动能定理练习题附答案
高一物理动能定理试题答案及解析

高一物理动能定理试题答案及解析1.一子弹以速度v飞行恰好射穿一块铜板,若子弹的速度是原来的3倍,那么可射穿上述铜板的数目为()A.3块B.6块C.9块D.12块【答案】C【解析】子弹以速度v运动时,恰能水平穿透一块固定的木板,根据动能定理有:,设子弹的速度为时,穿过的木板数为n,则有:联立两式并代入数据得:n=9块,C正确。
【考点】考查了动能定理的应用2.在一次试车实验中,汽车在平直的公路上由静止开始做匀加速运动,当速度达到v时,立刻关闭发动机让其滑行,直至停止。
其v-t图象如图所示。
则下列说法中正确的是()A.全程牵引力做功和克服阻力做功之比为1:1B.全程牵引力做功和克服阻力做功之比为2:1C.牵引力和阻力之比为2:1D.牵引力和阻力之比为3:1【答案】AD【解析】试题解析:由于物体初始的速度为零,最后的速度也为零,故物体的动能没有变化,即动能的增量为零,根据动能定理可知,物体受到的合外力也为零,即全程牵引力做功和克服阻力做功相等,故它们的比值为1:1,A正确,B错误;由图像可知,1s前物体在牵引力的作用下运动,其位移为x,则后2s内物体的位移为2x,故由动能定理可得:Fx=f(x+2x),所以牵引力F和阻力f之比为3:1,D正确,C错误。
【考点】动能定理。
3.甲、乙两物体质量之比m1∶m2=1∶2,它们与水平桌面间的动摩擦因数相同,若它们以相同的初动能在水平桌面上运动,则运动位移之比为.【答案】2:1。
【解析】根据动能定理得可知,对于甲物体:m1gμ×x1=Ek,对于乙物体:m2gμ×x2=Ek,联立以上两式解之得x1:x2=m2:m1=2:1,故位移之比为2:1。
【考点】动能定理。
4.一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m、带电量为+q的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E后(如图所示),小球开始作简谐运动,关于小球运动有如下说法中正确的是A.球的速度为零时,弹簧伸长qE/kB.球做简谐运动的振幅为qE/kC.运动过程中,小球的机械能守恒D.运动过程中,小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零【答案】BD【解析】球的平衡位置为Eq=kx,解得x= qE/k,在此位置球的速度最大,选项A 错误;球做简谐运动的振幅为qE/k,选项B正确;运动过程中,由于电场力和弹力做功,故小球的机械能不守恒,选项C 错误;运动过程中,由于电场力和弹力做功,所以小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零,选项D 正确。
高一物理动能定理试题

高一物理动能定理试题1.如图所示,AB和CD是半径为R=1m的1/4圆弧形光滑轨道,BC为一段长2m的水平轨道质量为2kg的物体从轨道A端由静止释放,若物体与水平轨道BC间的动摩擦因数为0.1.求:(1)物体第1次沿CD弧形轨道可上升的最大高度;(2)物体最终停下来的位置与B点的距离。
【答案】(1)0.8m (2) B点的距离为2m【解析】:(1)设物体沿CD圆弧能上滑的最大高度为h,则此过程由动能定理可得:,解得;(2)设物体在BC上滑动的总路程为s,则从下滑到静止的全过程由动能定理可得:,解得,即物体在BC上要来回滑动10m,一次来回滑动4m,故物体可完成2.5次的来回运动,最终停在C处,即离B点的距离为2m。
【考点】考查了机械能守恒定律,动能定理2.如图所示,木块放在光滑水平面上,一颗子弹水平射入木块中,受到阻力为f,射入深度为d,此过程木块位移为s,则()A.子弹损失的动能为f(s+d)B.木块增加的动能为f sC.子弹动能的减少等于木块动能的增加D.子弹、木块系统总机械能的损失为fd【答案】ABD【解析】对子弹运用动能定理得,.故子弹损失的动能为,故A正确;对木块运用动能定理得,.则木块获得的动能为,故B正确;子弹减少的动能转化为木块增加的动能和系统增加的内能,故子弹动能的减少大于木块动能的增加,故C错误;系统损失的机械能转化为产生的内能,故D正确.【考点】考查了功能关系的应用3.一汽车质量为2000kg,行驶时受到的阻力为车重的0.1倍。
若汽车以3000N的恒定牵引力在水平公路上从静止开始前进100m时关闭发动机。
求:(1)汽车前进100m时的速度;(2)汽车关闭发动机后还能滑行多远。
【答案】(1)v=10m/s(2)x=50m【解析】设汽车前进100m时的速度为v,则对汽车应用动能定理得:.......................① 4分代入数据解得:v=10m/s....... ..... ..② 1分设汽车关闭发动机后还能滑行的距离为x,则对汽车应用动能定理得:.......... ..... ..... ③ 4分代入数据解得:x=50m..... ..... ..... . ④ 1分【考点】考查了动能定理的综合应用4.运动员驾驶摩托车做腾跃特技表演是一种刺激性很强的运动项目。
(完整版)动能定理习题(附答案)

m: C 点竖直上抛,根据动能定理:
12 mgh 0 mv2
2 ∴ h=2.5 R ∴ H=h +R=3.5 R
(2) 物块从 H 返回 A 点,根据动能定理:
mgH -μ mg=s0-0 ∴ s=14 R
小物块最终停在 B 右侧 14R 处
13 也可以整体求解,解法如下:
m: B→ C,根据动能定理: F 2R f 2R mgH 0 0
解: (1) m 由 A 到 B:根据动能定理: mgh 1 mv2 2
1 mv02 2
v 20m/s
m v0
(2) m 由 A 到 B,根据动能定理 3:
1 21 2
mgh W mvt mv0
2
2
W 1.95J
3a、运动员踢球的平均作用力为 200N,把一个静止的质量为
在水平面上运动 60m 后停下 . 求运动员对球做的功?
4、在距离地面高为 H 处,将质量为 m 的小钢球以初速度 v0竖直下抛,落地后,小钢球陷入泥 土中的深度为 h 求:
(1) 求钢球落地时的速度大小 v.
(2) 泥土对小钢球的阻力是恒力还是变力 ?
(3) 求泥土阻力对小钢球所做的功 . (4) 求泥土对小钢球的平均阻力大小 .
解: (1) m 由 A 到 B:根据动能定理:
WF f l cos180o 1 mvm2 0 2
l 800m
11. AB 是竖直平面内的四分之一圆弧轨道,在下端 B与水平直轨道相切,如图所示。一小球自
A 点起由静止开始沿轨道下滑。已知圆轨道半径为
R,小球的质量为 m ,不计各处摩擦。求
(1) 小球运动到 B点时的动能;
(2) 小球经过圆弧轨道的 B 点和水平轨道的 C点时,所受轨道支持力 N B、 N C各是多大 ?
动能定理练习题(附答案)

mgs2 cos180o 0 1 mv2 2
s2 70m 则总位移 s s1 s2 100m .
. 计算过程如下:
(2) 冰车运动的总路程 s.
解: (1) m 由 1 状态到 2 状态:根据动能定理 7:
Fs1 cos0o
mgs1 cos180o 1 mv2 0 2
v 14m/s 3.74m/s (2) m 由 1 状态到 3 状态 8:根据动能定理:
Fs1 cos0o mgs cos180o 0 0
s 100m
5、在水平的冰面上 ,以大小为 F =20N 的水平推力, 推着质量 m=60kg 的冰车, 由静止开始运动 .
冰车受到的摩擦力是它对冰面压力的
0. 01 倍 ,当冰车前进了 s1=30m 后 ,撤去推力 F ,冰车又前
进了一段距离后停止 . 取 g = 10m/s2. 求:
(1) 撤去推力 F 时的速度大小 .
动能定理练习题
1、 一质量为 1kg 的物体被人用手由静止向上提高 1m ,这时物体的速度是
(1) 物体克服重力做功 . (2)合外力对物体做功 . 解: (1) m 由 A 到 B: WG mgh 10J
克服重力做功 1 W克G WG 10J
(3)手对物体做功 .
(2) m 由 A 到 B,根据动能定理 2:
N
N
1 f
m
F
f2
v
mg
s1 mg
3 s2
6 此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为
0,当小球在泥土中减速时,
泥土对小球的力必大于重力 mg,而当小球在泥土中静止时, 泥土对小球的力又恰等于重力 mg. 因此可以推知,
完整版)高中物理动能定理典型练习题(含答案)

完整版)高中物理动能定理典型练习题(含答案)1.正确答案是D。
对于一个物体来说,只有在速度大小(速率)发生变化时,它的动能才会改变。
速度的变化是一个矢量,它可以完全由于速度方向的变化而引起,例如匀速圆周运动。
速度变化的快慢是指加速度,加速度大小与速度大小之间没有必然的联系。
2.一个物体从高度为H的地方自由落体,落到高度为h的沙坑中停止。
假设物体的质量为m,重力加速度为g,根据动能定理,当物体速度为v时,mgH = 1/2mv^2,因此v =sqrt(2gH)。
在沙坑中,重力做正功,阻力做负功,根据动能定理,1/2mv^2 - Fh = mgh,其中F为物体在沙坑中受到的平均阻力。
解方程得到F = (H + h)mg / (gh)。
3.一个物体沿一曲面从A点无初速度滑下,滑至曲面的最低点B时,下滑高度为5m,物体质量为1kg,速度为6m/s。
假设物体在滑行过程中克服了摩擦力,设摩擦力为F,根据动能定理,mgh - W = 1/2mv^2,其中W为物体克服阻力所做的功。
解方程得到W = 32J。
课后创新演练:1.滑块的质量为1kg,初速度为4m/s,水平力方向向左,大小未知。
在一段时间内,水平力方向变为向右,大小不变为未知。
根据动能定理,水平力所做的功等于滑块动能的变化量,即1/2mv^2 - 1/2mu^2,其中v和u分别为滑块在水平力作用下的末速度和初速度。
根据题意,v = u = 4m/s,解方程得到水平力所做的功为16J。
2.两个物体的质量之比为1:3,高度之比也为1:3.根据动能定理,物体的动能等于1/2mv^2,其中v为物体的速度。
假设两个物体在落地时的速度分别为v1和v2,则v1 : v2 =sqrt(h1) : sqrt(h2),其中h1和h2分别为两个物体的高度。
因此,v1^2 : v2^2 = h1 : h2 = 1 : 9,即它们落地时的动能之比为1:9.3.物体沿长为L的光滑斜面下滑,速度达到末速度的一半时,物体沿斜面下滑的距离为L。
动能定理典型例题附答案

动能定理典型例题附答案1、如图所⽰,质量m=0.5kg 的⼩球从距地⾯⾼H=5m 处⾃由下落,到达地⾯恰能沿凹陷于地⾯的半圆形槽壁运动,半圆槽半径R=0.4m.⼩球到达槽最低点时的速率为10m /s ,并继续滑槽壁运动直⾄槽左端边缘飞出,竖直上升,落下后恰好⼜沿槽壁运动直⾄从槽右端边缘飞出,竖直上升、落下,如此反复⼏次.设摩擦⼒⼤⼩恒定不变:(1)求⼩球第⼀次离槽上升的⾼度h.(2)⼩球最多能飞出槽外⼏次? (g 取10m /s 2 )2、如图所⽰,斜⾯倾⾓为θ,滑块质量为m ,滑块与斜⾯的动摩擦因数为µ,从距挡板为s 0的位置以v 0的速度沿斜⾯向上滑⾏.设重⼒沿斜⾯的分⼒⼤于滑动摩擦⼒,且每次与P 碰撞前后的速度⼤⼩保持不变,斜⾯⾜够长.求滑块从开始运动到最后停⽌滑⾏的总路程s.3、有⼀个竖直放置的圆形轨道,半径为R ,由左右两部分组成。
如图所⽰,右半部分AEB 是光滑的,左半部分BFA是粗糙的.现在最低点A 给⼀个质量为m 的⼩球⼀个⽔平向右的初速度,使⼩球沿轨道恰好运动到最⾼点B ,⼩球在B 点⼜能沿BFA 轨道回到点A ,到达A 点时对轨道的压⼒为4mg1、求⼩球在A 点的速度v 02、求⼩球由BFA 回到A 点克服阻⼒做的功4、如图所⽰,质量为m 的⼩球⽤长为L 的轻质细线悬于O 点,与O 点处于同⼀⽔平线上的P 点处有⼀根光滑的细钉,已知OP = L /2,在A 点给⼩球⼀个⽔平向左的初速度v 0,发现⼩球恰能到达跟P 点在同⼀竖直线上的最⾼点B .则:(1)⼩球到达B 点时的速率?(2)若不计空⽓阻⼒,则初速度v 0为多少?(3)若初速度v 0=3gL ,则在⼩球从A 到B 的过程中克服空⽓阻⼒做了多少功?5、如图所⽰,倾⾓θ=37°的斜⾯底端B 平滑连接着半径r =0.40m的竖直光滑圆轨道。
质量m =0.50kg 的⼩物块,从距地⾯h =2.7m 处沿斜⾯由静⽌开始下滑,⼩物块与斜⾯间的动摩擦因数µ=0.25,求:(sin 37°=0.6,cos 37°=0.8,g =10m/s 2)(1)物块滑到斜⾯底端B 时的速度⼤⼩。
动能定理经典试题(含答案)

动能定理经典试题1、 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。
2、 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)3、 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv=0 B. Δv=12m/s C. W=0 D. W=10.8J4、 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( )A. gh v 20+B. gh v 20-C. gh v 220+ D. gh v 220-5、 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。
小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ6、 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.7、 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。
动能定理练习题(附答案)

动能定理练习题(附答案)2012年3月1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B :G 10J W mgh =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2:2102J 2W mv ∑=-=(3) m 由A 到B : G F W W W ∑=+F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出.(1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:(1) m 由A 到B :根据动能定理: 221122mgh mv mv =-20m/s v ∴=(2) m 由A 到B ,根据动能定理3:1不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2也可以简写成:“m :A B →:k W E ∑=∆”,其中k W E ∑=∆表示动能定理.A22t 01122mgh W mv mv -=-1.95J W ∴=3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功?3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5:2211022W mv mv =-=4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v .(2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:(1) m 由A 到B :根据动能定理: 221122mgH mv mv =-v ∴(2)变力6.(3) m 由B 到C ,根据动能定理:4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等. 6此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力.v m0v 'O A →A B→v t v2f 102mgh W mv +=-()2f 012W mv mg H h ∴=--+(3) m 由B 到C : f cos180W f h =⋅⋅()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求: (1)撤去推力F 时的速度大小. (2)冰车运动的总路程s . 解:(1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-3.74m/s v ∴=(2) m 由1状态到3状态8:根据动能定理: 1cos0cos18000Fs mgs μ+=-100m s ∴=6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数. 解:78也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下:m 由2状态到3状态:根据动能定理: 221cos18002mgs mv μ=-270m s ∴=则总位移12100m s s s =+=.fA(1) m 由A 到C 9:根据动能定理: f 00mgR W +=-f 8J W mgR ∴=-=-(2) m 由B 到C : f cos180W mg x μ=⋅⋅0.2μ∴=7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求:(1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功. 解:(1) m 由B 到C :根据动能定理: 2B1cos18002mg l mv μ⋅⋅=-B 2m/s v ∴=(2) m 由A 到B :根据动能定理: 2f B 102mgR W mv +=-f 0.5J W ∴=-克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求证:hsμ=. 证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.m 由A 到B :根据动能定理:2cos cos180cos18000mgh mg l mgs μθμ+⋅⋅+⋅=-9 也可以分段计算,计算过程略.10A又1cos l s θ=、12s s s =+ 则11:0h s μ-=即:hsμ=证毕.9、质量为m 的物体从高为h 的斜面顶端自静止开始滑下,最后停在平面上的B 点. 若该物体从斜面的顶端以初速度v 0沿斜面滑下,则停在平面上的C 点. 已知AB = BC ,求物体在斜面上克服摩擦力做的功. 解:设斜面长为l ,AB 和BC 之间的距离均为s ,物体在斜面上摩擦力做功为f W . m 由O 到B :根据动能定理:f 2cos18000mgh W f s ++⋅⋅=-m 由O 到C :根据动能定理:2f 2012cos18002mgh W f s mv ++⋅⋅=- 2f 012W mv mgh ∴=-克服摩擦力做功2f 012W W mgh mv ==-克f10、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求: (1)阻力的大小.(2)这一过程牵引力所做的功.11具体计算过程如下:由1cos l s θ=,得:12cos180cos18000mgh mg s mgs μμ+⋅⋅+⋅=-()120mgh mg s s μ-⋅+=由12s s s =+,得:0mgh mgs μ-=即:0h s μ-=(3)这一过程汽车行驶的距离. 解12:(1)汽车速度v 达最大m v 时,有F f =,故: m m P F v f v =⋅=⋅1000N f ∴=(2)汽车由静止到达最大速度的过程中:6F 1.210J W P t =⋅=⨯(2)汽车由静止到达最大速度的过程中,由动能定理:2F m 1cos18002W f l mv +⋅⋅=-800m l ∴=11.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A国光中学物理基础练习系列(五) 动能定理1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W mgh =-=-克服重力做功1G G 10J W W ==克(2) m 由A 到B ,根据动能定理2:2102J 2W mv ∑=-=(3) m 由A 到B :G F W W W ∑=+ F 12J W ∴=2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v .(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W .解:(1) m 由A 到B :根据动能定理:2201122mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3:22t 01122mgh W mv mv -=- 1.95J W ∴=3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:(3a)球由O 到A ,根据动能定理4:201050J 2W mv =-=(3b)球在运动员踢球的过程中,根据动能定理5:2211022W mv mv =-=1 不能写成:G10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重力所做的功为负.2 也可以简写成:“m :A B →:k W E ∑=∆”,其中k W E ∑=∆表示动能定理.3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功.4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.5结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等.v mv 'O A →A B →4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:(1)求钢球落地时的速度大小v . (2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:(1) m 由A 到B :根据动能定理:2201122mgH mv mv =-v ∴(2)变力6. (3) m 由B 到C ,根据动能定理:2f 102mgh W mv +=-()2f 012W mv mg H h ∴=--+(3) m 由B 到C : f cos180W f h =⋅⋅()2022mv mg H h f h++∴=5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求:(1)撤去推力F 时的速度大小. (2)冰车运动的总路程s . 解: (1) m 由1状态到2状态:根据动能定理7: 2111cos0cos18002Fs mgs mv μ+=-3.74m/s v ∴==(2) m 由1状态到3状态8:根据动能定理: 1cos0cos18000Fs mgs μ+=-100m s ∴=6此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力.8也可以用第二段来算2s ,然后将两段位移加起来. 计算过程如下: m 由2状态到3状态:根据动能定理: 221cos18002mgs mv μ=-270m s ∴=则总位移12100m s s s =+=.v t v vfA6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数.解:(1) m 由A 到C 9:根据动能定理:f 00mgR W +=-f 8J W mgR ∴=-=-(2) m 由B 到C :f cos180W mg x μ=⋅⋅0.2μ∴=7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2),求:(1)物体到达B 点时的速度大小.(2)物体在圆弧轨道上克服摩擦力所做的功.解:(1) m 由B 到C :根据动能定理:2B 1cos18002mg l mv μ⋅⋅=-B 2m/s v ∴=(2) m 由A 到B :根据动能定理:2f B 102mgR W mv +=- f 0.5J W ∴=-克服摩擦力做功f 0.5J W W ==克f8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求:摩擦因数证:设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.m 由A 到B :根据动能定理: 2cos cos180cos18000mgh mg l mgs μθμ+⋅⋅+⋅=-又1cos l s θ=、12s s s =+ 则11:0h s μ-= 即: hsμ=9 也可以分段计算,计算过程略.10 题目里没有提到或给出,而在计算过程中需要用到的物理量,应在解题之前给出解释。
11具体计算过程如下:由1cos l s θ=,得:12cos180cos18000mgh mg s mgs μμ+⋅⋅+⋅=-()120mgh mg s s μ-⋅+=由12s s s =+,得:0mgh mgsμ-= 即:0h s μ-=Af证毕.9、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求:(1)阻力的大小. (2)这一过程牵引力所做的功. (3)这一过程汽车行驶的距离. 解12:(1)汽车速度v 达最大m v 时,有F f =,故:m m P F v f v =⋅=⋅ 1000N f ∴=(2)汽车由静止到达最大速度的过程中:6F 1.210J W P t =⋅=⨯(2)汽车由静止到达最大速度的过程中,由动能定理:2F m 1cos18002W f l mv +⋅⋅=- 800m l ∴=10.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。
一小球自A 点起由静止开始沿轨道下滑。
已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。
求 (1)小球运动到B 点时的动能;(2)小球下滑到距水平轨道的高度为R 21时速度的大小和方向; 解:(1)m :A →B 过程:∵动能定理2B 102mgR mv =-2KBB 12E mv mgR ∴== ①(3) m :A →D :∵动能定理211022D mgR mv =- D v ∴=方向沿圆弧切线向下,与竖直方向成30.11.固定的轨道ABC 如图所示,其中水平轨道AB 与半径为R /4的光滑圆弧轨道BC 相连接,AB 与圆弧相切于B 点。
质量为m 的小物块静止在水一平轨道上的P 点,它与水平轨道间的动摩擦因数为μ=0.25,PB =2R 。
用大小等于2mg 的水平恒力推动小物块,当小物块运动到B 点时,立即撤去推力(小物块可视为质点)(1)求小物块沿圆弧轨道上升后,可能达到的最大高度H ; (2)如果水平轨道AB解:(1)13 m :P →B ,根据动能定理:12由于种种原因,此题给出的数据并不合适,但并不妨碍使用动能定理对其进行求解. 13 也可以整体求解,解法如下:m :B →C ,根据动能定理: 2200F R f R mgH ⋅-⋅-=- 其中:F =2mg ,f =μmgBR/ CD()211202F f R mv -=- 其中:F =2mg ,f =μmg∴ v 21=7Rgm :B →C ,根据动能定理:22211122mgR mv mv -=-∴ v 22=5Rgm :C 点竖直上抛,根据动能定理:22102mgh mv -=- ∴ h =2.5R∴ H=h +R =3.5R(2)物块从H 返回A 点,根据动能定理:mgH -μmgs =0-0 ∴ s =14R小物块最终停在B 右侧14R 处12.如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R 。
一质量为m 的小物块(视为质点)从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。
(g 为重力加速度)(1)求物块物块能通过圆轨道最低点速度多大; (2) 求物块物块能通过圆轨道最高点速度多大; 解:(1) m :A →B 过程:根据动能定理:2102mgh mv =- ①② ∴ v2=2gh(2) m :A →B →C 过程:根据动能定理:21(2)02mg h R mv -=- ①② ∴ v2=2g(h-2R)∴ 3.5H R =。