生物技术制药_及_名词解释 2

合集下载

生物技术名词解释

生物技术名词解释

生物技术名词解释
生物技术是指使用生物的基因特性或分子特性来解决科学问题的过程。

生物技术主要分为细胞工程、生物识别技术和生物分析技术。

细胞工程是指一种利用细胞生物学技术,将特定分子、复杂细胞构造或生物产品嵌入到细胞内,用以改变其表型特性或为生产特定产物而施加改变的技术。

例如,可以在植物细胞或微生物细胞中根据自然调控反应网络以及调控基因构建自定义的反应体系,从而改造植物或微生物以产生更多用途的生物产品。

生物识别技术是利用生物分子来识别病毒和细菌的技术。

抗原抗体可用于检测物体是否含有指定的抗原,即免疫反应。

它也可以用来识别细菌、病毒或蛋白质。

此外,生物识别技术还可以用来鉴别有毒物质、药物或其他物质,例如DNA测序可以用来分析和比较基因的结构和组成,用于抗癌药物的研究和器官移植辨识等。

最后,生物分析技术主要是指对生物物质,如蛋白质、多肽、核酸、酶等进行分析,以及利用细胞和基因工程技术分运行物理、化学和其他分析技术,以提取并研究细胞、器官、组织或遗传物质的有效成分的技术。

其中常用的方法有酶联免疫吸附试验、细胞培养、块抽提、显微镜观察等。

以上技术可应用于分子生物学、药物发现以及社会与健康的诸多领域中。

综上所述,生物技术可以非常有效地解决当今科学问题,像细胞工程、生物识别技术和生物分析技术,它们可以用于研究、分析和检测,真正为现代科学技术和社会发展作出贡献。

生物制药工艺学名词解释

生物制药工艺学名词解释

1 Biologics 生物制品:一般指的是用微生物(包括细菌,噬菌体,立克次体病毒等)为生物代谢产物,动物毒素,人或动物的血液或组织等加工而制成的预防,治疗和诊断特定传染病或其他有关疾病的免疫制剂,主要指菌苗,疫苗,毒素,应变原与血液制品等。

2 Electroporation 电穿孔:是指在高压电脉冲的作用下使细胞膜上出现微小的孔洞,外界环境中的DNA穿孔而入,进入细胞,最终进入细胞核内部得的方法。

该方法既适合于贴壁生长的细胞,也适合用于悬浮生长的细胞,既可用于瞬时表达也可用于稳定转染。

3 Microcarrier culture 微载体培养:微载体培养是使细胞贴附在微小颗粒载体上,它创造了相当大的贴附面积,供细胞贴附生长、增殖。

载体体积很小,比重较轻,在轻度搅拌下即可使细胞自由悬浮于培养基内,充分发挥悬浮培养的优点。

4 Conventional filtration 常规过滤:是指料液流动方向和过滤介质垂直的过滤方式。

常规过滤时,固体颗粒易被填塞在过滤介质上,形成滤饼。

料液必须穿过滤饼和过滤介质的微孔。

恒压下,随着滤饼厚度的增加,滤液不断减慢。

5 SCF 超临界流体:是指处于超临界温度(TC)和超临界压力(PC)以上的特殊流体。

当气体物质处于其临界温度和临界压力以上时,不会凝缩为液体,只是密度增大,因此,超临界流体相既不同于一般的液相,也有别于一般的气相,具有许多特殊的物理化学性质。

6 Adsorption method 吸附法:指利用吸附作用,将样品中的生物活性物质或杂质吸附于适当的吸附剂上,利用吸附剂对活性物质和杂质间吸附能力的差异,使目的物和其他物质分离,达到浓缩和提纯目的的方法。

7 Compound affinity 复合亲和力:即吸附剂的亲和结合过程,既涉及离子效应的应用,又有疏水作用,且这两种弱的作用还彼此增强,其结果使亲和力大大增强。

8 Thymus hormones 胸腺激素:胸腺是一个激素分泌器官,对免疫功能有多方面的影响。

生物技术名词解释

生物技术名词解释

生物技术名词解释生物技术是一种利用生物体、细胞和分子等方面的知识和技术来开发新型产品、改进现有产品或解决生物问题的科技领域。

下面是一些常见的生物技术名词的解释:1. 基因工程: 基因工程是通过人工改变生物体的基因组,使其产生新的性状或功能。

通过基因工程,可以插入、删除或改变生物体的基因序列。

2. 克隆: 克隆是指利用细胞分裂或基因工程技术复制生物体的过程。

通过克隆技术,可以复制出具有相同基因组的生物体。

3. DNA测序: DNA测序是指确定DNA序列的方法和技术。

它是研究生物基因组和进行基因工程的重要工具。

4. 基因组学: 基因组学是研究生物体基因组的科学。

它包括分析和解读生物体的全部基因组信息,以及研究基因组的结构、功能和演化等方面的内容。

5. 生物传感器: 生物传感器是一种能够将生物体内的生物信号转化为电信号或光信号的装置。

生物传感器主要用于生物识别、环境监测、药物筛选等领域。

6. 重组蛋白: 重组蛋白是通过基因工程技术将人工合成的DNA 插入到微生物或其他细胞中,使其产生重组蛋白。

重组蛋白具有广泛的应用价值,可以用于制药、农业、工业和环境等领域。

7. 转基因: 转基因是指通过基因工程技术将外来基因导入到目标生物体中,使其具有新的性状或功能。

转基因技术在农业、医学和工业等领域有重要的应用。

8. CRISPR-Cas9: CRISPR-Cas9是一种基因编辑技术,可以精确地修饰细胞或生物体的基因序列。

它可以用于研究基因功能、治疗遗传病和改良农作物等方面。

9. 组织工程: 组织工程是一种利用生物材料和细胞工程技术来构建和修复人体组织和器官的方法。

组织工程主要用于治疗损伤、疾病和器官功能障碍等问题。

10. 人工合成生物: 人工合成生物是通过合成生物学技术构建的具有特定功能的微生物或细胞。

人工合成生物可以用于制药、能源和环境等领域的研究和应用。

这些是生物技术领域中的一些常见名词,它们代表了生物技术的发展方向和应用领域。

生物药剂学名词解释

生物药剂学名词解释

生物药剂学名词解释生物药剂学是药学的一个分支学科,研究生物药剂的制备、贮存、稳定性和评价等相关理论和技术。

在现代医药领域,生物药剂已经成为新药研发的主要方向之一,因其具有高效、低毒、高靶向性等特点,逐渐成为药物治疗的首选。

1.生物药剂:生物药剂是指以生物制品为原料,并采用生物技术手段制备的药物。

生物制品可以是从人或动物身上提取的或是通过基因工程技术制备的。

生物药剂具有高度特异性、高效性和低毒性的特点。

2.贮存:贮存是指生物药剂在生产完成后的一系列保管工作。

生物药剂的贮存要求其在一定的温度、光照和湿度下,能够保持其稳定性和活性。

贮存条件对于生物药剂的质量和安全性具有重要影响。

3.稳定性:稳定性是指生物药剂在贮存和使用过程中的物理、化学和生物学性质的保持程度。

稳定性是生物药剂质量评价的一个重要指标。

药物的不稳定性可能导致其活性降低、降解产物增多或者丧失药效等问题。

4.评价:评价是对生物药剂质量和活性的定量和定性分析。

通过对生物药剂的药效、毒性、纯度、质量、稳定性等方面进行评价,可以判断其是否符合药物的标准,并为药物研发和治疗提供依据。

5.生物技术:生物技术是指利用生物体的化学、物理、生物学等特性和原理,通过对生物材料的处理、转化和改造等手段,实现对生物产物的制备和利用的一种技术。

在生物药剂学中,生物技术被广泛应用于生物药剂的制备过程中,以提高药物的活性和稳定性。

6.高效性:高效性是指生物药剂在治疗过程中的药效成效。

相较于传统药物,生物药剂具有高效、高选择性和低毒性等特点,可以更好地满足特定患者的治疗需求,提高治疗效果。

7.低毒性:低毒性是指生物药剂在治疗过程中对人体的毒副作用较小。

由于生物药剂具有高效性和高度特异性,可以在较低的剂量下发挥疗效,从而减少对人体的负面影响。

总之,生物药剂学是研究生物药剂制备、贮存、稳定性和评价等相关理论和技术的学科,生物药剂因其高效、低毒、高度特异性等特点而成为现代药物研发的主要方向之一,具有广阔的应用前景。

生物制药高级工程师考试试题及答案

生物制药高级工程师考试试题及答案

生物制药高级工程师考试试题及答案一、名词解释1、生物技术(biotechnology):有时也称为生物工(bioengineering),是指人们以现代生命科学为基础,结合先进的工程技术手段和其他基础学科的科学原理,利用生物得体或其体系或它们的衍生物来制造人类所需要的各种产品或达到某种目的的一门新兴的、综合性的学科。

2、基因工程(gene enginerring):是指在基因水平上的操作并改变生物遗传特性的技术。

即按照人们的需要,用类似工程设计的方法将不同来源的基因(DNA分子)在体外构建成杂种DNA分子,然后导入受体细胞,并在受体细胞内复制、转录和表达的操作,也称DNA 重组技术。

3、细胞工程(cell engineering):是指在细胞为基本单位,在体外条件下进行培养、繁殖或人为地使细胞某些生物学特性按人们的意愿发生改变,从而达到改良生物品种和创造新品种的目的,加速繁育动植物个体,或获得某种有用物质的技术。

4、酶工程(enzyme engineering):是利用酶、细胞器或细胞所具有的特异催化功能或对酶进行修饰改造,并借助生物反应器和工艺过程来生产人类所需产品的技术。

5、发酵工程(fermentation engineering):是指利用包括工程微生物在内的某些微生物或动、植物细胞及其特定功能,通过现代工程技术手段(主要是发酵罐或生物反应品的自动化、高效化、功能多样化、大型化)生产各种特定的有用物质;或把微生物直接用于某些工业化生产的一种技术。

由于发酵多与微生物密切联系在一起,所以又称之为微生物工程或微生物发酵工程。

6、生物反应器(bioreactor):主要包括微生物反应器、植物细胞培养反应器,动物细胞培养反应器以及新发展起来的有活体生物反应器之称的转基因植物生物反应器,转基因动物生物反应器等。

7、转基因动物:是指在基因组中稳定地整合有导入的外源基因的动物。

二、简答题1、什么是生物技术,生物技术的技术范畴包含哪几方面?答:生物技术是指人们以现代生命科学为基础,结合先进的工程技术手段和其他基础学科的科学原理,利用生物得体或其体系或它们的衍生物来制造人类所需要的各种产品或达到某种目的的一门新兴的、综合性的学科。

生物技术制药试题(打印版)

生物技术制药试题(打印版)

生物技术制药试题1. 生物技术制药:生物技术制药是指运用微生物学、生物学、医学、生物化学等的研究成果,从生物体、生物组织、细胞、体液等,综合利用微生物学、化学、生物化学、生物技术、药学等科学的原理和方法进行药物制造的技术。

2. 基因表达:基因表达(gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子.生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。

3. 质粒的分裂不稳定:通常将质粒不稳定性分为两类:一类是结构不稳定性,也就是质粒由于碱基突变、缺失、插入等引起的遗传信息变化;另一类是分离不稳定性,指在细胞分裂过程中质粒不能分配到子代细胞中,从而使部分子代细胞不带质粒(即P-细胞)。

在连续和分批培养过程中均能观察到此两类现象发生。

一般情况下具有质粒的细胞(即P+细胞)需要合成较多的DNA、RNA和蛋白质,因此其比生长速率低于P-细胞,从而P-细胞一旦形成能较快速地生长繁殖并占据培养物中的大多数。

4. 补料分批培养:发酵培养基发酵培养基是供菌种生长、繁殖和合成产物之用。

它既要使种子接种后能迅速生长,达到一定的菌丝浓度,又要使长好的菌体能迅速合成需产物。

因此,发酵培养基的组成除有菌体生长所必需的元素和化合物外,还要有产物所需的特定元素、前体和促进剂等。

但若因生长和生物合成产物需要的总的碳源、氮源、磷源等的浓度太高,或生长和合成两阶段各需的最佳条件要求不同时,则可考虑培养基用分批补料来加以满足。

5. 人-鼠嵌合抗体:嵌合抗体( chimeric atibody )是最早制备成功的基因工程抗体。

它是由鼠源性抗体的 V 区基因与人抗体的 C 区基因拼接为嵌合基因,然后插入载体,转染骨髓瘤组织表达的抗体分子。

因其减少了鼠源成分,从而降低了鼠源性抗体引起的不良反应,并有助于提高疗效。

6. 悬浮培养:非贴壁依赖性细胞的一种培养方式。

生物技术制药模拟题答案最终版

生物技术制药模拟题答案最终版

一、名词解释生物技术药物:生物技术药物是指采用DNA重组技术或其他创新生物技术生产的治疗药物。

透析培养:透析培养是对微生物培养用透析膜包裹,并使外部有新鲜培养液流动着的一种培养方法。

单克隆抗体:单克隆抗体是由淋巴细胞杂交瘤产生的、只针对复合抗原分子上某一单个抗原决定簇的特异性抗体。

次级代谢产物:次级代谢产物是指微生物生长到一定阶段才产生的化学结构十分复杂、对该生物无明显生理功能,或并非是微生物生长和繁殖所必需的物质,如抗生素、毒素、激素、色素等。

固定化酶:用物理或化学方法处理水溶性的酶使之变成不溶于水或固定于固相载体的但仍具有酶活性的酶衍生物。

生物药物:生物药物是指运用生物学、医学、生物化学等的研究成果,综合利用物理学、化学、生物化学、生物技术和药学等学科的原理和方法,利用生物体、生物组织、细胞、体液等制造的一类用于预防、治疗和诊断的制品。

生物药物,包括生物技术药物和原生物制药。

血液成分制品:系指单用物理方法自全血中分离制备的成分,包括红细胞、白细胞、血小板和血浆。

组织工程:应用生命科学和工程学的原理与技术,在正确认识哺乳动物正常及病理两种状态下组织结构与功能关系的基础上,研究、开发用于修复、维护和促进人体各种组织或器官损伤后功能和形态生物替代物的学科。

抗体酶:20世纪80年代以来出现的一种具有催化活性的蛋白质,是利用生物学和化学的成果在分子水平上交叉渗透研究的产物;其本质上是免疫球蛋白,只是在其易变区被赋予了酶的属性,因此抗体酶又称为催化抗体。

二、选择题1. 世界上采用基因工程生产的第一个传染性疫苗是( A )A 乙肝疫苗B 霍乱疫苗C 甲肝疫苗D 艾滋病疫苗2. 单克隆抗体杂交瘤细胞与抗体性状鉴定的主要方法是( A )A 染色体分析 B凝胶电泳 C 免疫荧光技术 D 层析3.下列不属于影响目的基因在大肠杆菌中表达的因素是:( D )A 外源基因的拷贝数B 外源基因的表达效率C 表达产物的稳定性D 宿主细胞的容量4. cDNA法获得目的基因的优点是( B )A 成功率高B 不含内含子C 操作简便D 表达产物可以分泌5. 菌体生长所需能量( A )菌体有氧代谢所能提供的能量时,菌体往往会产生代谢副产物乙酸。

生物制药工艺学试题及答案

生物制药工艺学试题及答案

生物制药工艺学名词解释第一章:1. 药品:一定剂型和规格的药物并赋予一定的形式(如包装),而且经过有关部门的批准,有明确的作用用途。

药物:能影响机体生理、生化和病理过程,用以预防、诊断、治疗疾病和计划生育的化学物质。

2. 生物药物Biopharmaceuticals:以生物体、生物组织或其成份为原料综合应用生物学、物理化学与现代药学的原理与方法加工制成的药物。

3. 生物活性Biological activity,Bioactivity:对活组织如疫苗有影响的特性。

4. 酶工程enzyme engineering:酶学与工程学互相渗透结合,发展形成的生物技术,它是从应用目的出发,研究酶和应用酶的特异催化功能,并通过工程化过程将相应原料转化成所需产物的技术。

5. 固定化酶immobilized enzyme:是指借助于物理和化学的方法把酶束缚在一定空间内并具有催化活性的酶制剂。

6. 组合生物合成combinatorial biosynthesis(组合生物学combinatorial biology):应用基因重组技术重新组合微生物药物的基因簇,产生一些非天然的化合物。

7. 药物基因组学:一门研究个人的基因遗传如何影响身体对药物反应的科学。

8. 凝聚作用coagulation:指在电解质作用下,胶粒粒子的扩散双电子层排斥电位降低,破坏了胶体系统的分散状态,使胶体粒子发生聚集的过程。

9. 萃取extraction:将物质从基质中分离出来的过程。

一般指有机溶剂将物质从水相转移到有机相的过程。

10. 反萃取stripping/back extraction:将萃取液与反萃取剂相接触,使某种被萃入有机相的溶质转入水相的过程。

11. 萃取因素/萃取比:萃取溶质进入萃取相的总量与该溶质在萃余相中总量之比。

12. 分离因素separation factor:在同一萃取体系内两种溶质在同样条件下分配系数的比值。

13. 双相萃取技术two-aqueous phase extraction:利用不同的高分子溶液相互混合可产两相或多相系统,静置平衡后,分成互不相溶的两个水相,利用物质在互不相溶的两水相间分配系数的差异来进行萃取的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 绪论 生物技术药物分类1.重组DNA技术制造的多肽、蛋白类药物2.基因药物,包括基因治疗药、基因疫苗、反义药物、核酶3.来自动、植物、微生物的天然药物4.合成与半合成的生物药物 按照医学用途分类:1.治疗药物,治疗疾病是生物药物的主要功能。2.诊断药物,具有速度快、灵敏度高、特异性强的特点。3.预防药物,对于许多传染性疾病来说,预防比治疗更重要。 生物技术药物的特性 1.分子结构复杂2.具有种属特异性3.治疗针对性强,疗效高4.稳定性差5.基因稳定性6.免疫原性7.体内t1/2短8.受体效应9.多效性和网络性效应10.检验的特殊性 生物技术制药的特征1.高技术2.高投入3.长周期4.高风险5.高收益 生物技术在制药中的应用1.基因工程制药:(1)基因工程药物品种的开发;(2)基因工程疫苗;(3)基因工程抗体;(4)基因诊断与基因治疗;(5)应用基因工程技术建立新药的筛选模型;(6)应用基因工程技术改良菌种,产生新的微生物药物;(7)基因工程技术在改进药物生产工艺中的应用;(8)利用转基因动、植物生产蛋白质类药物。 现代生物技术的发展趋势主要体现在下列几个方面:①基因操作技术日新月异,不断完善。②新技术、新方法一经产生便迅速地通过商业渠道出售专项技术,并在市场上加以应用。③基因工程药物和疫苗的研究和开发突发猛进。④新的生物治疗制剂的产业化前景十分光明,21世纪整个医药工业将面临全面的更新改造。⑤转基因植物和动物取得重大突破⑥现代生物技术在农业上的广泛应用将给农业和畜牧业生产带来新的飞跃。⑦阐明生物体基因组及其编码蛋白质的结构与功能是当今生命科学发展的一个主流方向,⑧基因治疗取得重大进展,有可能革新整个疾病的预防和治疗领域。⑨蛋白质工程是基因工程的发展,它将分子生物学、结构生物学、计算机技术结合起来,形成一门高度综合的学科。⑩信息技术的飞跃发展渗透到生命科学领域中,形成形成引人注目、用途广泛的生物信息学。 第二章 基因工程制药 基因工程技术生产药物的优点:(1)可以大量生产过去难以获得的生理活性蛋白和多肽。(2)可以提供足够数量的生理活性物质以供研究。(3)可以发现、挖掘更多的内源性生理活性物质。(4)可以通过基因工程和蛋白质工程对内源生理活性物质进行改造。(5)可获得新型化合物,扩大药物筛选来源。 基因工程药物的缺陷:生物利用度低,半衰期短;异体蛋白具有免疫原性 基因工程制药基本环节 上游阶段:制备目的基因→构建重组质粒→构建工程细胞 下游阶段:培养工程细胞→分离纯化产物→除菌→半成品、成品检定→包装 目的基因的常用制备方法 化学合成法 :较小的蛋白质或多肽的编码基因可以用化学合成法合成。必须知道目的基因的核苷酸顺序或目的蛋白质的氨基酸顺序。再按相应的密码子推导出DNA的核甘酸序列。用化学法合成目的基因DNA不同部位的两条链的寡核苷酸短片段,再退火成为两端形成粘性末端的DNA双链片段,然后将这些双链片段按正确的次序进行退火使连接成较长的DNA片段,再用连接酶连接成完整的基因。 人工化学合成基因的限制有: ⒈不能合成太长的基因⒉遗传密码的简并使选择密码子困难,⒊费用高。 RT—PCR法(反转录PCR法):mRNA经逆转录合成cDNA第一条链,不需合成第二条链,在特异引物协助下,用PCR法进行扩增,特异合成目的cDNA链,用于重组,克隆. 逆转录法 :逆转录法就是先分离纯化目的基因的 mRNA,再反转录成 cDNA,然后进行 cDNA 的克隆表达。⒈ mRNA的纯化⒉ cDNA第一链的合成⒊ cDNA第二链的合成⒋ cDNA的克隆⒌ 将重组体导入宿主细胞:⒍ cDNA文库的鉴定:抗性基因失活法、噬菌斑颜色改变法⒎ 目的cDNA克隆的分离和鉴定:核酸探针杂交法、免疫反应鉴定法 重组DNA导入宿主细胞 导入大肠杆菌:CaCl2法;转染法 导入酵母:电转化法;化学转化法;原生质转化法 重组DNA导入哺乳动物细胞:显微注射法;DEAE葡聚糖转染法;DNA-磷酸钙转染法;阳性脂质体介导法;电穿孔法;细胞融合法;病毒感染法 重组子的筛选与鉴定  遗传标记筛选法:抗生素抗性筛选法;α互补筛选法(蓝白斑筛选——载体含有LacZα基因,X-gal培养基,成功导入的菌落显示为蓝斑);营养缺陷型筛选法;噬菌斑筛选法  核酸分子杂交法:菌落原位杂交法;DNA印迹法;RNA印迹法  限制性内切酶图谱法:琼脂糖凝胶电泳鉴定各片段分子量,含有目的基因的为阳性克隆  DNA序列测定法  目的基因表达产物测定法 大肠杆菌中的基因表达 载体 :是基因工程的目的和基本手段,是选用合适的载体把供体DNA(外源基因)运载到受体细胞内,从而复制扩增大量的目的DNA分子或转录表达为相应的产物。 基因工程载体分为:克隆载体,转录载体,表达载体;DNA(克隆载体)→DNA(转录载体)→RNA→蛋白质→(表达载体) 原核细胞的基因组特点:①染色质为环状双股DNA分子 ②具有操纵子结构 ③结构基因多为单拷贝 ④特定区域分布特异DNA顺序,因此外源DNA分子可以插入原核细胞DNA复制体系的特定区段 基因克隆载体1)定义:基因克隆载体是一类能够承载外源基因并将其带入受体细胞得以稳定维持的DNA分子。2)目前经常使用的载体,有质粒和病毒两类。各种不同的载体,尽管分子量大小、结构和用途上存在着较大的差异,但是作为载体,它们应该具备一些共同的特性。 基因工程克隆载体的特点:①具有复制子②有单一限制内切酶切位点或多克隆位点③有选择性遗传标记如抗药基因④拷贝数高⑤生物安全性好 质粒的分类⒈按复制型式①严紧型 ②松弛型⒉按基因转移性①传递性质粒 ②非传递性质粒⒊按遗传性状产物分类:①抗生素抗性②限制酶、修饰酶系统 ⒈真核基因在原核细胞中表达载体必须具备条件⑪载体能够独立复制。载体本身是一个复制子,具有复制起点。⑫应具有灵活的克隆位点和方便的筛选标记,以利于外源基因的克隆鉴定和筛选。⑬应具有很强的启动子,能为大肠杆菌RNA聚合酶所识别。⑭应具有阻遏子,使启动子受到控制,只有当诱导时才能进行转录。⑮应具有很强的终止子,只转录克隆的基因,所产生的mRNA较为稳定。⑯所产生的mRNA必须具有翻译的起始信号AUG和SD序列,以便转录后顺利翻译。 ⒉影响目的基因在大肠杆菌中表达的因素⑪外源基因的拷贝数:外源基因是克隆到载体上的,因此载体在宿主菌种的拷贝数就直接关系到外源基因的拷贝数。⑫外源基因的表达效率①启动子的强弱②核糖体接合位点的有效性③SD序列和起始密码ATG的间距④密码子组成⑬表达产物的稳定性:①组建融合基因,产生融合蛋白;②利用大肠杆菌的信号肽或某些真核多肽中自身的信号肽,把真核基因产物搬动到胞浆周质的空隙中;③采用位点特异性突变的方法,改变真核蛋白质中二硫键的位置,从而增加蛋白质的稳定性;④采用蛋白酶缺陷型大肠杆菌,有可能减弱表达产物的降解。⑭细胞代谢负荷:⑮工程菌的培养条件。 外源基因在大肠杆菌中的表达方式  胞内表达:非融合蛋白表达:蛋白质接近天然状态,易被降解,易形成包涵体。有原核多肽基因 融合蛋白表达:表达效率高;产物稳定;可以切除原核多肽,获得天然外源蛋白  分泌表达:有信号肽基因,形成周质表达或细胞外表达 大肠杆菌 酵母 哺乳动物

产物 多肽 、 蛋白质或融合蛋白质 多肽 、 蛋白质或糖基化蛋白质 完整糖基化蛋白 产生部位 菌体内 菌体内或分泌出细胞 分泌出细胞 培养方式 容易,部分可获得高产 容易,可高产 较难成本高,可高产 提纯 一般 菌体内稍复杂 简单 产物活性 对原核较好,真核稍差 真核的接近天然 几乎可为天然产物 潜在危险性 不大 不大 需注意有致癌因素 酵母表达体系的影响因素:外源基因的结构,表达形式及信号肽的选择:启动子,转化子的拷贝数,诱导条件,外源蛋白的降解。 菌体的生长与能量的关系(乙酸调节)提高pH。降低温度,分批培养中选择不同的碳源,连续培养中控制稀释速率。加入甲硫氨酸和酵母提取物。采用磷酸乙酰化酶缺陷株作为宿主细胞。 菌体生长与前体供应的关系 在基础培养基中加入氨基酸(小分子前体)能使菌体比生长率提高,蛋白合成增加。基因工程菌质粒的表达需与宿主细胞竞争共同的前体和催化结构,致工程菌生长速率降低。这与工程菌大量前体被利用引起前体不足,从而产生“严紧反应”有关。 “严紧反应”是当氨酰tRNA不足时,核糖体在密码子上停留,并合成被称为魔点的ppGpp的结果。 质粒不稳定 分裂不稳定:指工程菌分裂时出现一定比例不含质粒子代菌的现象。结构不稳定:指外源基因从质粒上丢失或碱基重排、缺失所致工程菌性能的改变 常见分裂不稳定的两个因素:⑪含质粒菌产生不含质粒子代菌的频率(质粒丢失率); ⑫这两种菌(含质粒菌和不含质粒菌)比生长速率差异的大小。 提高质粒稳定性的方法1.合适的宿主:宿主菌2.合适的载体:质粒拷贝数3.选择压力:抗生素4.分阶段控制培养:⑪先使菌体生长至一定密度; ⑫再诱导外源基因的表达5.控制培养条件:温度、pH值、培养基组分、溶氧6.固定化:卡拉胶 高密度发酵:培养液中工程菌的菌体浓度在50g DCW/L(细胞干重/L)以上,最高200g DCW/L 高密度发酵特点 :菌体高密度,总表达量高;生物反应器体积小;单位体积生产能力高;生产周期短,分离成本小 影响高密度发酵的因素培养基,溶氧浓度,pH值,温度,代谢副产物 实现高密度发酵的方法1.发酵条件的改进(1)培养基的选择:(2)建立流加式培养方式;(3)提高供氧能力2.构建产乙酸能力低的工程化宿主菌(1)阻断乙酸生产的主要途径:(2)对碳代谢流进行分流:(3)限制进入糖酵解途径的碳代谢流;(4)引入血红蛋白基因。3.构建蛋白水解酶活力低的工程化宿主菌 基因重组蛋白的主要分离技术:离心、沉淀(等电点沉淀法、盐析法)、膜分离、双水相萃取 基因重组蛋白的主要纯化技术:离子交换层析、亲和层析、凝胶过滤层析、反相色谱和疏水色谱 细胞破碎,固液分离,浓缩与初步纯化,高度纯化直至得到纯品,成品加工 选择分离纯化工艺的依据:起始物料特点,产物特性,杂质种类性质,产品质量要求(体外80%,体内95%) 第三章 动物细胞工程制药 缺点:培养条件高、成本贵、产量低。优点:分泌胞外、纯化方便、翻译后修饰糖基化,与天然产品一致。 动物细胞的生理特点(⒈) 动物细胞的分裂周期长:(⒉)细胞生长需贴附于基质,并有接触抑制现象。(⒊)正常二倍体细胞的生长寿命是有限的。原代培养;(4)动物细胞对周围环境十分敏感:对理化因素敏感,(⒌)动物细胞对培养基要求高:必需氨基酸(12种)、维生素(8种)、无机盐、微量元素、葡萄糖、细胞生长因子、贴壁因子等。(⒍)动物细胞蛋白质的合成途径和修饰功能与细菌不同。 生产用动物细胞1.原代细胞:费钱费力,少用2.传代细胞系:安全,特点: 2n核型,贴壁依赖,接触抑制,有限传代(50代)3.转化细胞系:自发转化或人为转化,失去了正常细胞的特点,可=无限增殖传代,适宜大规模工业培养4.工程细胞系:融合细胞系(仙台病毒融合法、聚乙二醇融合法、电融合法);基因工程细胞系 病毒载体:牛痘病毒。腺病毒和逆转录病毒载体,杆状病毒载体-昆虫细胞系统 ①双链DNA,易重组②插入7~8kb DNA不影响正常病毒粒子的形成。③多角体蛋白和病毒粒子的形成无直接关系,因此用外源基因更换多角体蛋白基因,仍能形成有感染力病毒粒子;④多角体蛋白基因有非常强的启动子,产生的蛋白质可占全部蛋白质的20%~30%;⑤用光学显微镜可看到多角体,以此作为标记物选阳性克隆。⑥如用家蚕杆状病毒,还可在蚕体表达外源基因 基因工程细胞主要的筛选系统(抗性作用,荧光作用) 导入方式(融合法,化学法,物理法,病毒法) 细胞库的建立:原始细胞库(MCR)→生产用细胞库(MWCR,又称工作细胞库,主细胞库→生产细胞库) ★ 动物细胞的大规模培养方法 1.悬浮培养:适用于非贴壁依赖细胞或兼性贴壁细胞。优点:操作简便,培养条件均一,传质传氧较好,容易扩大培养,可以借鉴细菌培养的经验。缺点:细胞培养密度较低。2.贴壁培养3.贴壁-悬浮培养:微载体培养:用于培养贴壁细胞。多孔载体培养:可用于悬浮细胞及贴壁细胞。包埋和微囊化培养

相关文档
最新文档