2008-2009-01时间序列分析06级期末A卷答案
时间序列期末考试A卷答案

第(-)学期考试试卷课程代码6024000课程名称时间序列分析B(A卷)考试时间____________(注:匕}为均值为零的白噪声序列)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【1 内。
答案错选或未选者,该题不得分。
每小题4分,共20分。
)1.X,的k阶差分是【C】(A) Px严Xt—X.k(B) 丁X严P-'X厂p-'Xj(c) =v A-,x/-v A-'x/_1(D)v*x r=V A-,X,_1-V A-,X/_22.MA⑵模型X f=^-1.1£-Z_I+0.24^_2,则移动平均部分的特征根是【A】(A)人=0.8, /U=0.3 (B) =-0.8, /U=0.3(C)人=-0.8, = -0.3 (D) & =一0.8,入=0.23•关于差分X,—1.3Xi+0.4X一2=0,其通解是【D】(A) q(08+0.3‘)(B) q(o.&+o.5『)(C) qO.S+C/O.M (D) Cfi.S1+C20S4.AR(2)模型X, =£—l.lXj+0.24X_2,其中£>£=0.04,则EX 禺=[B 】(A) 0 (B) 0.04(C) 0.14 (D) 0.25.ARMA(2,l)tMgy X, -X,., -0.24X z_2 =^; -0.8^,.,,其延迟表达式为【A 】(A) (l-B-0.24B2)X, =(l-0.8BX (B) (B2-B-0.24)%, =(B-0.8X(C) (B2-B-0.24)X f =0.8V^ (D) (1 -B-0.24/?2)X f = Vf r二、简答题(10分)对于均值为零的平稳序列,其自相关系数存在两个估计量,请写出两个估计量,并说出它们各自优缺点。
三、(15 分)已知 MA (2)模型为 X r =^-0.6^_,+0.5^_2,其中 Ds, = 0.04 ,(1)计算前3个逆函数,/…; = 1,2,3; -------------------------- (8分) (2)计算Var{X t );------------------------------------ (7 分)解答:(1) X 」勺逆转形式为:或J 壬 --------------------------------------------------------- (1分) /■]J-0将其代入原模型得:X, = (1 -0.6B + 0.5B 2)(1 -I.B- I 2B 2 • • •)%, -------- (1 分) 比较B 的同次幕系数得:B:-Z 1-0.6 = 0=>/l =-0.6 ---------------- (2 分) B 2:-Z 2 + 0.6/, + 0.5 = 0 Z 2 = 0.14 ---------------- (2 分)肝:一人+0・6厶+0・5人=0=>厶=0.384 ------ (2分)(2) EX t = E (s j -0.6^ + 0.5^_2) = 0 ---------- (1 分)EX ; = E[(£ _0・6吕-]+0・5名-2)(吕 _0・6吕-]+0・5爲_2)](2分)所以:Var (X z ) = EX ; = (1 + 0.62 + 0.52)x0.04 = 0.0644 -- (2 分) 四、(15 分)已知 AR (2)模型为(1—0・53)(1-0・33)/=爲 Ds. =a ;= 0.5(1)计算偏相关系数%伙=123); -------------------------------- (8分)(2) W/r (XJ ; ----------------------------------------- (7 分) 解答(1) (l-0・5B )(l-0・3B )X 『 =X 『—O ・8X"i+O ・15X_=£,所以:% =0.=-0」5对于A&2)模型其系数满足2阶Yule-Walker 方程:姑金“69565 和/金+ *“40652,产生偏相关系数的相关序列为,相应Yule-Wolker 方程为:‘1 p\/ 、 '1 P\ V 0.8、(PC<P1 16l.Pi 1315丿4所以:(2分)当£ = 2时, P\ P\Po >2ij =rpi~他」一1因为0, m b ; = 0.04, t= s将其代入原模型得:(1-加-02肝)丘手一广吕一(1分)7-0比较B 的同次幕系数得:G° = lB :G\- %G ()= 0 => G] = (p 、= £ -------- ( 2 分)3’ : G, — %G] +(P 、G Q = 0 => G? = --------- ( 2 分) 225 553G 3 —(pfi 2 一(p 2G } =0=>G 3= 〜0」6385 -------- (2 分)^7P\=(P\\P Q 即 ®I =ZV 所以(Pw= P\ 0.69565% =[。
时间序列试卷参考答案

时间序列试卷参考答案内蒙古财经学院2009——2010学年第一学期期末考试试卷《时间序列分析》试卷参考答案一、填空题(1分*20空=20分)1. 描述性2. 平稳性,白噪声3. 严平稳,宽平稳,宽平稳4. 时域分析方法,频域分析方法5. 纯随机性,2χ,1,:210>?==m H m ρρρ ,m k H k ≤≤≠?1,0:1ρ6. 否,一阶,12步,d(x,1,12)7. 差分运算,ARMA 模型8. 自回归9. t t x B ε=Φ)(二、不定项选择题(2分*5=10分)1 A C D ;2 A D ;3 A BD ;4 B ;5 A D三、判断并说明理由(10分)1.(5分)答:说法不完全正确。
模型的有效性检验指的是检验模型的有效性。
如果模型有效,则拟合残差应该不含有任何信息,即残差为纯随机序列;如果模型拟合不显著,则拟合残差应该残留未被模型提取充分的信息,即非纯随机序列。
所以模型的有效性检验等同于对残差进行纯随机性检验,而不是平稳性检验。
2.(5分)答:说法是错误的。
证明:2110110121)()()0,1,0(εσεεεεεεεεεt x Var x Var x x x x ARIMA t t t t t t t t t t t =+++=+++==++=+=----- 模型:例如即方差非齐次。
四、简答题:(第1小题15分,第2小题5分,本题共20分)1. 答:(1)平滑法是进行趋势分析和预测时常用的一种方法。
它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律(2)根据平滑技术的不同,平滑法可以具体分为移动平均法和指数平滑法。
移动平均法假定在一个比较短的时间间隔里,序列值之间的差异主要是由随机波动造成的。
根据这种假定,我们可以用一定时间间隔内的平均值作为某一期的估计值,具体公式为:++++++++++++=+-++---+--++----为偶数,为奇数,n x x x x x n n x x x x x n x n t n t t n t n t n t n t t n t n t t )2121(1)(1~2121222112112121 指数平滑法的思想是在实际生活中,我们会发现对大多数随机事件而言,一般都是近期的结果对现在的影响会大些,远期的结果对现在的影响会小些。
应用时间序列A卷答案

优质文本一、填空题(24分,每题3分) 1.对任意的T t t n ∈,...1和任意的h 使得n i T h t i ,...,2,1,=∈+有()()()()h t X h t X h t X n +++,...,,21与()()()()n t X t X t X ,...,,21相同的联合分布;2.()()⎪⎩⎪⎨⎧=•<∀-+++=--0,,0...211t s t tp t p t t X E t s WN X X X εσεεφφ; 3. 231,231-+; 4. 拖尾; 5 连续型时间序列分析和离散型时间序列分析;6.频域分析和时域分析;7. 矩估计、极大似然估计和最小二乘估计 8 AIC 和SBC;二、简答题(共20分,每题10分)1.(本题10分)解:(1)时间序列分析方法强调变量值序列顺序的重要性;2分 (2)时间序列各观察值之间存在一定的依存关系; 2分(3)时间序列分析根据自身的变化规律来预测未来; 2分 (4)时间序列是一组随机变量的一次样本实现; 2分 (5)时间序列分析和回归分析的建模思路不同。
2分2.(本题10分)解:(1)模型识别:即确定自回归模型阶数p 和移动平均模型阶数q 。
2 分 (2)参数估计:即给出均值、自回归参数和移动平均参数,以与白噪音方差2σ的估计值。
3分 (3)模型的检验和模型选择:对所选择的不同阶数p 和q 的值,重复估计步骤,直至选出最优模型为止。
3 分(4)应用信息准则法进行模型优化选择。
2 分三.证明题(共12分)证明:()t f 是具有周期T 的函数,因而是有界函数,ε是区间(0,T)上均匀分布的随机变量,因而()()()()011=+•+=•+=⎰⎰t d Tt f d Tt f X E TTεεεε 5分为常数,()()()()()()()()()[]()()[]()()⎩⎨⎧≠-=-=•=-•-=nTs t nTs t t X s X t X E s X E s X t X E t X E s t ,0,var ,γ 5分 因而()t X 的二阶矩都存在,均值函数为常数,协方差函数只与t-s 有关,因而为宽平稳过程。
2008-2009学年 第2学期 期末考试 A卷 试卷及解答

中国海洋大学2008-2009学年第2学期期末考试试卷数学科学学院《线性代数》课程试题(A卷) 共4 页第2 页中国海洋大学 2008-2009学年 第2学期 期末考试试卷数学科学 学院 《线性代数》 课程试题(A 卷) 共 4 页 第 3 页解: 1X A B -=,根据初等行变换求解可得 ()()213132132323102211022110221311133,201570015702,521891014510012110021010351,100121rr r r r r r r r r r r ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-------+---+-⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭--⎛⎫ ⎪-⨯-⨯-⎪ ⎪---⎝⎭uuuuuuuuuuuuu r uuuuu r uuuuuuuuuuuuu r uuuuu r 100210103500121--⎛⎫ ⎪--⎪ ⎪⎝⎭uuuuuuuuuuu因此213521X --⎛⎫ ⎪=-- ⎪ ⎪⎝⎭4. 已知3R 的两组基为()()()1231,0,0,1,1,0,1,1,1TTTααα==-=与()()()1231,2,1,2,3,3,3,7,1T T Tβββ===,求:(1)基{}123,,ααα到基{}123,,βββ的过渡矩阵; (2)向量()5,2,1Tα=在基{}123,,ααα下的坐标。
解:(1)设基{}123,,ααα到基{}123,,βββ的过渡矩阵为C ,则()()123123,,,,C βββααα=,即123111237011131001C ⎛⎫⎛⎫⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因此1111123011237001131C -⎛⎫⎛⎫⎪ ⎪=- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,利用初等变换法求解得()2313122111123110012100118011237,010106,1010106001131001131001131r r r r r r r --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪----+⨯--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭uuuuuuuuuuu r uuuuuuuuuuuuur12,,,,n αααβL 线性无关;(2)若1β可由12,,,n αααL 表出,而2β不能由12,,,n αααL 表出, 则1212,,,,n αααββ+L 线性无关。
(整理)《时间序列分析》试卷a答案.

2010—2011学年第一学期2007应用数学《时间序列分析》试卷A 答案一 (18分,每空1分)1 112211t t t t t X X X a a ϕϕθ-----=-2 偏自相关函数;自相关函数3 矩估计法、最小二乘估计法、极大似然估计法4 B5 1ϕ;06 1,1,2,i i n λ<=7 m8利用序列图进行判断;利用样本自相关函数ˆk ρ进行平稳性检验;利用单位根检验进行判断9 12222011ˆ 1.96()t l a l X G G G σ+-±+++ 10 存在11 使得预测误差的均方値达到最小10 (1)S DB -二 (8分,每小题1分)1 错;2错;3对;4对;5 错;6 错;7 错;8对三 (12分,每小题2分)1 (1)2(10.80.5)t t X B B a =-+;(2) 21(10.5)(1 1.20.4)t t B X B B a --=-+2 (1) 稳定;(2)稳定3 (1)120.5,0.25G G ==; (2) 120.5,0G G =-=四 (4分)AR{1}五 (12分)(1)34321324321ˆ(1)(,,)([100.60.3],,)100.697.20.39696.12X E X X X X E X X a X X X ==+++=+⨯+⨯=;(2分)35321435321ˆ(2)(,,)([100.60.3],,)100.697.120.397.297.432X E X X X X E X X a X X X ==+++=+⨯+⨯=;(2分) 36321546321ˆ(3)(,,)([100.60.3],,)100.697.4320.397.1297.5952X E X X X X E X X a X X X ==+++=+⨯+⨯= (2分)(2)010110.6G G G ϕ===221/21/2011.96() 1.966 1.3613.7144G G σ+=⨯⨯=五月份销售额的 95%的置信区间为(83.7176,111.1464) (2分)六 (50分)1 (1)AR(1)模型:10.667831t t t X X a -=+ (5分)疏系数的ARMA(1,6)模型:160.5578970.47526t t t t X X a a --=++ (5分)(2)上边AR(1)模型的AIC 值为-0.804969,第二个模型的AIC 值为-0.876542,根据AIC 准则可知,第二个模型拟合效果更好。
时间序列分析习题答案

时间序列分析习题答案时间序列分析习题答案时间序列分析是一种广泛应用于统计学和经济学领域的方法,用于研究随时间变化的数据。
通过对时间序列数据的建模和分析,我们可以揭示数据背后的规律和趋势,从而进行预测和决策。
下面我将给出一些时间序列分析习题的答案,希望能对大家的学习和理解有所帮助。
1. 什么是时间序列?时间序列是按照时间顺序排列的一系列数据观测值。
它可以是连续的,比如每天的股票价格,也可以是离散的,比如每个月的销售额。
时间序列分析的目标是通过对这些数据的分析和建模,揭示数据背后的规律和趋势。
2. 时间序列分析的步骤是什么?时间序列分析一般包括以下几个步骤:- 数据收集:收集并整理时间序列数据,确保数据的准确性和完整性。
- 数据可视化:通过绘制时间序列图,观察数据的趋势、季节性和周期性等特征。
- 数据平稳性检验:通过统计检验方法,判断时间序列数据是否平稳。
如果不平稳,需要进行差分处理。
- 模型选择:根据数据的特征和目标,选择适合的时间序列模型,比如ARIMA模型、季节性ARIMA模型等。
- 模型拟合:利用选定的模型,对时间序列数据进行拟合和参数估计。
- 模型诊断:对拟合的模型进行诊断,检验模型的残差序列是否符合模型假设。
- 模型预测:利用已拟合的模型,对未来的数据进行预测。
3. 如何判断时间序列数据的平稳性?平稳性是时间序列分析的基本假设之一,它要求时间序列的均值、方差和自相关函数在时间上都是常数。
常用的平稳性检验方法有:- 绘制时间序列图:观察数据是否具有明显的趋势、季节性和周期性。
- 平稳性统计检验:常用的统计检验方法有ADF检验、KPSS检验等。
这些检验方法的原理是基于单位根检验,判断序列是否存在单位根,从而判断序列的平稳性。
4. 如何选择适合的时间序列模型?选择适合的时间序列模型需要考虑数据的特征和目标。
常用的时间序列模型有:- AR模型:自回归模型,利用过去的观测值对当前值进行预测。
- MA模型:移动平均模型,利用过去的白噪声误差对当前值进行预测。
(精校版)时间序列分析试卷及答案

(完整word版)时间序列分析试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)时间序列分析试卷及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)时间序列分析试卷及答案的全部内容。
时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA (p , q)模型_________________________________,其中模型参数为____________________.2. 设时间序列{}t X ,则其一阶差分为_________________________。
3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________.4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________.5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳.6. 对于一阶自回归模型MA (1): 10.3t t t X εε-=-,其自相关函数为______________________.7. 对于二阶自回归模型AR (2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。
8. 设时间序列{}t X 为来自ARMA (p,q )模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++则预测方差为___________________.9. 对于时间序列{}t X ,如果___________________,则()~t X I d .10. 设时间序列{}t X 为来自GARCH (p ,q )模型,则其模型结构可写为_____________。
统计基础知识第五章时间序列分析习题及答案

A. 140 万元B.150 万元6. 下列指标中属于时点指标的是 ( A ) A. 商品库存量 C .平均每人销售额7. 时间数列中,各项指标数值可以相加的是 A. 时期数列 C. 平均数时间数列8. 时期数列中各项指标数值( A ) A. 可以相加C .绝大部分可以相加10.某校学生人数 2005年比 2004年增长了8%,2006年比 2005年增长了 15%,2007年比 2006 年增长了 18%,则 2004-2007 年学生人数共增长了( D )( 2008年 10月)A.8 % +15% +18%B.8 %X 15%X 18%C. ( 108% +115% +118%) -1D.108%X 115%X 118%-1二、多项选择题1. 将不同时期的发展水平加以平均而得到的平均数称为 ( ABD ) (2012年1月)A.序时平均数B.动态平均数C.静态平均数D.平均发展水平E. 一般平均数2. 定基发展速度和环比发展速度的关系是 ( BD ) (2011年 10月) A. 相邻两个环比发展速度之商等于相应的定基发展速度、单项选择题 第五章 时间序列分析1. 构成时间数列的两个基本要素是 ( A.主词和宾词 ) (2012年 1月)B. 变量和次数 C .现象所属的时间及其统计指标数值 2.某地区历年出生人口数是一个 ( A.时期数列 D.时间和次数2011年 10 月)B. 时点数列 C .分配数列 D .平均数数列3. 某商场销售洗衣机, 2008 年共销售 (2010年 10) A. 时期指标 C. 前者是时期指标,后者是时点指标4. 累计增长量 ( A ) ( 2010年 10) A. 等于逐期增长量之和 C.等于逐期增长量之差5. 某企业银行存款余额 4 月初为 80 万元, 6000 台,年底库存 50 台,这两个指标是 ( C )B. 时点指标D. 前者是时点指标,后者是时期指标B. 等于逐期增长量之积 D •与逐期增长量没有关系160 万元,则该企业第二季度的平均存款余额为(5 月初为 150 万元,6 月初为 210 万元,7 月初为C )( 2009年 10)C.160 万元 D .170万元( 2009年 10) B. 商品销售量 D .商品销售额 ( A )(2009年10)B.相对数时间数列 D. 时点数列2009年1月)B. 不可以相加D. 绝大部分不可以相加B. 环比发展速度的连乘积等于定基发展速度C. 定基发展速度的连乘积等于环比发展速度D .相邻两个定基发展速度之商等于相应的环比发展速度E.以上都对3. 常用的测定与分析长期趋势的方法有A. 时距扩大法( ABC )(2011年1 月)B.移动平均法C. 最小平方法4. 时点数列的特点有( BCD )A. 数列中各个指标数值可以相加D.几何平均法2010年10)E. 首末折半法B. 数列中各个指标数值不具有可加性C. 指标数值是通过一次登记取得的D. 指标数值的大小与时期长短没有直接的联系E. 指标数值是通过连续不断的登记取得的5.增长1%的绝对值等于(AC )(2010年1)A.增加一个百分点所增加的绝对量B. 增加一个百分点所增加的相对量C .前期水平除以100 D. 后期水平乘以1% E .环比增长量除以100再除以环比发展速度6. 计算平均发展速度常用的方法有( A.几何平均法(水平法) C•方程式法(累计法)E.加权算术平均法7. 增长速度(ADEA. 等于增长量与基期水平之比C.累计增长量与前一期水平之比AC )(2009年10)B.调和平均法D.简单算术平均法)(2009年1 月)B. 逐期增长量与报告期水平之比D. 等于发展速度-1E .包括环比增长速度和定基增长速度8. 序时平均数是(CE )A.反映总体各单位标志值的一般水平2008年10月)B.根据同一时期标志总量和单位总量计算C•说明某一现象的数值在不同时间上的一般水平D. 由变量数列计算E. 由动态数列计算三、判断题1. 职工人数、产量、产值、商品库存额、工资总额指标都属于时点指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9. 条件异方差模型中,形如⎪⎪⎪⎩
⎪
⎪⎪⎨⎧
++==+=∑∑=-=---3
122121),,,(j j t j i i t i t t t t t
t t t h h e h x x t f x εληωεε
Λ
式中,),,,(21Λ--t t x x t f 为{t x }的回归函数,N(0,1)~i.i.d
t e ,该模型简记为GARCH (2,3)模型;
10. Cox 和Jenkins 在1976年研究多元时间序列分析时要求输入序列与响应序列均要
_ 平稳 _,Engle 和Granger 在1987年提出了__协整 _关系,即当输入序列与响
应序列之间具有非常稳定的线性相关关系(回归残差序列平稳)。
二、(10分)试用特征根判别法或平稳域判别法检验下列四个AR 模型的平稳性。
(1)t 1-t t x 8.0x ε+-= (2)t
1-t t x 3.1x ε+=
(3)t 2-t 1-t t x 6
1
x 61x ε++=
(4)t
2-t 1-t t x 2x x ε++=
解:
AR (p )模型平稳性的特征根判别法要求所有特征根绝对值小于1;
AR (1)模型平稳性的平稳域判别法要求1||1<φ,
AR (2)模型平稳性的平稳域判别法要求:1,1||122<±<φφφ。
(1) 8.01-=λ 特征根判别法:平稳;18.0||1<=φ,平稳域判别法:平稳;
(2) 3.11=λ 特征根判别法:非平稳;13.1||1>=φ,平稳域判别法:非平稳;
(3) 特征方程为: 2
1
,31,0)13)(12(016212=-==+-=--λλλλλλ即
由特征根判别法:平稳;
10,131
,161||12122<=-<=+<=φφφφφ,平稳域判别法:平稳;
(4) 特征方程为: 2,1,0)2)(1(02212=-==-+=--λλλλλλ即 由特征根判别法:非平稳;
11,13,12||12122不小于=->=+>=φφφφφ,平稳域判别法:非平稳。
三、
(10分=4+3+3分)非平稳序列的确定性分析
1. 某一观察值序列最后4期的观察值为:
=-3T x 5,=-2T x 5.4,=-1T x 5.8,=T x 6.2,使用4期移动平均法预测2ˆ+T x。
解:使用4期移动平均法预测
()()75
.54
6
.52.68.54.5ˆ41ˆ6.54
2
.68.54.5541ˆ11221231=+++=+++==+++=+++=+--+---+T T T T T T T T T T x x x x x
x x x x x
2. 对某一观察值序列{}t x 使用指数平滑法1~)1(~
--+=t t t x x x αα,已知6=T x , 4.6~1=-T x ,平滑系数25.0=α,求二期预测值2ˆ+T x 。
解:使用指数平滑法1~)1(~
--+=t t t x x x αα 3.6ˆˆ)1(ˆˆ3
.64.675.0625.0~75.025.0~ˆ111211==-+===⨯+⨯=+==++++-+T T T T T T T T x x x x
x x x x αα
3. 下表是某序列季节指数计算表,请在空白处填上准确结果。
四、 (10分)试推导一般ARMA (1,1)模型1
-t 1t 1-t 1t x x εθεφ-=-的传递形
式和逆转形式;并进而给出ARMA (1,1)模型为:1-t t 1
-t t 8.0x 5.0x εε-=-的传
递形式与逆转形式。
解:(1)ARMA (1,1)模型1-t 1t 1-t 1t x x εθεφ-=-的传递形式:
t 1t 1B 1x B 1εθφ)()(
-=- t 22
111t 11t B B 1B 1B 1B 1x εφφθεφθ))(()
()(Λ+++-=--=
t
k 11
k 1k 13121312112111t ])B )B )B )B 1[x εθφφθφφθφφθφΛΛ+-++-+-+-+=-((((
代入 8.0,5.011==θφ,得
t k 1k 322t ]B 5.03.0B 5.03.0B 15.0B 3.01[x εΛΛ+⋅--⋅---=- (2)ARMA (1,1)模型1-t 1t 1-t 1t x x εθεφ-=-的逆转形式: t 1t 1B 1x B 1εθφ)()(
-=- t 22
111t 11t x B B 1B 1x B 1B 1))(()
()(Λ+++-=--=
θθφθφε
t
k 11
k 1k
1312
13
12112
111t ]x )B )B )B )B 1[ΛΛ+-++-+-+-+=-φθθφθθφθθφθε((((
代入 8.0,5.011==θφ,得t k 1k 322t ]x B 8.03.0B 8.03.0B 24.0B 3.01[ΛΛ+⋅++⋅+++=-ε
五、 (10分)给出ARIMA 模型的建模流程:
模型建模步骤如下
Y
六、 (30分)实践题(另交3-10页的题目、程序和答案纸)
要求:总结各章上机指导的相关内容,从问题出发,提供不超过三个可以独立运行的SAS 程序,
解决时间序列分析有关具体问题,包括数据的输入、输出,时序图、自相关图、偏相关图,ARIMA 过程的较完整运用,以及其它自己熟悉的时间序列分析程序过程(如自回归、X11等)的运用。