两者相加得到结果的虚部。

例如,(a+bi)(c+di)=(ac-bd)+(ad+bc)i。

复数的除法运算比较繁琐,需要通过共轭复数的概念进行变形。

四、复数的指数形式复数可以用指数的形式表示,即 a+bi 可以写成r(cosθ+isinθ) 的形式,其中 r 为复数的模,θ 为复数的辐角。

模表示复数到原点的距离,辐角表示复数与实轴的夹角。

在指数形式下,复数的乘法运算可以转化为模的相乘和辐角的相加,从而简化了计算过程。

指数形式在三角函数和复数的相关运算中有广泛应用。

五、复数的解析几何复数在解析几何中有重要的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数系的扩充和复数概念和公式总结
1.虚数单位i:
它的平方等于-1,即21
i=-
2. i与-1的关系: i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i
3. i的周期性:i4n+1=i, i4n+2=-1, i4n+3=-i, i4n=1
4.复数的定义:形如(,)
+∈的数叫复数,a叫复数的实
a bi a
b R
部,b叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示复数通常用字母z表示,即(,)
=+∈
z a bi a b R
5. 复数与实数、虚数、纯虚数及0的关系:
对于复数(,)
+∈,当且仅当b=0时,复数a+bi(a、b
a bi a
b R
∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;a≠0且b≠0时,z=bi叫做非纯虚数的纯虚数;当且仅当a=b=0时,z就是实数0.
5.复数集与其它数集之间的关系:N Z Q R C.
6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a,b,c,d∈R,那么a+bi=c+di⇔a=c,b=d
一般地,两个复数只能说相等或不相等,而不能比较大小. 即使是3,62
++也没有大小。

i i
如果两个复数都是实数,就可以比较大小当两个复数不全是实数时不能比较大小
7. 复平面、实轴、虚轴:
点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴
示实数
(1)实轴上的点都表示实数
(2)虚轴上的点都表示纯虚数
(3)原点对应的有序实数对为(0,0)
设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,8.复数z1与z2的加法运算律:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i.
9.复数z1与z2的减法运算律:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i. 复数的加法运算满足交换律和结合律
10.复数z1与z2的乘法运算律:z1·z2= (a+bi)(c+di)=(ac-bd)+(bc+ad)i.
幂运算:1i i =21i =-3i i =-41i =5i i =61i =-⋅⋅⋅⋅⋅⋅
11.复数z 1与z 2的除法运算律:z 1
÷z 2 =(a +bi )÷
(c +di )=i d c ad bc d c bd ac 2222+-+++(分母实数化) 复数的乘法运算满足交换律、结合律和分配律。

12.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数(),,z a bi z a bi a b R =+=-∈, 通常记复数z 的共轭复数为z 。

例如z =3+5i 与z =3-5i 互为共轭复数
13. 共轭复数的性质
(1)实数的共轭复数仍然是它本身
(2)22Z Z Z Z ==⋅
(3)两个共轭复数对应的点关于实轴对称
14.复数的两种几何意义:
15几个常用结论
(1)()
i i 212=+, (2)()i i 212-=- (3)i i -=1
, (4) i i
i =-+11 点),(b a Z 向量uuu r 一一对应 一一对应 一一对应
复数()R b a bi a Z ∈+=,
(5)
i i
i -=+-11 (6)()()22b a bi a bi a +=-+ 16.复数的模:若向量u u r OZ 表示复数z ,则称u u r OZ 的模r 为复数z
的模, 复数bi a Z +=的模22b a Z +=
17、复数的化简
c di z a bi +=
+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:
()()22
ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==⋅=++-+ 18、B A AB z AB z z ==-u u u r 为两点间的距离。

相关文档
最新文档