时间序列分析期末考试

合集下载

时间序列分析试卷及答案3套

时间序列分析试卷及答案3套

时间序列分析试卷及答案3套时间序列分析试卷1⼀、填空题(每⼩题2分,共计20分)1. ARMA(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列{}t X ,则其⼀阶差分为_________________________。

3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征⽅程为_______________________。

4. 对于⼀阶⾃回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________。

5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满⾜_________时,模型平稳。

6. 对于⼀阶⾃回归模型MA(1):10.3t t t X εε-=-,其⾃相关函数为______________________。

7. 对于⼆阶⾃回归模型AR(2):120.50.2t t t t X X X ε--=++则模型所满⾜的Yule-Walker ⽅程是______________________。

8. 设时间序列{}t X 为来⾃ARMA(p,q)模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++L L则预测⽅差为___________________。

9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。

10. 设时间序列{}t X 为来⾃GARCH(p ,q)模型,则其模型结构可写为_____________。

⼆、(10分)设时间序列{}t X 来⾃()2,1ARMA 过程,满⾜()()210.510.4ttB B X B ε-+=+,其中{}t ε是⽩噪声序列,并且()()2t t 0,E Var εεσ==。

时间序列分析考试卷及答案

时间序列分析考试卷及答案

考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子,使得1-=t t Y BY ;∇为差分算子,。

一、单项选择题(每小题3 分,共24 分。

)1. 若零均值平稳序列{}t X ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。

A. MA(2)B.ARMA(1,1)C.AR(2)D.MA(1)2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。

A. )1(MAB.)1(ARC.)1,1(ARMAD.)2(MA3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其MA 特征方程的根是( C )。

(A )5.0,4.021==λλ (B )5.0,4.021-=-=λλ (C )5.2221==λλ, (D ) 5.2221=-=λλ,4. 设有模型112111)1(----=++-t t t t t e e X X X θφφ,其中11<φ,则该模型属于( B )。

A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1)5. AR(2)模型t t t t e Y Y Y +-=--215.04.0,其中64.0)(=t e Var ,则=)(t t e Y E ( B )。

A.0 B.64.0 C. 16.0 D. 2.06.对于一阶滑动平均模型MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为( C )。

A.5.0- B. 25.0 C. 4.0- D. 8.07. 若零均值平稳序列{}t X ∇,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立( B )模型。

A. MA(2)B.)2,1(IMAC.)1,2(ARID.ARIMA(2,1,2)8. 记∇为差分算子,则下列不正确的是( C )。

时间序列分析试题

时间序列分析试题

第九章 时间序列分析一、单项选择题1、乘法模型是分析时间序列最常用的理论模型。

这种模型将时间序列按构成分解为( ) 等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。

A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D.长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案:C2、加法模型是分析时间序列的一种理论模型。

这种模型将时间序列按构成分解为( )等四种成分,各种成分之间( ),要测定某种成分的变动,只须从原时间序列中( )。

A. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;减去其他影响成分的变动B. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;减去其他影响成分的变动C. 长期趋势、季节变动、循环波动和不规则波动;保持着相互依存的关系;除去其他影响成分的变动D.. 长期趋势、季节变动、循环波动和不规则波动;缺少相互作用的影响力量;除去其他影响成分的变动答案:B3、利用最小二乘法求解趋势方程最基本的数学要求是( )。

A.∑=-任意值2)ˆ(t Y Y B. ∑=-min )ˆ(2t Y Y C. ∑=-max )ˆ(2t Y Y D. 0)ˆ(2∑=-t Y Y 答案:B4、从下列趋势方程t Y t86.0125ˆ-=可以得出( )。

A. 时间每增加一个单位,Y 增加0.86个单位B. 时间每增加一个单位,Y 减少0.86个单位C. 时间每增加一个单位,Y 平均增加0.86个单位D. 时间每增加一个单位,Y 平均减少0.86个单位答案:D.5、时间序列中的发展水平( )。

时间序列分析试卷及答案

时间序列分析试卷及答案

时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列{}t X ,则其一阶差分为_________________________。

3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________。

4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________。

5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳。

6. 对于一阶自回归模型MA(1):10.3t t t X εε-=-,其自相关函数为______________________。

7. 对于二阶自回归模型AR(2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。

8. 设时间序列{}t X 为来自ARMA(p,q)模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++L L则预测方差为___________________。

9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。

10. 设时间序列{}t X 为来自GARCH(p ,q)模型,则其模型结构可写为_____________。

二、(10分)设时间序列{}t X 来自()2,1ARMA 过程,满足()()210.510.4ttB B X B ε-+=+,其中{}t ε是白噪声序列,并且()()2t t 0,E Var εεσ==。

时间序列期末试题及答案

时间序列期末试题及答案

时间序列期末试题及答案1. 试题考试时间:3小时考试形式:闭卷注意:请将答案写在答题纸上,不要在试卷上直接作答。

题目一:简答题(每题10分)1. 什么是时间序列分析?时间序列分析具有哪些应用领域?2. 请解释平稳时间序列的概念,并提供一个平稳时间序列的例子。

3. 什么是季节性、趋势性和周期性?请分别举一个例子。

4. 时间序列分析的步骤是什么?5. 请解释自相关函数(ACF)和偏自相关函数(PACF)的概念,并说明它们在时间序列分析中的作用。

题目二:计算题(每题20分)1. 从某超市取得了一组销售额数据,包括2004年到2019年的年度销售额。

请计算该时间序列的移动平均值,并绘制移动平均图。

2. 下表是某公司2005年到2019年每个季度的销售额数据,请利用季节性指数法预测2020年第一季度的销售额。

| 年份 | 第一季度销售额 ||-------|--------------|| 2005 | 100 || 2006 | 120 || 2007 | 140 || 2008 | 160 || 2009 | 180 || 2010 | 200 || 2011 | 220 || 2012 | 240 || 2013 | 260 || 2014 | 280 || 2015 | 300 || 2016 | 320 || 2017 | 340 || 2018 | 360 || 2019 | 380 |3. 通过对某股票每周收益率进行分析,发现其自相关系数和偏自相关系数都在95%置信区间之外。

该时间序列数据是否呈现ARCH效应?请解释原因。

4. 将某商品销售额数据建模为自回归移动平均模型(ARMA),请给出该模型的阶数,并解释原因。

2. 答案题目一:简答题1. 时间序列分析是一种研究时间相关数据的统计方法,通过对时间序列的特征进行分析,揭示其随时间变化的规律和趋势。

时间序列分析广泛应用于经济学、金融学、气象学、社会学等领域。

时间序列分析考试卷及答案

时间序列分析考试卷及答案

考核课程 时间序列分析(B 卷) 考核方式 闭卷 考核时间 120 分钟注:B 为延迟算子,使得1-=t t Y BY ;Ñ为差分算子,。

一、单项选择题(每小题3 分,共24 分。

)1. 若零均值平稳序列{}tX ,其样本ACF 和样本PACF 都呈现拖尾性,则对{}t X 可能建立( B )模型。

模型。

A. MA(2) B.ARMA(1,1) C.AR(2) D.MA(1) 2.下图是某时间序列的样本偏自相关函数图,则恰当的模型是( B )。

A. )1(MAB.)1(ARC.)1,1(ARMAD.)2(MA3. 考虑MA(2)模型212.09.0--+-=t t t t e e e Y ,则其,则其MA MA MA特征方程的根是(特征方程的根是(特征方程的根是( C C C )。

)。

)。

(A )5.0,4.021==l l (B )5.0,4.021-=-=l l (C )52221==l l , (D ) 5.2221=-=l l ,4. 设有模型112111)1(----=++-t t t t t e e X X X q f f ,其中11<f ,则该模型属于(,则该模型属于( B )。

)。

A.ARMA(2,1) B.ARIMA(1,1,1) C.ARIMA(0,1,1) D.ARIMA(1,2,1) 5. AR(2)模型tt t t e Y Y Y +-=--215.04.0,其中64.0)(=t e V ar ,则=)(t t e Y E ( B B )。

)。

)。

A.0 B.64.0 C. 16.0 D. 2.06.6.对于一阶滑动平均模型对于一阶滑动平均模型对于一阶滑动平均模型MA(1): MA(1): 15.0--=t t t e e Y ,则其一阶自相关函数为,则其一阶自相关函数为( C )( C )( C )。

A.5.0- B. 25.0 C. 4.0- D. 8.07. 若零均值平稳序列{}t X Ñ,其样本ACF 呈现二阶截尾性,其样本PACF 呈现拖尾性,则可初步认为对{}t X 应该建立(应该建立( B )模型。

时间序列分析试卷及答案

时间序列分析试卷及答案

其中 t 是白噪声序列,并且 E0,Var时间序列分析试卷 1一、 填空题(每小题 2分,共计 20 分)1. ARMA(p, q) 模 型 ____________________________________________ , 其 中 模 型 参 数 为_________________________ 。

2. 设时间序列X t ,则其一阶差分为 _____________________________________________ 。

3. 设 ARMA (2, 1) :X t 0.5X t 1 0.4X t 2 t 0.3 t 1则所对应的特征方程为 _________________________ 。

4. 对于一阶自回归模型 AR(1): X t 10+ X t 1 t ,其特征根为 _________________ ,平稳域是____________________________ 。

5. 设ARMA(2, 1): X t 0.5X t 1 aX t 2 t 0.1 t 1,当 a 满足 _________________________ 时,模型平稳。

6. 对 于 一 阶 自 回 归 模 型 MA(1): X tt0.3 t 1 , 其 自 相 关 函 数 为____________________________ 。

7. 对于二阶自回归模型 AR(2):X t 0.5X t 1 0.2X t 2 t则模型所满足的 Yule-Walker 方程是 _________________________ 。

8. 设时间序列 X t 为来自 ARMA(p,q)模型:X t 1X t 1 Lp X t p t 1 t 1 L q t q则预测方差为 _____________________ 。

9. 对于时间序列 X t ,如果 _________________________ ,则 X t ~ I d 。

(精校版)时间序列分析试卷及答案

(精校版)时间序列分析试卷及答案

(完整word版)时间序列分析试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)时间序列分析试卷及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)时间序列分析试卷及答案的全部内容。

时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA (p , q)模型_________________________________,其中模型参数为____________________.2. 设时间序列{}t X ,则其一阶差分为_________________________。

3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________.4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________.5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳.6. 对于一阶自回归模型MA (1): 10.3t t t X εε-=-,其自相关函数为______________________.7. 对于二阶自回归模型AR (2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。

8. 设时间序列{}t X 为来自ARMA (p,q )模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++则预测方差为___________________.9. 对于时间序列{}t X ,如果___________________,则()~t X I d .10. 设时间序列{}t X 为来自GARCH (p ,q )模型,则其模型结构可写为_____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列分析期末考试 TYYGROUP system office room 【TYYUA16H-TYY-
诚信应考,考试作弊将带来严重后果!
湖南大学课程考试试卷
课程名称: 时间序列分析 ;课程编码: 试卷编号: A ;考试时间:
一、 简答题(每小题5分,共计20分)
1、 说明平稳序列建模的主要步骤。

2、 ADF 检验与PP 检验的主要区别是什么?
3、 如何进行两变量的协整检验?
4、 简述指数平滑法的基本思想。

二、 填空题(每小题2分,共计20分)
1. 对平稳序列,在下列表中填上选择的的模型类别
2. 时间序列模型建立后,将要对模型进行显着性检验,那么检验的对象为___________,检验的原假设是___________。

3. 时间序列预处理常进行两种检验,即为_______检验和_______检验。

4. 根据下表,利用AIC 和BIC 准则评判两个模型的相对优劣,你认为______模型优 于______模型。

5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳。

6. 设ARMA (2, 1):
则所对应的特征方程为_______________________。

7. 简单季节差分模型的模型结构为: ______________________。

8、对于时间序列{}t X ,如果___________________,则()~2t X I 。

9. 设时间序列{}t X 为来自GARCH(p, q)模型,则其模型结构可写为_____________。

10. k 步差分的定义为k t X ∇=___________________________。

三、 (15分)设{}t ε为正态白噪声序列,()()2t t 0,E Var εεσ==,时间序列}{t X 来自
试检验模型的平稳性与可逆性。

四、 (15分)设}{t X 服从ARMA(1, 1)模型:
110.80.6t t t t X X εε--=+- 其中1001000.3,0.01X ε==。

、给出未来3期的预测值;(8分) 2、给出未来3期的预测值的95%的预测区间(0.975 1.96u =)。

(7分)五、(20分)设平稳时间序列}{t X 服从AR(1)模型:
10.8t t t X X ε-=+,其中{}t ε为白噪声,求 .),
(V ar (E 222φρ和),t t X X
六、(1) 请分别论述 ARCH 模型、GARCH 模型、EGARCH 模型以及
GARCH-M (即GARCH-in-Mean 模型)模型的经济含义; (5
分) (2) 请简要给出ARCH(1)模型、GARCH(1,1)模型, EGARCH(1,1)模型以及GARCH(1,1)-M 模型的形式。

(5分)
湖南大

课程


试卷
湖南大学教务处。

相关文档
最新文档