最小二乘法
最小二乘法的推导

最小二乘法的推导最小二乘法是统计学中一种常用的数据拟合方法,它是将待拟合函数的拟合优度衡量为误差平方和最小化的问题,属于最优化策略。
它可以用来拟合非线性模型,使得得到的模型拟合更加精确。
一、最小二乘法概念最小二乘法是一种数据拟合方法,它是将待拟合函数的拟合优度衡量为误差平方和最小化的问题,属于最优化策略。
最小二乘法的主要思想是,对给定的一组观测值,在满足某种条件下,这组观测值可以用一个或几个理论模型来描述,从而使拟合模型尽可能逼近实际观测值,达到拟合精度最高的目的。
二、最小二乘法推导考虑一个最小二乘问题,我们希望拟合一组数据,它们的点坐标可以用一个关于d个未知参数(p1,p2,p3,…,pd)的多项式表示,即:F(x,p1,p2,p3,…,pd)将多项式中的参数(p1,p2,p3,…,pd)的值求出,就可以对已知数据进行拟合。
最小二乘法表示形式:要使拟合模型参数值与所拟合数据做到最拟合,就要将拟合模型和实际数据的差值最小化,也就是求出多项式中的参数的值,使得误差平方和最小根据最小二乘法的优化性质,我们可以写出最小二乘优化问题的形式将误差平方和最小化的条件写出来就为:S=(f(x1,p1,…,pd)-y1)^2+(f(x2,p1,…,pd)-y2)^2+…+(f(xn,p1,…,pd)-yn)^2最小二乘问题表示为:min{S(p1,p2,…,pd)}其中p1,p2,…,pd是未知参数,我们要求这些参数值使得S 最小。
为了求得最小二乘拟合参数和进行形式转换,我们对S求偏导:S/pi=2*(f(xi,p1,…,pd)-yi)*f(xi,p1,…,pd)/pi 当S/pi=0时,即有(f(xi,p1,…,pd)-yi)*f(xi,p1,…,pd)/pi=0 于是,我们将最小二乘拟合参数pi的表达式改写为:pi=(A-1)*B其中A=∑(f(xi,p1,…,pd)/pi)^2,B=∑(f(xi,p1,…,pd)-yi)*f(xi,p1,…,pd)/pi根据最小二乘法,我们就可以求得最小二乘拟合参数pi的值了。
最小二乘法知识

最小二乘法知识最小二乘法是一种最优化方法,经常用于拟合数据和解决回归问题。
它的目标是通过调整模型参数,使得模型的预测值与观测值之间的差异最小。
最小二乘法的核心思想是最小化误差的平方和。
对于给定的数据集,假设有一个线性模型y = β₀ + β₁x₁ + β₂x₂ + ... +βₙxₙ,其中β₀, β₁, β₂, ... , βₙ 是需要求解的未知参数,x₁, x₂, ... , xₙ 是自变量,y 是因变量。
那么对于每个样本点 (xᵢ, yᵢ),可以计算其预测值ŷᵢ = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ,然后计算预测值与实际值之间的差异 eᵢ = yᵢ - ŷᵢ。
最小二乘法的目标是使得误差的平方和最小化,即最小化目标函数 E = ∑(yᵢ - ŷᵢ)²。
对于简单的线性回归问题,即只有一个自变量的情况下,最小二乘法可以通过解析方法求解参数的闭合解。
我们可以通过求偏导数,令目标函数对参数的偏导数等于零,求解出参数的最优解。
然而,对于复杂的非线性回归问题,解析方法通常不可行。
在实际应用中,最小二乘法通常使用迭代方法进行求解。
一种常用的迭代方法是梯度下降法。
梯度下降法通过反复进行参数更新的方式逐步降低目标函数的值,直到收敛到最优解。
具体而言,梯度下降法首先随机初始化参数的值,然后计算目标函数对于每个参数的偏导数,根据偏导数的方向更新参数的值。
迭代更新的过程可以通过下式表示:βₙ = βₙ - α(∂E/∂βₙ)其中,α 是学习率参数,控制每次更新参数的步长。
学习率需要适当选择,过小会导致收敛过慢,过大会导致震荡甚至不收敛。
最小二乘法除了可以用于线性回归问题,还可以用于其他类型的回归问题,比如多项式回归。
在多项式回归中,我们可以通过增加高次项来拟合非线性关系。
同样地,最小二乘法可以通过调整多项式的系数来使得拟合曲线与实际数据更加接近。
除了回归问题,最小二乘法还可以应用于其他领域,比如数据压缩、信号处理和统计建模等。
最小二乘法公式

最小二乘法公式∑(X--X平)(Y--Y平)=∑(XY--X平Y--XY平+X平Y平)=∑XY--X平∑Y--Y平∑X+nX平Y平=∑XY--nX平Y平--nX平Y平+nX平Y平=∑XY--nX平Y平∑(X --X平)^2=∑(X^2--2XX平+X平^2)=∑X^2--2nX平^2+nX平^2=∑X^2--nX平^2最小二乘公式(针对y=ax+b形式)a=(NΣxy-ΣxΣy)/(NΣx^2-(Σx)^2)b=y(平均)-ax(平均)最小二乘法在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1),(x2, y2).. (xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。
Y计= a0 + a1 X (式1-1)其中:a0、a1 是任意实数为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)²〕最小为“优化判据”。
令: φ = ∑(Yi - Y计)² (式1-2)把(式1-1)代入(式1-2)中得:φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)当∑(Yi-Y计)²最小时,可用函数φ 对a0、a1求偏导数,令这两个偏导数等于零。
(式1-4)(式1-5)亦即m a0 + (∑Xi ) a1 = ∑Yi (式1-6)(∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9)这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。
最小二乘方法

最小二乘方法:原理、应用与实现一、引言最小二乘方法是数学优化中的一种重要技术,广泛应用于各种实际问题中。
它的基本原理是通过最小化误差的平方和来估计未知参数,从而实现数据拟合、线性回归等目标。
本文将对最小二乘方法的原理、应用与实现进行详细介绍,并探讨其在实际问题中的应用。
二、最小二乘方法的原理最小二乘方法的基本原理可以概括为:对于一组观测数据,通过最小化误差的平方和来估计未知参数。
具体而言,设我们有一组观测数据{(xi, yi)},其中xi是自变量,yi是因变量。
我们希望找到一个函数f(x),使得f(xi)与yi之间的差距尽可能小。
为了量化这种差距,我们采用误差的平方和作为目标函数,即:J = Σ(f(xi) - yi)²我们的目标是找到一组参数,使得J达到最小值。
这样的问题称为最小二乘问题。
在实际应用中,我们通常采用线性函数作为拟合函数,即:f(x) = a + bx其中a和b是待估计的参数。
此时,最小二乘问题转化为求解a 和b的问题。
通过求解目标函数J关于a和b的偏导数,并令其为零,我们可以得到a和b的最优解。
这种方法称为最小二乘法。
三、最小二乘方法的应用数据拟合:最小二乘方法在数据拟合中有广泛应用。
例如,在物理实验中,我们经常需要通过一组观测数据来估计某个物理量的值。
通过采用最小二乘方法,我们可以找到一条最佳拟合曲线,从而得到物理量的估计值。
这种方法在化学、生物学、医学等领域也有广泛应用。
线性回归:线性回归是一种用于预测因变量与自变量之间关系的统计方法。
在回归分析中,我们经常需要估计回归系数,即因变量与自变量之间的相关程度。
通过采用最小二乘方法,我们可以得到回归系数的最优估计值,从而建立回归方程。
这种方法在经济学、金融学、社会科学等领域有广泛应用。
图像处理:在图像处理中,最小二乘方法常用于图像恢复、图像去噪等问题。
例如,对于一幅受到噪声污染的图像,我们可以采用最小二乘方法对图像进行恢复,从而得到更清晰、更真实的图像。
最小二乘法分类

最小二乘法分类最小二乘法(Least Squares Method)是一种常用的参数估计方法,用于寻找一个函数模型的最佳拟合参数,使得模型的预测值与观测值的残差平方和最小化。
这种方法最早由高斯提出,并被广泛应用于统计学和计算机科学等领域。
本文将介绍最小二乘法的基本原理、应用场景以及相关的算法和评估指标。
一、基本原理:最小二乘法用于求解形如y = f(x;θ) 的函数模型的参数θ,其中y是观测值,x是自变量,f是函数模型。
最小二乘法的目标是找到最佳的参数θ,使得模型的预测值与实际观测值之间的残差平方和最小化。
具体步骤如下:1. 定义函数模型:根据具体问题,选择适当的函数模型,如线性模型、多项式模型、指数模型等。
2. 表达目标函数:根据函数模型和参数θ,将目标函数表达为关于θ的函数形式。
3. 定义损失函数:通常采用残差的平方和作为损失函数,即Loss = Σ(y_i - f(x_i;θ))^2 。
4. 求解参数θ:通过最小化损失函数,即求解使得∂Loss/∂θ = 0 的参数θ。
5. 参数估计:根据求解得到的参数θ,即可获得最佳的函数模型。
二、应用场景:最小二乘法在各个领域都有广泛的应用,以下是一些常见的应用场景:1. 线性回归:最小二乘法用于拟合线性回归模型,求解自变量与因变量之间的关系。
2. 特征选择:最小二乘法可用于特征选择,筛选对目标变量影响最大的特征。
3. 数据压缩:通过最小二乘法可以估计出一个低维子空间,将高维数据进行压缩。
4. 图像处理:最小二乘法可用于图像去噪、图像恢复等问题,如使用低秩矩阵模型对图像进行恢复。
5. 信号处理:最小二乘法可用于信号滤波、信号恢复等问题,如基于 DCT 的音频和图像压缩。
三、算法与评估指标:1. 最小二乘法的数值解:在实际应用中,最小二乘法的数值解可以通过各种数值优化算法来求解,包括梯度下降法、牛顿法、共轭梯度法等。
2. 算法评估指标:常用的评估指标包括残差平方和(Residual Sum of Squares, RSS)、均方误差(Mean Square Error, MSE)以及决定系数(Coefficient of Determination, R^2)等。
最小二乘法(least sqaure method)

最小二乘法(least sqauremethod)专栏文章汇总文章结构如下:1:最小二乘法的原理与要解决的问题2 :最小二乘法的矩阵法解法3:最小二乘法的几何解释4:最小二乘法的局限性和适用场景5:案例python实现6:参考文献1:最小二乘法的原理与要解决的问题最小二乘法是由勒让德在19世纪发现的,形式如下式:标函数 = \sum(观测值-理论值)^2\\观测值就是我们的多组样本,理论值就是我们的假设拟合函数。
目标函数也就是在机器学习中常说的损失函数,我们的目标是得到使目标函数最小化时候的拟合函数的模型。
举一个最简单的线性回归的简单例子,比如我们有 m 个只有一个特征的样本: (x_i, y_i)(i=1, 2, 3...,m)样本采用一般的 h_{\theta}(x) 为 n 次的多项式拟合,h_{\theta}(x)=\theta_0+\theta_1x+\theta_2x^2+...\theta_nx^n,\theta(\theta_0,\theta_1,\theta_2,...,\theta_n) 为参数最小二乘法就是要找到一组\theta(\theta_0,\theta_1,\theta_2,...,\theta_n) 使得\sum_{i=1}^n(h_{\theta}(x_i)-y_i)^2 (残差平方和) 最小,即,求 min\sum_{i=1}^n(h_{\theta}(x_i)-y_i)^22 :最小二乘法的矩阵法解法最小二乘法的代数法解法就是对 \theta_i 求偏导数,令偏导数为0,再解方程组,得到 \theta_i 。
矩阵法比代数法要简洁,下面主要讲解下矩阵法解法,这里用多元线性回归例子来描:假设函数h_{\theta}(x_1,x_2,...x_n)=\theta_0+\theta_1x_1+...+\t heta_nx_n 的矩阵表达方式为:h_{\theta}(\mathbf{x})=\mathbf{X}\theta\\其中,假设函数 h_{\theta}(\mathbf{x})=\mathbf{X}\theta 为 m\times1 的向量, \theta 为 n\times1 的向量,里面有 n 个代数法的模型参数。
最小二乘法的基本思想和步骤

最小二乘法的基本思想和步骤
步骤:
1、最小二乘法的拟合曲线(即,估计值,含有未知数);
2、真实值-估计值,然后平方;
3、对未知数求导,等于0,这样使得误差最小;
4、根据方程组,求解未知数。
最小二乘法简介:
最小二乘法(又称最小平方法)是一种数学优化技术。
它通过最小化误差的平方和寻找数据的最佳函数匹配。
利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法还可用于曲线拟合。
其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
最小二乘法(Least Squares)是回归分析中的一种标准方法,它是当方程数量大于未知数个数时,利用数据点构建的方程组,对未知参数进行一种近似估计的方法。
之所以叫做“最小二乘”,是因为利用的优化项是由所有数据点与模型观测点残差的平方和构成的,通过极小化残差的平方和,达到一种从整体上最“接近”实际观测数据的模型参数。
最小二乘法

数值分析作业最小二乘法最小二乘法是提供“观测组合”的主要工具之一,它依据对某事件的大量观测而获得最佳”结果或最可能”表现形式。
如已知两变量为线性关系y= a+ bx,对其进行n(n> 2)次观测而获得n对数据。
若将这n对数据代入方程求解a,b之值则无确定解。
最小二乘法提供了一个求解方法,其基本思想就是寻找最接近”这n 个观测点的直线。
最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。
相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。
作为其进一步发展或纠正其不足而采取的对策,不少近现代的数理统计学分支也是在最小二乘法基础上衍生出来的。
正如美国统计学家斯蒂格勒(S.M. Stigler)所说,最小二乘法之于数理统计学犹如微积分之于数学”最小二乘法创立的历史过程充满着丰富的科学思想,这些对今日的数学创造仍有着重要的启示意义。
本文旨在全面认识最小二乘法的历史系统发育过程以及创立者的思路。
一先驱者的相关研究天文学和测地学的发展促进了数理统计学及其他相关科学的发展。
丹麦统计史家哈尔德曾指出天文学在数理统计学发展中所起的作用。
“天文学自古代至18 世纪是应用数学中最发达的领域。
观测和数学天文学给出了建立数学模型及数据拟合的最初例子,在此种意义下,天文学家就是最初的数理统计学家。
天文学的问题逐渐引导到算术平均,以及参数模型中的种种估计方法,以最小二乘法为顶峰。
” 这也说明了最小二乘法的显著地位。
有关统计计算思想记载的著作要首推天文学家罗杰柯茨的遗作,即1715年其所发论文中所蕴含的统计方法,亦即对各种观测值赋予加权后求其加权平均。
尽管当时得到认可,然而事实证明如此计算的结果不太精确。
1749年,欧拉(L. Euler,1707—1783)在研究木星和土星之间相互吸引力作用对各自轨道影响时,最后得到一个含8个未知量75个方程的线性方程组。
欧拉的求解方法繁杂而奇特,只能看作是一次尝试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
34
第二节
一元线性回归模型的统计检验
一、拟合优度(goodness of fit statistics)检验
拟合优度可用R2 表示:模型所要解释的
是y相对于其均值的波动性,即 y t y
(总平方和,the total sum of squares,
2
简记TSS),这一平方和可以分成两部分:
x x ˆ u 其中, s 是残差的估计标准差。 T 2
2 t
2 t
1
s
1 2 2 x T x t
(2.22)
25
参数估计量的标准差具有如下的性质: (1)样本容量T越大,参数估计值的标准差越 小;
ˆ 都取决于s2。 s2是残差的方差 (2) ˆ 和SE SE
4
图2-1表示的是我国货币供应量M2(y)与经过 季节调整的GDP(x)之间的关系(数据为
1995年第一季度到2004年第二季度的季度数
据)。
5
但有时候我们想知道当x变化一单位时,y平均 变化多少,可以看到,由于图中所有的点都相
对的集中在图中直线周围,因此我们可以ቤተ መጻሕፍቲ ባይዱ这
条直线大致代表x与y之间的关系。如果我们能
(5)ut~N 0, 2 ,即残差项服从正态分布
22
(二)最小二乘估计量的性质 如果满足假设(1)-(4),由最小二乘法得到的估 计量 ˆ 具有一些特性,它们是最优线性无 ˆ 、 偏估计量(Best Linear Unbiased Estimators, 简记BLUE)。
即:
ˆ ~ ˆ SE
tT 2
(2.34)
ˆ t T 2 (2.35) ~ ˆ SE
32
3.正态分布和t分布的关系
图2-3 正态分布和t分布形状比较
33
从图形上来看,t分布的尾比较厚,均值处 的最大值小于正态分布。 随着t分布自由度的增大,其对应临界值显 著减小,当自由度趋向于无穷时,t分布就服从 标准正态分布了。 所以正态分布可以看作是t分布的一个特例。
8
如果我们以u表示误差,则方程(2.1)变为:
y= x u
即:
(2.2)
(2.3)
yt xt ut
其中t(=1,2,3,…..,T)表示观测数。 式(2.3)即为一个简单的双变量回归模型(因其仅 具有两个变量x, y)的基本形式。
9
其中yt被称作因变量
xt被称作自变量 解释变量
35
ˆt y yt y = y
2
2
2 ˆ u + t
(2.36)
2 ˆ 是被模型所解释的部分,称为回归平方 y y
和(the explained sum of squares,简记ESS);
一、有关回归的基本介绍
金融、经济变量之间的关系,大体上可以分 为两种:
(1)函数关系:Y=f(X1,X2,….,XP),其中Y的 值是由Xi(i=1,2….p)所唯一确定的。 (2)相关关系: Y=f(X1,X2,….,XP) ,这里Y的 值不能由Xi(i=1,2….p)精确的唯一确定。
3
图2-1 货币供应量和GDP散点图
ˆ ~ N , var
(2.30) (2.31)
ˆ ~ N , var
30
需要注意的是:如果残差不服从正态分布,即 假设(5)不成立,但只要CLRM的其他假设条件
还成立,且样本容量足够大,则通常认为系数
估计量还是服从正态分布的。
其标准正态分布为:
ˆ- ~N0,1 var
2 ˆ ( y y ) RSS= t = t t 1 T
ˆ x )2 ˆ ( y t t
t 1
T
(2.4)
14
根据最小化的一阶条件,将式2.4分别对、求 偏导,并令其为零,即可求得结果如下 :
x y T xy ˆ x Tx
t t 2 t 2
(dependent variable)、 (independent variable)、
被解释变量
(explanatory variable)、 (explained variable)、
结果变量 原因变量
(effect variable);
(causal variable)
10
α、β为参数(parameters),或称回归系数 (regression coefficients); ut通常被称为随机误差项(stochastic error term),或随机扰动项(random disturbance term),简称误差项, 在回归模型中它是不确定的,服从随机分布 (相应的,yt也是不确定的,服从随机分布)。
第二章 最小二乘法(OLS) 和线性回归模型
1
本章要点
最小二乘法的基本原理和计算方法
经典线性回归模型的基本假定
BLUE统计量的性质 t检验和置信区间检验的原理及步骤 多变量模型的回归系数的F检验 预测的类型及评判预测的标准 好模型具有的特征
2
第一节
最小二乘法的基本属性
在本课程中,线性回归一词总是对指参数β为 线性的一种回归(即参数只以一次方出现), 对解释变量x则可以是或不是线性的。
19
有些模型看起来不是线性回归,但经过一些基 本代数变换可以转换成线性回归模型。例如,
yt Axt e
ut
(2.10)
可以进行如下变换:
X t lnxt ,则方程 令 Yt ln yt 、 ln A、 (2. 11)变为: (2.12) Yt X t ut
16
总体回归方程(PRF)表示变量之间的真实关 系,有时也被称为数据生成过程(DGP), PRF中的α、β值是真实值,方程为:
yt xt + u t
(2. 7)
样本回归方程(SRF)是根据所选样本估算的 变量之间的关系函数,方程为:
ˆx ˆ ˆ y t
(2.8)
注意:SRF中没有误差项,根据这一方程得到 的是总体因变量的期望值
够确定这条直线,我们就可以用直线的斜率来
表示当x变化一单位时y的变化程度,由图中的 点确定线的过程就是回归。
6
对于变量间的相关关系,我们可以根据大量的 统计资料,找出它们在数量变化方面的规律 (即“平均”的规律),这种统计规律所揭示 的关系就是回归关系(regressive
relationship),所表示的数学方程就是回归方程
27
图2-2 直线拟合和散点集中度的关系
28
2 x (4) t
项只影响截距的标准差,不影响斜率
的标准差。理由是: xt2 衡量的是散点与y轴的
2 距离。 x t 越大,散点离y轴越远,就越难准确
地估计出拟合直线与y轴的交点(即截距); 反之,则相反。
29
2.OLS估计量的概率分布 给定假设条件(5),即u t ~N 0, 2 ,则 yt 也服 从正态分布 系数估计量也是服从正态分布的:
13
ˆt ,称为拟合值(fitted 直线上的yt值,记为 y ˆt ,称 value),实际值与拟合值的差,记为u 为残差(residual) ,可以看作是随机误差
项u t 的估计值。 根据OLS的基本原则,使直线与各散点的距 离的平方和最小,实际上是使残差平方和T 2 ˆ u (residual sum of squares, 简记RSS) t t 1 最小,即最小化:
24
(三) OLS估计量的方差、标准差和其概率分布 1.OLS估计量的方差、标准差。 给定假设(1)-(4),估计量的标准差计算方程如 下:
ˆ s SE
x T x x
2 t t
2
s
x T x Tx
2 t 2 t 2
(2.21)
ˆ s SE
23
ˆ 是包含着 ˆ 、 估计量(estimator):意味着 真实α、β值的估计量;
ˆ 与随机变量y之 线性(linear):意味着 ˆ 、 间是线性函数关系;
无偏(unbiased):意味着平均而言,实际得 ˆ 值与其真实值是一致的; 到的 ˆ、 最优(best):意味着在所有线性无偏估计量 ˆ 具有最小方差。 里,OLS估计量
(一) 方法介绍
本章所介绍的是普通最小二乘法(ordinary least squares,简记OLS);
最小二乘法的基本原则是:最优拟合直线应该 使各点到直线的距离的和最小,也可表述为距 离的平方和最小。
假定根据这一原理得到的α、β估计值为 、 , ˆx ˆ ˆ yt 。 ˆ 则直线可表示为 t
ln yt ln A lnxt ut
(2.11)
可以看到,模型2.12即为一线性模型。
20
4.估计量(estimator)和估计值(estimate)
估计量是指计算系数的方程;而估计值是指估
计出来的系数的数值。
21
三、最小二乘估计量的性质和分布
(一) 经典线性回归模型的基本假设
估计量。 s2越大,残差的分布就越分散,这样
模型的不确定性也就越大。如果s2很大,这意
味着估计直线不能很好地拟合散点;
26
2 x x (3)参数估计值的方差与 t 成反比。
其值越小,散点越集中,这样就越难准确地估 计拟合直线;相反,如果 xt x 越大,散点
2
越分散,这样就可以容易地估计出拟合直线, 并且可信度也大得多。 比较图2-2就可以清楚地看到这点。
(2.5) (2.6)