北师大版七年级数学下册第一章整式的乘除知识点总结及练习(含答案)
北师大版七年级数学下册第一章整式的乘除——整式混合运算及化简求值专项练习(含答案)

整式的乘除——整式混合运算及化简求值专项练习一、单选题(共6小题)1.下列计算中正确的是( )A.m÷n·1n=m B.m·n÷m·n=1C.n·1n ·m·1m=1 D.m3÷1m÷m2=12.已知除式是x2+2x,商式是x,余式是-1,则被除式是( )A.x3+2x2−1B.x2+2xC.x2−1D.x2−3x+13.已知2a2−a−3=0,则(2a+3)(2a−3)+(2a−1)2的值是( )A.6B.−5C.−3D.44.现规定一种运算:a△b=ab+a−b,其中a,b为实数,则a△b△a等于( )A.a2b+a2+bB.a2b−a2+bC.a2b+a2−bD.a2b−a2−b5.若m是任意整数,则代数式2[m(m−1)+m(m+1)]·[m(m−1)−m(m+1)]的值可能为( )A.4B.8C.−27D.−366.计算(x−1)(2x+1)−(x2+x−2)的结果,与下列哪一个式子相同( )A.x2−2x−3B.x2−2x+1C.x2+x−3D.x2−3二、填空题(共6小题)7.已知x+y=3,xy=1,则(x−1)(y−1)的值等于.8.如果长方形的长为(2a+b)米,宽为(a−2b)米,则其周长为米.9.若(−2x2)(3x2−ax−6)−3x3+x2中不含x的三次项,则a=.10.若M=(x−2)(x−8),N=(x−3)(x−7),则M−N=.11.规定a∗b=ab+a−b,其中a,b为实数,则a∗b+(b−a)∗b=12.A·(x+y)=x2−y2,则A=.三、解答题(共9小题)13.化简:(1)(x+5)2−(4+x)(4−x);(2)4x(x2+x+3)+(−2x−5)(2x−5)−(−2x)2;(3)(3x−4y)(3x+4y)−(3x+y)214. 已知x=13,求(2x+1)(2x−1)+x(3−4x)的值.15. 已知3x2−2x−3=0,求的值.16. 先化简,再求值:(2−a)(2+a)−2a(a+3)+3a2,其中a=−13.17. 先化简,再求值:(2x+y)2−(2x+y)(2x−y)−2y(x+y),其中x=(12)2023,y=22022.18.先化简,再求值:−a2b+(3a b2−a2b)−2(2a b2−a2b),其中a=1,b=−2.19.先化简,再求值:(x−y)2+y(4x−y)−8x]÷2x,其中x=8,y=2021.20.已知m2−m−2=0,求代数式m(m−1)+(m+1)(m−2)的值.21.先化简,再求值:[(3m+4n)(3m+2n)−2n(3m+4n)]÷(−6m),其中m=2,n=3.参考答案1.C2.A3.D4.C5.B6.B7.−18.(6a−2b)9.3210.−511.b²−b12.x−y【解析】A=(x2−y2)÷(x+y)=[(x+y)(x−y)]÷(x+y)=x−y,故答案为:x−y.13.(1)解:原式=x2+10x+25−16+x2=2x2+10x+9.(2)原式=4x3+4x2+12x+25−4x2−4x2=4x3−4x2+12x+25.(3)原式=9x2−16y2−9x2−6xy−y2=−17y2−6xy.14.解:(2x+1)(2x−1)+x(3−4x)=4x2−1+3x−4x2=−1+3x.当x=13时,原式=−1+3×13=0.15.解:原式=x2−2x+1+x2+23x=2x2−43x+1,∵3x2−2x−3=0,∴x2−23x=1,∴原式=2×1+1=3.16.解:(2−a)(2+a)−2a(a+3)+3a2,=4−a2−2a2−6a+3a2,=4−6a;当a=−13时,原式=4−6×(−13)=4+2=6.17.解:原式=4x2+4xy+y2−(4x2−y2)−2xy−2y2 =4x2+4xy+y2−4x2+y2−2xy−2y2=2xy.当x=(12)2023,y=22022时,原式=2×(12)2023×22022=2×12×(12)2022×22022=1.18.解:原式=−a2b+3a b2−a2b−4a b2+2a2b=(−1−1+2)a2b+(3−4)a b2=−a b2.当a=1,b=−2时,原式=−1×(−2)2=−4.19.解:[(x−y)2+y(4x−y)−8x]÷2x=(x2−2xy+y2+4xy−y2−8x)÷2x=(x2+2xy−8x)÷2x=12x+y−4.当x=8,y=2021时,原式=12×8+2021−4=2021.20.解:原式=m2−m+m2−2m+m−2=2m2−2m−2=2(m2−m)−2.∵m2−m−2=0,∴m2−m=2,∴原式=2×2−2=2.21.解:原式=(9m2+18mn+8n2−6mn−8n2)÷(−6m) =(9m2+12mn)÷(−6m)=−3m−2n,2当m=2,n=3时,原式=−3×2−2×3=−9.2。
北师大版七年级下册数学第一章 整式的乘除含答案

北师大版七年级下册数学第一章整式的乘除含答案一、单选题(共15题,共计45分)1、在数中,最大的数是()A.(﹣)﹣2B.(﹣2)﹣2C.D.(﹣2)﹣12、下列运算中,结果是a5的是()A.a 2•a 3B.a 10÷a 2C.(a 2)3D.(﹣a)53、下列计算正确的是()A.a 3•a 2=a 5B.(a 3)2=a 5C.a 10÷a 2=a 5D.a 2+a 3=a 54、下列运算正确的是()A. a4+a2= a6B.4 a2-2 a2=2 a2C.( a4) 2= a6D. a4•a2= a85、下列运算正确的是()A.a 5÷a 2=a 3B.a 2•a 3=a 6C.3a 2﹣2a=a 2D.(a+b)2=a 2+b 26、下列运算中,正确的是( )A. B. C. D.7、如果,则的值是().A.±12B.12C.±6D.68、下列运算正确的是()A. B. C. D.9、某商店在甲批发市场以每包a元的价格进了40包茶叶,又在乙批发市场以每包b元(a<b)的价格进了同样的60包茶叶,如果以每包元的价格全部卖出这种茶叶,那么这家商店盈利还是亏损()A.盈利了B.亏损了C.不盈不亏D.盈亏不能确定10、长方形的一边长等于4m+n,另一边比它短m-n,那么这个长方形的周长是()A.7m+3nB.8m+2nC.14m+6nD.12m+8n11、下列运算正确的是()A. B. C. D.12、下列运算正确的是()A. B. C. D.13、下列运算中,正确的是()A. 2+3=5B. ﹣a8÷a4=﹣a2C. (3a2)3 =27a6D. (a2﹣b)2=a4﹣b214、下列运算正确的是( )A. B. C. D.15、计算:的结果是A.3aB.a 3C.2a 2D.2a 3二、填空题(共10题,共计30分)16、若3x+2y﹣2=0,则等于________.17、计算:=________.18、若是一个完全平方公式,则k=________.19、计算:(2a3-a2)÷a2=________20、如果,,则________.21、计算:________.22、比较大小:________ .23、如图,四边形中,,且,则四边形周长的最小值是________.24、已知a+2b=0,则式子a3+2ab(a+b)+4b3的值是________.25、计算(﹣2xy3)2=________ ;(﹣)2014×(﹣1.5)2015=________ .三、解答题(共5题,共计25分)26、化简:27、以下四个式子的变形中,正确的有哪些?不正确的有哪些?如若不正确,请写出正确的答案.①(-x-y)(-x+y)=x2-y2;②;③x2-4x+3=(x-2)2+1;④x÷(x2+x)= +128、已知x2m=2,求(2x3m)2﹣(3x m)2的值.29、计算:3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x230、解方程:x(3x﹣4)+2x(x+7)=5x(x﹣7)+90.参考答案一、单选题(共15题,共计45分)1、A2、A3、A4、B5、A6、B7、D8、D9、B10、C11、D12、D13、C14、C15、B二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

☆☆☆ 北师大版数学七年级【下册】第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: n m n ma a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是 一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1。
幂的乘方法则:mnnm a a =)((m ,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. ),()()(都为正数n m a a a mn mn nm ==.3。
底数有负号时,运算时要注意,底数是a 与(-a )时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成—a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。
5.要注意区别(ab )n与(a+b)n意义是不同的,不要误以为(a+b )n=a n+b n(a 、b 均不为零).6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即nnnb a ab =)((n 为正整数)。
7.幂的乘方与积乘方法则均可逆向运用。
三. 同底数幂的除法1。
同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m 〉n ).2。
在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除"而且0不能做除数,所以法则中a ≠0。
北师大版七年级下册数学第一章 整式的乘除(附答案)

七年级数学下册——第一章 整式的乘除(复习)单项式整 式多项式同底数幂的乘法 幂的乘方 积的乘方幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式第1章 整式的乘除 单元测试卷一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+ B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-5.已知,5,3==bax x 则=-ba x 23( )A 、2527 B 、109 C 、53D 、526. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:整 式 的 运 算m a ba①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( )A 、Q P >B 、Q P =C 、Q P <D 、不能确定 二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。
新版北师大七年级数学下册第一章《整式的乘除运算》知识点总结及习题

第一章整式的乘除知识点总结一、单项式:数字与字母的乘积组成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数。
注意:π是数字,而不是字母,它的系数是π,次数是0. 二、多项式几个单项式的代数和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:1、同底数幂的乘法:),(都是正整数n m aa a nm nm+=∙2、幂的乘方:),(都是正整数)(n m a a mnn m =3、积的乘方:)()(都是正整数n b a ab nnn= 4、同底数幂的除法:)0,,(≠=÷-a n m a a a nm nm都是正整数六、零指数幂和负整数指数幂: 1、零指数幂:);0(10≠=a a 2、负整数指数幂:),0(1是正整数p a aa p p≠=- 七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
5、多项式除以单项式:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
八、整式乘法公式:1、平方差公式: 22))((b a b a b a -=-+2、完全平方公式: 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-七年级数学(下)第一章《整式的运算》一、 知识点:1、都是数与字母的乘积的代数式叫做单项式(单独的一个数或一个字母也是单项式);几个单项式的和叫做多项式;单项式和多项式统称整式。
北师大新版七年级下册《第1章 整式的乘除》2含解析版答案

北师大新版七年级下册《第1章整式的乘除》一、选择题1.(3分)下列等式不成立的是()A.(ab)2=a2b2B.a5÷a2=a3C.(a﹣b)2=(b﹣a)2D.(a+b)2=(﹣a+b)22.(3分)如果9x2+kx+25是一个完全平方式,那么k的值是()A.30 B.±30 C.15 D.±153.(3分)若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()A.﹣20 B.﹣16 C.16 D.204.(3分)如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b25.(3分)若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣86.(3分)若x2﹣x﹣m=(x﹣m)(x+1)且x≠0,则m等于()A.﹣1 B.0 C.1 D.27.(3分)若3x=18,3y=6,则3x﹣y=()A.6 B.3 C.9 D.128.(3分)下列各式中为完全平方式的是()A.x2+2xy+4y2B.x2﹣2xy﹣y2C.﹣9x2+6xy﹣y2D.x2+4x+169.(3分)已知(m﹣n)2=32,(m+n)2=4000,则m2+n2的值为()A.2014 B.2015 C.2016 D.403210.(3分)利用平方差公式计算(2x﹣5)(﹣2x﹣5)的结果是()A.4x2﹣5 B.4x2﹣25 C.25﹣4x2D.4x2+2511.(3分)若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为()A.a=5,b=6 B.a=1,b=﹣6 C.a=1,b=6 D.a=5,b=﹣6 12.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.6二、填空题(题型注释)13.(3分)已知x m=3,y n=2,求(x2m y n)﹣1的值.14.(3分)若a2﹣4a+b2﹣10b+29=0,则a=,b=.15.(3分)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b216.(3分)99×101=()×()=.17.(3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为.18.(3分)若a+b=6,ab=4,则(a﹣b)2=.19.(3分)若a2+b2=5,ab=2,则(a+b)2=.20.(3分)将4个数排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,若=6,则x=.三、计算题21.化简求值.(a+b)(a﹣b)+(a+b)2,其中a=3,b=﹣.22.(16分)计算(1)a3b2c÷a2b(2)(﹣x3)2•(﹣x2)3(3)(﹣4x﹣3y)2(4)(x+2y﹣3)(x﹣2y+3)四、解答题23.若a2b+ab2=30,ab=6,求下列代数式的值:(1)a2+b2;(2)a﹣b.24.先化简,再求值:[b(a﹣3b)﹣a(3a+2b)+(3a﹣b)(2a﹣3b)]÷(﹣3a),其中a、b满足2a﹣8b﹣5=0.25.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.北师大新版七年级下册《第1章整式的乘除》参考答案与试题解析一、选择题1.(3分)下列等式不成立的是()A.(ab)2=a2b2B.a5÷a2=a3C.(a﹣b)2=(b﹣a)2D.(a+b)2=(﹣a+b)2【分析】分别根据幂的乘方及积的乘方法则、同底数幂的除法法则及完全平方公式对各选项进行逐一分析即可.【解答】解:A、(ab)2=a2b2,故本选项错误;B、a5÷a2=a3,故本选项错误;C、(a﹣b)2=(b﹣a)2,故本选项错误;D、(a+b)2=a2+b2+2ab≠(﹣a+b)2=a2+b2﹣2ab故本选项正确.故选:D.2.(3分)如果9x2+kx+25是一个完全平方式,那么k的值是()A.30 B.±30 C.15 D.±15【分析】本题考查的是完全平方公式的理解应用,式中首尾两项分别是3x和5的平方,所以中间项应为加上或减去3x和5的乘积的2倍,所以kx=±2×3x×5=±30x,故k =±30.【解答】解:∵(3x±5)2=9x2±30x+25,∴在9x2+kx+25中,k=±30.故选:B.3.(3分)若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()A.﹣20 B.﹣16 C.16 D.20【分析】把分解因式的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m的值即可.【解答】解:x2+mx+36=(x﹣2)(x﹣18)=x2﹣20x+36,可得m=﹣20,故选:A.4.(3分)如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b2【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【解答】解:∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选:C.5.(3分)若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣8【分析】先根据多项式乘以多项式法则展开式子,并合并,不含x的一次项就是含x项的系数等于0,求解即可.【解答】解:∵(x+m)(x﹣8)=x2﹣8x+mx﹣8m=x2+(m﹣8)x﹣8m,又结果中不含x的一次项,∴m﹣8=0,∴m=8.故选:A.6.(3分)若x2﹣x﹣m=(x﹣m)(x+1)且x≠0,则m等于()A.﹣1 B.0 C.1 D.2【分析】已知等式右边利用多项式乘以多项式法则化简,再利用多项式相等的条件求出m 的值即可.【解答】解:x2﹣x﹣m=(x﹣m)(x+1)=x2+(1﹣m)x﹣m,可得1﹣m=﹣1,解得:m=2.故选:D.7.(3分)若3x=18,3y=6,则3x﹣y=()A.6 B.3 C.9 D.12【分析】根据同底数幂除法法则进行计算即可.【解答】解:∵3x=18,3y=6,∴3x﹣y==3.故选:B.8.(3分)下列各式中为完全平方式的是()A.x2+2xy+4y2B.x2﹣2xy﹣y2C.﹣9x2+6xy﹣y2D.x2+4x+16【分析】完全平方式有a2+2ab+b2和a2﹣2ab+b2两个,根据以上内容逐个判断即可.【解答】解:A、x2+2xy+y2才是完全平方式,而x2+2xy+4y2不是完全平方式,故本选项错误;B、x2﹣2xy+y2才是完全平方式,而x2﹣2xy﹣y2不是完全平方式,故本选项错误;C、﹣9x2+6xy﹣y2=﹣(3x﹣y)2,是完全平方式,故本选项正确;D、x2+4x+4才是完全平方式,而x2+4x+16不是完全平方式,故本选项错误;故选:C.9.(3分)已知(m﹣n)2=32,(m+n)2=4000,则m2+n2的值为()A.2014 B.2015 C.2016 D.4032【分析】根据完全平方公式,即可解答.【解答】解:(m﹣n)2=32,m2﹣2mn+n2=32 ①,(m+n)2=4000,m2+2mn+n2=4000 ②,①+②得:2m2+2n2=4032m2+n2=2016.故选:C.10.(3分)利用平方差公式计算(2x﹣5)(﹣2x﹣5)的结果是()A.4x2﹣5 B.4x2﹣25 C.25﹣4x2D.4x2+25【分析】利用平方差公式进行计算即可得解.【解答】解:(2x﹣5)(﹣2x﹣5),=(﹣5)2﹣(2x)2,=25﹣4x2.故选:C.11.(3分)若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为()A.a=5,b=6 B.a=1,b=﹣6 C.a=1,b=6 D.a=5,b=﹣6 【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出a与b 的值即可.【解答】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∴a=1,b=﹣6.故选:B.12.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.6【分析】根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.二、填空题(题型注释)13.(3分)已知x m=3,y n=2,求(x2m y n)﹣1的值.【分析】根据幂的乘方,可得负整数指数幂,再根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:x﹣2m=(x m)﹣2=3﹣2=,y﹣n=(y n)﹣1=.(x2m y n)﹣1=x﹣2m y﹣n=×=,故答案为:.14.(3分)若a2﹣4a+b2﹣10b+29=0,则a= 2 ,b= 5 .【分析】运用配方法把原式化为(a﹣2)2+(b﹣5)2=0,根据非负数的性质列出算式,求出a、b的值.【解答】解:∵a2﹣4a+b2﹣10b+29=0,∴(a﹣2)2+(b﹣5)2=0,∴a﹣2=0,b﹣5=0,解得a=2,b=5.15.(3分)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b2【分析】根据平方差公式的逆用找出这两个数写出即可.【解答】解:∵(﹣5a2+4b2)(﹣5a2﹣4b2)=25a4﹣16b4,∴应填:﹣5a2﹣4b2.故选:C.16.(3分)99×101=(100﹣1 )×(100+1 )=9999 .【分析】直接利用平方差公式进行计算得出答案.【解答】解:99×101=(100﹣1)×(100+1)=9999.故答案为:9999.17.(3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为 1 .【分析】运用平方差公式,化简代入求值,【解答】解:因为a﹣b=1,a2﹣b2﹣2b=(a+b)(a﹣b)﹣2b=a+b﹣2b=a﹣b=1,故答案为:1.18.(3分)若a+b=6,ab=4,则(a﹣b)2=20 .【分析】根据完全平方公式,对已知的算式和各选项分别整理,得出a2+b2=28,然后再去括号即可得出答案.【解答】解:∵a+b=6,ab=4,∴(a+b)2=36,a2+b2+2ab=36,∴a2+b2=28,∴(a﹣b)2=a2+b2﹣2ab=28﹣8=20,故答案为:20.19.(3分)若a2+b2=5,ab=2,则(a+b)2=9 .【分析】根据完全平方公式直接代入解答即可.【解答】解:∵(a+b)2=a2+b2+2ab,∴把a2+b2与ab代入,得(a+b)2=5+2×2=9.20.(3分)将4个数排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,若=6,则x=±.【分析】根据新定义得到(x+1)2﹣(1﹣x)(x﹣1)=6,然后整理得到x2=2,再利用直接开平方法解方程即可.【解答】解:根据题意得(x+1)2﹣(1﹣x)(x﹣1)=6,整理得x2=2,x=±,所以x1=,x2=﹣.故答案为±.三、计算题21.化简求值.(a+b)(a﹣b)+(a+b)2,其中a=3,b=﹣.【分析】原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=a2﹣b2+a2+2ab+b2=2a2+2ab,当a=3,b=﹣时,原式=18﹣2=16.22.(16分)计算(1)a3b2c÷a2b(2)(﹣x3)2•(﹣x2)3(3)(﹣4x﹣3y)2(4)(x+2y﹣3)(x﹣2y+3)【分析】(1)根据单项式除以单项式法则进行计算即可;(2)先算乘方,再算乘法即可;(3)根据完全平方公式进行计算即可;(4)先变形,再根据平方差公式进行计算,最后根据完全平方公式进行计算即可.【解答】解:(1)a3b2c÷a2b=abc;(2)(﹣x3)2•(﹣x2)3=x6•(﹣x6)=﹣x12;(3)(﹣4x﹣3y)2=16x2+24xy+9y2;(4)(x+2y﹣3)(x﹣2y+3)=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9.四、解答题23.若a2b+ab2=30,ab=6,求下列代数式的值:(1)a2+b2;(2)a﹣b.【分析】(1)已知等式左右两边相除,利用多项式除以单项式法则计算求出a+b的值,两边平方后利用完全平方公式化简,将ab的值代入计算即可求出所求式子的值;(2)将原式平方,利用完全平方公式化简,将各自的值代入计算,开方即可求出值.【解答】解:(1)由a2b+ab2=30,ab=6,得(a2b+ab2)÷ab=ab(a+b)÷ab=30÷6=5,即a+b=5,∴(a+b)2=25,即a2+2ab+b2=25,∴a2+b2=25﹣2ab=25﹣2×6=13;(2)(a﹣b)2=a2﹣2ab+b2=13﹣2×6=1,∴a﹣b=±1.24.先化简,再求值:[b(a﹣3b)﹣a(3a+2b)+(3a﹣b)(2a﹣3b)]÷(﹣3a),其中a、b满足2a﹣8b﹣5=0.【分析】先算乘法,再合并同类项,最后算除法,代入求出即可.【解答】解:[b(a﹣3b)﹣a(3a+2b)+(3a﹣b)(2a﹣3b)]÷(﹣3a)=[ab﹣3b2﹣3a2﹣2ab+6a2﹣9ab﹣2ab+3b2]÷(﹣3a)=(3a2﹣12ab)÷(﹣3a)=﹣a+4b,∵2a﹣8b﹣5=0,∴2a﹣8b=5,∴﹣a+4b =﹣,∴原式=﹣.25.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【分析】(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.11/ 11。
北师大初中数学七年级(下册)第一章整式的乘除练习题(带答案)

3 x2 y3 5
3x2y ;
( 2) 10 a4b 3c 2
5a3bc ;
( 3) (2 x2 y)3 ( 7 xy2 ) 14x 4 y3 ;
( 4) ( 2a b)4 (2a b)2 .
14、【基础题】计算: ( 1) (6ab 8b) 2b ; ( 2) (27a3 15a 2 6a) 3a ; ( 3) (9x2 y 6xy 2 ) 3xy ;
( 9) (ab 1)2 (ab 1) 2 ;
(10) (2x y) 2 4( x y)( x 2 y) .
12.3、【综合Ⅰ】先化简,再求值:
( 1) ( 2x- 1)( x+2)-( x- 2) 2-( x+2) 2,其中 x= - 1 . 3
( 2) ( x+2 y)( x-2 y)( x 2 -4 y 2 ),其中 x=2, y=-1 .
2
10、【基础题】 计算: (1) (2 x 1)(x 3) ; (2) ( m 2n)( m 3n) ; (3) ( a 1) ; (4) (a 3b )(a 3b) ;
2
(5) (2 x
1)(x
4) ;
2
(6) (x
3)(2 x
5) ;
( 7) (7) 3a
bc
bc 3a ;
( 8)( 3x - 2y) 2- (3x + 2y) 2 11
( 3)(x-2 y)( x+2 y)-( x+2 y) 2 ;
( 4)(a+ b+ c)(a+ b- c);
( 5)(2 a+1) 2 -(1-2 a) 2 ;
( 6)(3 x - y) 2 -(2 x+ y) 2 +5 x ( y -x) .
( 7) (2 x y 1)( 2x y 1) ;
新北师大版七年级数学下册第一章《整式的乘除》单元练习题含答案解析 (11)

一、选择题(共10题)1.计算x2⋅y2⋅(−xy3)2的结果是( )A.x5y10B.x4y8C.−x5y8D.x6y122.数32019⋅72020⋅132021的个位数是( )A.1B.3C.7D.93.不论a,b为何有理数,a2+b2−2a−4b+c的值总是非负数,则c的最小值是( )A.4B.5C.6D.无法确定4.若(x+k)(x−5)的积中不含有x的一次项,则k的值是( )A.0B.5C.−5D.−5或55.小明做了下列四道单项式乘法题,其中他做对的一道是( )A.3x2⋅2x3=5x5B.3a3⋅4a3=12a9C.2m2⋅3m3=6m3D.3y3⋅6y3=18y66.在下列各式中,运算结果为x2的是( )A.x4−x2B.x4⋅x−2C.x6÷x3D.(x−1)27.已知(m−2018)2+(m−2020)2=34,则(m−2019)2的值为( )A.4B.8C.12D.168.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为( )A.0.7×10−3B.7×10−3C.7×10−4D.7×10−59.有4张长为a,宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,S2,则a,b满足( )图中阴影部分的面积为S1,空白部分的面积为S2.若S1=12A.2a=3b B.2a=5b C.a=2b D.a=3b10.已知a,b,c是△ABC的三边,且满足a2+b2+c2=ab+bc+ca,则△ABC的形状是( )A.等腰三角形B.等边三角形C.直角三角形D.不能确定二、填空题(共7题)11.一个正方形的边长增加了3cm,面积相应增加了39cm2,则原来这个正方形的边长为cm.12.完成下列各题.(1)若x2−2mx+1是一个完全平方式,则m的值为.(2)如果有理数a,b同时满足(2a+2b+3)(2a+2b−3)=55,那么a+b的值为.(3)已知a=255,b=344,c=433,d=522,则这四个数从大到小排列顺序是.(4)观察下列算式:① (x−1)(x+1)=x2−1;② (x−1)(x2+x+1)=x3−1;③ (x−1)(x3+x2+x+1)=x4−1寻找规律,并判断22018+22017+⋯+22+2+1的值的末位数字为.13.m(a−b)3=( )(b−a)3,m(y−x)2=( )(x−y)2.14.x2+mx−15=(x+3)(x+n),则m的值为.15.计算:30−2−1=.16.已知(5+2x)2+(3−2x)2=40,则(5+2x)⋅(3−2x)的值为.17.已知实数12∣a−b∣+√2b+c+c2−c+14=0,则cab=.三、解答题(共8题)18.若x+y=3,且(x+2)(y+2)=12.(1) 求xy的值;(2) 求x2+4xy+y2的值.19.计算:(1) 先化简,再求值:(x−1)(x−3)−4x(x+1)+3(x+1)(x−1),其中x=116;(2) 已知3×9m×27m=317+m,求:(−m2)3÷(m3⋅m2)的值.20.解答下列问题.(1) 如图甲,从边长为a的正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形,然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证因式分解公式成立的是;(2) 根据下面四个算式:52−32=(5+3)×(5−3)=8×2;112−52=(11+5)×(11−5)=16×6=8×12;152−32=(15+3)×(15−3)=18×12=8×27;192−72=(19+7)×(19−7)=26×12=8×39.请你再写出两个(不同于上面算式)具有上述规律的算式;(3) 用文字写出反映(2)中算式的规律,并证明这个规律的正确性.21.如图,将一张长方形纸板按图中虚线裁剪成9块,其中有2块是边长都为m厘米的大正方形,2块是边长都为n厘米的小正方形,5块是长为m厘米,宽为n厘米的一模一样的小长方形,且m>n,设图中所有裁剪线(虚线部分)长之和为L厘米.(1) L=.(试用m,n的代数式表示)(2) 若每块小长方形的面积为10平方厘米,四个正方形的面积和为58平方厘米,求L的值.22.在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算:(1)把这个数加上2后平方;(2)然后再减去4;(3)再除以原来所想的那个数,得到一个商.最后把你所得到的商告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗?23.已知代数式:① a2−2ab+b2;② (a−b)2.(1) 当a,b满足(a−5)2+∣ab−15∣=0时,分别求代数式①和②的值;(2) 观察(1)中所求的两个代数式的值,探索代数式a2−2ab+b2和(a−b)2有何数量关系,并把探索的结果写出来;(3) 利用你探索出的规律,求128.52−2×128.5×28.5+28.52的值.24.回答下列问题.(1) 请填空:(x−1)(x+1)=;(x−1)(x2+x+1)=;(x−1)(x3+x2+x+1)=.(2) 观察猜想观察上述几个式子,我们可以猜想得到(x−1)(x99+x98+x97+⋯+x+1)=.(3) 请你利用上面的结论,完成下面各题.计算:299+298+297+⋯+22+2+1;计算:(−2)50+(−2)49+(−2)48+⋯+(−2)2+(−2)+1.(4) 在括号内填上一个多项式:(x+1)( )=x5+1.25.小马、小虎两人共同计算一道题:(x+a)(2x+b).小马抄错了a的符号,得到的结果是2x2−7x+3;小虎漏抄了第二个多项式中x的系数,得到的结果是x2+2x−3.(1) 求a,b的值.(2) 细心的你请计算这道题的正确结果.(3) 当x=−1时,计算(2)中的代数式的值.答案一、选择题(共10题)1. 【答案】B【知识点】积的乘方2. 【答案】A【解析】∵31=3,32=9,33=27,34=81,35=243⋯,∴3n的个位数分别以3,9,7,1循环,∵2019÷4=504⋯3,∴32019的个位数是7;71=7,72=49,73=343,74=2041,75=16807⋯,∴7n的个位数分别以7,9,3,1循环,∵2020÷4=505,∴72020的个位数是1;∵131=13,132=169,133=2197,134=28561,135=371293,∴13n的个位数分别以3,9,7,1循环,∵2021÷4=505⋯1,∴132021的个位数为3,∵7×1×3=21,∴32019⋅72020⋅132021的个位数为1,故选:A.【知识点】同底数幂的乘法3. 【答案】B【解析】∵a2+b2−2a−4b+c=(a−1)2−1+(b−2)2−4+c =(a−1)2+(b−2)2+c−5≥0,∴c的最小值是5.【知识点】完全平方公式4. 【答案】B【解析】(x+k)(x−5)=x2−5x+kx−5k =x2+(k−5)x−5k,∵不含有x的一次项,∴k−5=0,解得k=5.【知识点】多项式乘多项式5. 【答案】D【解析】3x2⋅2x3=6x5;3a3⋅4a3=12a6;2m2⋅3m3=6m5;3y3⋅6y3=18y6.【知识点】单项式乘单项式6. 【答案】B【解析】x4与x2不是同类项,不能合并,A选项错误;x4⋅x−2=x2,B选项正确;x6÷x3=x3,C选项错误;(x−1)2=x−2,D选项错误.【知识点】同底数幂的除法7. 【答案】D【解析】∵(m−2018)2+(m−2020)2=34,∴[(m−2019)+1]2+[(m−2019)−1]2=34,∴(m−2019)2+2(m−2019)+1+(m−2019)2−2(m−2019)+1=34,∴2(m−2019)2=32,∴(m−2019)2=16.【知识点】完全平方公式8. 【答案】C【知识点】负指数科学记数法9. 【答案】C【解析】由题意可得:S2=12b(a+b)×2+12ab×2+(a−b)2=ab+b2+ab+a2−2ab+b2 =a2+2b2,S1=(a+b)2−S2=(a+b)2−(a2+2b2)=2ab−b2,∵S1=12S2,∴2ab−b2=12(a2+2b2),∴4ab−2b2=a2+2b2,∴a2+4b2−4ab=0,∴(a−2b)2=0,∴a−2b=0,∴a=2b.【知识点】完全平方公式10. 【答案】B【解析】∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2−2ab−2bc−2ca=0,则(a−b)2+(a−c)2+(b−c)2=0故a=b=c,△ABC的形状等边三角形.【知识点】完全平方公式二、填空题(共7题)11. 【答案】5【解析】设原来正方形的边长是x cm.根据题意,得(x+3)2−x2=39,∴(x+3+x)(x+3−x)=3(2x+3)=39,解得x=5.【知识点】平方差公式12. 【答案】±1;±4;b>c>a>d;7【解析】(1)∵x2−2mx+1是一个完全平方式,∴x2−2mx+1=(x±1)2=x2±2x+1,∴m=±1.(2)∵(2a+2b+3)(2a+2b−3)=(2a+2b)2−9=55,∴(2a+2b)2=64,∴2a+2b=±8,∴a+b=±4.(3)∵a=255=(25)11=3211,b=344=(34)11=8111,c=433=(43)11=6411,d=522=(52)11=2511,∵8111>6411>3211>2511,∴b>c>a>d.(4)根据算式可总结规律得,(2−1)×(22018+22017+⋯+22+2+1)=22019−1,∴22018+22017+⋯+22+2+1=22019−1.∵21=2,22=4,23=8,24=16,25=32,26=64,⋯⋯∵2n的末位数字每4个一组循环重复,又∵2019÷4=504⋯⋯3,∴22019的末位数字是8,∴22019−1的末位数字是7,即22018+22017+⋯+22+2+1的值的末位数字是7.【知识点】完全平方公式、平方差公式、用代数式表示规律13. 【答案】−m;m【知识点】幂的乘方14. 【答案】−2【解析】(x+3)(x+n)=x2+(3+n)x+3n,又x2+mx−15=(x+3)(x+n),所以3n=−15,3+n=m,所以n=−5,m=−2.【知识点】多项式乘多项式15. 【答案】12【解析】原式=1−12=12.【知识点】负指数幂运算、零指数幂运算16. 【答案】12【解析】∵(5+2x)2+(3−2x)2=40,∴[(5+2x)+(3−2x)]2−2(5+2x)(3−2x)=40,即64−2(5+2x)(3−2x)=40,∴(5+2x)(3−2x)=12.【知识点】完全平方公式17. 【答案】8【知识点】绝对值的性质、完全平方公式、二次根式的性质三、解答题(共8题)18. 【答案】(1) ∵(x+2)(y+2)=12,x+y=3,∴xy+2(x+y)+4=xy+2×3+4=12,解得xy=2.(2) ∵x+y=3,xy=2,∴x2+4xy+y2=(x+y)2+2xy=32+2×2=9+4=13.【知识点】完全平方公式、多项式乘多项式、简单的代数式求值19. 【答案】(1) 原式=(x2−4x+3)−(4x2+4x)+(3x2−3)=−8x;当x=116时,原式的值是:−8×116=−12.(2) 因为3×9m×27m=317+m,所以35m+1=317+m,所以5m+1=17+m,所以m=4,又因为(−m2)3÷(m3⋅m2)=−m6÷m5=−m,所以原式的值是:−4.【知识点】整式的混合运算、同底数幂的除法、幂的乘方20. 【答案】(1) a2−b2=(a+b)(a−b)(2) 72−52=8×3;92−32=8×9等.(3) 规律:任意两个奇数的平方差是8的倍数.设m,n为整数,两个奇数可表示为2m+1和2n+1,则(2m+1)2−(2n+1)2=4(m−n)(m+n+1).当m,n同是奇数或偶数时,m−n一定为偶数,∴4(m−n)一定是8的倍数;当m,n一偶一奇时,则m+n+1一定为偶数,∴4(m+n+1)一定是8的倍数.∴任意两个奇数的平方差是8的倍数.【知识点】平方差公式21. 【答案】(1) 6m+6n(2) 依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴图中所有裁剪线(虚线部分)长之和为42 cm.【知识点】简单的代数式求值、简单列代数式、完全平方公式22. 【答案】设这个数是x,则最后所得的商为[(x+2)2−4]÷x=(x2+4x+4−4)÷x=x+4.如果把这个商告诉主持人,主持人只需减去 4 就知道你原来想的那个数是多少. 【知识点】完全平方公式、多项式除以单项式23. 【答案】(1) ∵(a −5)2+∣ab −15∣=0, ∴a =5,ab =15,则 b =3,∴ ① a 2−2ab +b 2=52−2×5×3+32=4; ② (a −b )2=(5−3)2=4.(2) 由(1)知 a 2−2ab +b 2=(a −b )2.(3) 128.52−2×128.5×28.5+28.52=(128.5−28.5)2=1002=10000.【知识点】完全平方公式24. 【答案】(1) x 2−1;x 3−1;x 4−1 (2) x 100−1 (3) 2100−1;251+13.(4) x 4−x 3+x 2−x +1【知识点】平方差公式、其他公式、立方公式25. 【答案】(1) 根据题意,得小马的计算过程为 (x −a )⋅(2x +b )=2x 2+bx −2ax −ab =2x 2+(b −2a )x −ab =2x 2−7x +3;小虎的计算过程为 (x +a )(x +b )=x 2+bx +ax +ab =x 2+(a +b )x +ab =x 2+2x −3. ∴{b −2a =−7,a +b =2.解得 {a =3,b =−1.(2) 由(1),得 (x +3)(2x −1)=2x 2−x +6x −3=2x 2+5x −3. (3) 当 x =−1 时,2x 2+5x −3=2×1+5×(−1)−3=−6. 【知识点】多项式乘多项式、简单的代数式求值。