频率分布直方图和折线图教案
2.2.2频率分布直方图与折线图

§2.2 第5课时频率分布直方图与折线图教学目标:(1)能列出频率分布表,能画出频率分布的条形图、直方图、折线图;会用样本频率分布去估计总体分布.教学重点:绘制频率直方图、条形图、折线图.教学难点:会根据样本频率分布或频率直方图去估计总体分布.教学过程一、问题情境1.问题:(1)列频率分布表的一般步骤是什么?(2)能否根据频率分布表来绘制频率直方图?(3)能否根据频数情况来绘制频数条形图?二、建构数学1.频数条形图例1.下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条形图星期一二三四五件数 6 2 3 5 1累计 6 8 11 16 17解:象这样表示每一天频数的柱形图叫频数条形图.2.频率分布直方图:例2分组频数累计频数频率[150.5,153.5) 4 4 0.04[153.5,156.5)12 8 0.08[156.5,159.5)20 8 0.08[159.5,162.5)31 11 0.11[162.5,165.5)53 22 0.22[165.5,168.5)72 19 0.19[168.5,171.5)86 14 0.14[171.5,174.5)93 7 0.07[174.5,177.5)97 4 0.04[177.5,180.5]100 3 0.03合计100 1解:(1)根据频率分布表,作直角坐标系,以横轴表示身高,纵轴表示频率/组距;(2)在横轴上标上表示的点;(3)在上面各点中,分别以连接相邻两点的线段为底作矩形,高等于该组的频率/组距.频率分布直方图如图:一般地,作频率分布直方图的方法为:把横轴分成若干段,每一段对应一个组的组距,以此线段为底作矩形,高等于该组的频率/组距,这样得到一系列矩形,每一个矩形的面积恰好是该组上的频率.这些矩形构成了频率分布直方图.2.频率分布折线图在频率分布直方图中,取相邻矩形上底边的中点顺次连结起来,就得到频率分布折线图(简称频率折线图)例2的频率折线图如图:3.密度曲线如果样本容量取得足够大,分组的组距取得足够小,则相应的频率折线图将趋于一条光滑的曲线,称这条光滑的曲线为总体的密度曲线.例3.为了了解一大片经济林生长情况,随机测量其中的100株的底部周长,得到如下数据表(单位:cm)135 98 102 110 99 121 110 96 100 103125 97 117 113 110 92 102 109 104 112109 124 87 131 97 102 123 104 104 128105 123 111 103 105 92 114 108 104 102129 126 97 100 115 111 106 117 104 109111 89 110 121 80 120 121 104 108 118129 99 90 99 121 123 107 111 91 10099 101 116 97 102 108 101 95 107 101102 108 117 99 118 106 119 97 126 108123 119 98 121 101 113 102 103 104 108(1于100cm的树木约占多少,周长不小于120cm的树木约占多少.解:(1)这组数据的最大值为135,最小值为80,全距为55,可将其分为11组,组距为5.频率分布表如下:分组频数频率频率/组距[80,85) 1 0.01 0.002[85,90) 2 0.02 0.004[90,95) 4 0.04 0.008[95,100)14 0.14 0.028[100,105)24 0.24 0.048[105,110)15 0.15 0.030[110,115)12 0.12 0.024[115,120)9 0.09 0.018[120,125)11 0.11 0.022[125,130) 6 0.06 0.012[130,135] 2 0.02 0.004合计100 1 0.2(2)直方图如图:(3)从频率分布表得,样本中小于100的频率为0.010.020.040.140.21+++=,样本中不小于120的频率为0.110.060.020.19++=,估计该片经济林中底部周长小于100cm的树木约占21%,周长不小于120cm的树木约占19%.2.练习:(1)第57页第1题.(2)一个高中研究性学习小组对本地区2000年至2002年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭85万盒.三、回顾小结:1.什么是频数条形图、频率直方图、折线图、密度曲线?2.绘制频率分布直方图的一般方法是什么?3.频率分布直方图的特征:(1)从频率分布直方图可以清楚的看出数据分布的总体趋势.(2)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.四、课外作业:课本第57页第2题,第59页第2、3、4题.。
频率分布直方图与折线图

探究新知
条形图
人数 25 20 15 10 5 0 一号 二号 三号 四号
150.5153.5156.5 159.5162.5165.5168.5171.5 174.5 177.5 180.5 身高/cm 频率/组距 0.08
(3)条形图和直方图的有哪些区别?
直方图
0.06
一号 二号 0.04 三号 四号
实际应用
问题6.若两个研究小组分别抽样,是否得到相同的样 本?对总体估计是否一定相同?是否会有很大的差异? 问题7.比较一下几种表示频率分布的方法的优缺点.
名称
频率分布表 频率直方图 频率折线图
优点
数据清晰明了,便于查阅 形象直观,对比效果强烈 反映发展变化的趋势
不足
课堂小结
样本 频率分布表
频率分布直方图
频率分布折 线图
Байду номын сангаас
0.08 0.06 0.04 0.02
150.5153.5 156.5 159.5 162.5165.5168.5171.5174.5177.5 180.5
频率直方 图
身高/cm
频率/组距
频率分布 折线图
0.08 0.06 0.04 0.02
150.5 153.5
180.5
身高/cm
问题5.若组距取得越小,则频率折线光滑程度会怎 样?
问题3.类比频数条形图的画法,谈谈根据频率分布表 如何画出频率分布直方图!
名称 频数条形图 频率直方图
横轴 分类
纵轴 频数
探究新知
例1.从某校高一 年级的1002名新 生中用系统抽样 的方法抽取一个 容量为100的身高 样本,频率分布 表如下(单位: cm).试作出该 样本的频率分布 图.
《频率分布直方图》示范公开课教学课件【高中数学北师大版】

宽度的最大值是158mm,最小值是121mm.
计算极差:mm.
这说明样本观测数据的变化范围是37mm.
146 141 139 140 145 141 142 131 142 140 144 140138 139 147 139 141 137 141 132 140 140 141 143134 146 134 142 133 149 140 140 143 143 149 136141 143 143 141 138 136 138 144 136 145 143 137142 146 140 148 140 140 139 139 144 138 146 153148 152 143 140 141 145 148 139 136 141 140 139158 135 132 148 142 145 145 121 129 143 148 138149 146 141 142 144 137 153 148 144 138 150 148138 145 145 142 143 143 148 141 145 141
高中数 2.2.2 频率分布直方图与折线图导案 苏教必修3

131
97
102
123
104
104
128
105
123
111
103
105
92
114
108
104
102
129
126
97
100
115
111
106
117
104
109
111
89
110
121
80
120
121
104
108
118
129
99
90
99
121
123
107
111
91
100
99
101
116
97
102
108
101
95
107
101
102
108
117
99
118
106
119
97
126
108
123
119
98
121
101
113
102
103
104
108
(1)编制频率分布表;
(2)绘制频率分布直方图;
(3)估计该片经济林中底部周长小于100cm的树木约占多少,周长不小于120cm的
树木约占多少.
【学后反思】
课题:2.2.2频率分布直方图与折线图检测案
班级:姓名:学号:第学习小组
【课堂检测】
1.在频率分布直方图中,所有矩形的面积和为_________.
2. 辆汽车通过某一段公路时的时速如下图所示,则时速在的汽车大约
有______辆.
3.在一个容量为的样本,数据的分组及各组的频数如下:
《频率分布直方图》教学设计、导学案、同步练习

《9.2.1 总体取值规律的估计》教学设计第1课时频率分布直方图【教材分析】本节是主要介绍表示样本分布的方法,包括频率分布表、频率分布直方图、条形图、扇形图、折线图等.由于作统计图、表的操作性很强,所以教学中要使学生在明确图、表含义的前提下,让学生自己动手作图.同时让学生理解:对于一个总体的分布,我们往往从总体抽取一个样本,用样本的频率分布估计总体分布. 学生在初中已经学过把样本数据表示成频数分布表和频数分布图的形式,能从图表上直观的看出数据的分布情况,为学习本节内容在基础知识上有了铺垫。
【教学目标与核心素养】课程目标1.结合实例,能用样本估计总体的取值规律.2.会列频率分布表,画频率分布直方图.3.能根据频率分布表和频率分布直方图观测数据的分布规律.数学学科素养1.直观想象:频率分布直方图的绘制与应用;2.数学运算:频率分布直方图中的相关计算问题.【教学重点】:①列频率分布表,画频率分布直方图;②根据频率分布表和频率分布直方图观测数据的分布规律.【教学难点】:①列频率分布表,画频率分布直方图;②根据频率分布表和频率分布直方图观测数据的分布规律.【教学过程】一、情景导入我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为为了较为合理地确定出这个标准需要做哪些工作?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、预习课本,引入新课阅读课本192-197页,思考并完成以下问题 1、画频率分布直方图的步骤有哪些?2、频率分布直方图的纵轴表示什么?各矩形面积之和等于什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.频率分布直方图绘制步骤①求极差,即一组数据中的最大值与最小值的差.②决定组距与组数.组距与组数的确定没有固定的标准,一般数据的个数越多,所分组数越多.当样本容量不超过100时,常分成5~12组.为方便起见,一般取等长组距,并且组距应力求“取整”.③将数据分组.④列频率分布表.计算各小组的频率,第i 组的频率是第i 组频数样本容量.⑤画频率分布直方图.其中横轴表示分组,纵轴表示频率组距.频率组距实际上就是频率分布直方图中各小长方形的高度,它反映了各组样本观测数据的疏密程度.2. 频率分布直方图意义:各个小长方形的面积表示相应各组的频率,频率分布直方图以面积的形式反映数据落在各个小组的频率的大小,各小长方形的面积的总和等于1.3.总体取值规律的估计:我们可以用样本观测数据的频率分布估计总体的取值规律.4.频率分布直方图的特征:当频率分布直方图的组数少、组距大时,容易从中看出数据整体的分布特点,但由于无法看出每组内的数据分布情况,损失了较多的原式数据信息;当频率分布直方图的组数多、组距小时,保留了较多的原始数据信息,但由于小长方形较多,有时图形会变得非常不规则 ,不容易从中看出总体数据的分布特点.四、典例分析、举一反三题型一 频率分布直方图的绘制与应用例1 一个农技站为了考察某种麦穗长的分布情况,在一块试验地里抽取了100个麦穗,量得长度如下(单位:cm):6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.6 5.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.8 6.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.56.8 6.0 6.3 5.5 5.0 6.3 5.2 6.07.0 6.4 6.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.4 6.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6 5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0 5.8 5.3 7.0 6.0 6.0 5.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7 5.9 5.4 6.0 5.2 6.0 6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3根据上面的数据列出频率分布表、绘出频率分布直方图,并用自己的语言描述一下这批麦穗长的情况.【答案】见解析 【解析】步骤是:(1)计算极差,7.4-4.0=3.4(cm). (2)决定组距与组数. 若取组距为0.3 cm,由于3.40.3=1113,需分成12组,组数合适.于是取定组距为0.3 cm,组数为12.(3)将数据分组.使分点比数据多一位小数,并且把第1小组的起点稍微减小一点.则所分的12个小组可以是[3.95,4.25),[4.25,4.55),[4.55,4.85),…,[7.25,7.55].(4)列频率分布表.对各个小组作频数累计,然后数频数,算频率,列频率分布表,如下表所示: 1 1 2 1128 13 112 1 (5)画频率分布直方图,如图.从表中看到,从频率分布表中可以看出,绝大部分麦穗长集中在5.15-5.95,并且5.75-6.05占比最大.解题技巧(绘制频率分布直方图的注意事项)1.在列频率分布表时,极差、组距、组数有如下关系: (1)若极差组距为整数,则极差组距=组数;(2)若极差组距不为整数,则极差组距的整数部分+1=组数.2.组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,纵使数据的分布规律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为5~12组,一般样本容量越大,所分组数越多.跟踪训练一1. 某制造商3月份生产了一批乒乓球,随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下表:补充完成频率分布表(结果保留两位小数),并在下图中画出频率分布直方图.【答案】见解析.【解析】频率分布表如下:频率分布直方图如下:题型二频率分布直方图中的相关计算问题例2 在某次数学测验后,将参加考试的500名学生的数学成绩制成频率分布直方图(如图),则在该次测验中成绩不低于100分的学生人数是()A.210B.205C.200D.195【答案】C【解析】由频率分布直方图,得在该次测验中成绩不低于100分的学生的频率为1-(0.012+0.018+0.030)×10=0.4,∴在该次测验中成绩不低于100分的学生人数为500×0.4=200.故选C. 解题技巧 (计算规律) 1.因为小长方形的面积=组距×频率组距=频率,所以各小长方形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.2.在频率分布直方图中,各小长方形的面积之和等于1.3.频数相应的频率=样本量.4.在频率分布直方图中,各长方形的面积之比等于频率之比,各长方形的高度之比也等于频率之比.跟踪训练二1.如图所示是由总体的一个样本绘制的频率分布直方图,且在[15,18)内频数为8.(1)求样本在[15,18)内的频率; (2)求样本量;(3)若在[12,15)内的小矩形面积为0.06,求在[18,33)内的频数. 【答案】(1) 425. (2) 50. (3) 39.【解析】 由样本频率分布直方图可知组距为3.(1)由样本频率分布直方图得样本在[15,18)内的频率等于475×3=425. (2)样本在[15,18)内的频数为8,由(1)可知,样本量为8425=8×254=50.(3)在[12,15)内的小矩形面积为0.06,故样本在[12,15)内的频率为0.06,故样本在[15,33)内的频数为50×(1-0.06)=47.又因为在[15,18)内的频数为8,故在[18,33)内的频数为47-8=39.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本197页练习.【教学反思】本节课之前学生已有一定的统计学基础知识及分析问题和解决问题的能力,对常见的数学思想已有初步的认识和应用。
人教A版高中数学必修第二册 921第1课时频率分布直方图 教学设计

9.2.1 总体取值规律的估计教学设计第1课时频率分布直方图本节是主要介绍表示样本分布的方法,包括频率分布表、频率分布直方图、条形图、扇形图、折线图等.由于作统计图、表的操作性很强,所以教学中要使学生在明确图、表含义的前提下,让学生自己动手作图.同时让学生理解:对于一个总体的分布,我们往往从总体抽取一个样本,用样本的频率分布估计总体分布. 学生在初中已经学过把样本数据表示成频数分布表和频数分布图的形式,能从图表上直观的看出数据的分布情况,为学习本节内容在基础知识上有了铺垫。
课程目标1.结合实例,能用样本估计总体的取值规律.2.会列频率分布表,画频率分布直方图.3.能根据频率分布表和频率分布直方图观测数据的分布规律.数学学科素养1.直观想象:频率分布直方图的绘制与应用;2.数学运算:频率分布直方图中的相关计算问题.重点:①列频率分布表,画频率分布直方图;②根据频率分布表和频率分布直方图观测数据的分布规律.难点:①列频率分布表,画频率分布直方图;②根据频率分布表和频率分布直方图观测数据的分布规律.教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、 情景导入我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a 的部分按平价收费,超出a 的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a 定为多少比较合理呢?你认为为了较为合理地确定出这个标准需要做哪些工作? 要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、预习课本,引入新课阅读课本192-197页,思考并完成以下问题1、画频率分布直方图的步骤有哪些?2、频率分布直方图的纵轴表示什么?各矩形面积之和等于什么? 要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
数学教材梳理频率分布直方图与折线图

庖丁巧解牛知识·巧学一、关于频率分布直方图的概念由于频率分布表数字较多,阅读困难,为了将频率分布表中的结果直观形象地表示出来,我们通常画频率分布直方图.画图时,应以横轴表示分组,纵轴表示频率与组距的比值。
以每个组距为底,以各频率除以组距的商为高,分别画成矩形,这样得到的直方图就是频率分布直方图.二、关于频率分布直方图的绘制方法频率分布直方图是在频率分布表的基础上绘制而成的,它的前期工作就是准确列出频率分布表,然后在平面直角坐标系中画出频率分布直方图,具体步骤如下:(1)求极差,即计算最大值与最小值的差。
(2)决定组距和组数。
组距与组数的确定没有固定标准,需要尝试、选择,力求有合适的组数,以能把数据的规律较清楚地呈现为准.太多或太少都不好,不利对数据规律的发现.组数应与样本的容量有关,样本容量越大组数越多。
(3)决定分点,将数据分组。
分组时,通常规定分组的区间是“左闭右开”的,避免数据被重复计算.(4)列频率分布表。
一般分“分组”“频数”“频率”三列,最后一行是“合计”。
注意频数的合计应是样本容量,频率合计应是1。
(5)画频率分布直方图。
建立直角坐标系,图中横轴为分组,图中的纵轴表示“频率/组距”。
各组数据以小长方形表示,其中,小长方形的宽为组距,小长方形的高=组距频率,频率=样本容量频率=组距×组距频率=小长方体的面积.各小长方形的面积总和为1。
由此可以看出,直方图中的各小长方形的面积表示相应的各组的频率。
这样频率分布直方图就以面积的形式反映了数据落在各个小组的频率的大小.误区警示 直方图中小长方形的高并不表示各组数据的频率,而是频率与组距之比,小长方形的面积才是各组数据的频率.辨析比较 频率分布表在数量表示上比较确切,但不够直观、形象,分析数据的总体态势不太方便,频率分布直方图形象、直观,与频率分布表相比较,频率直方图能直观地表明数据的分布形状,但原始数据不能在图中表示,说明直方图丢失了一些信息.从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容。
《频率分布直方图》参考教学方案

频率分布直方图1.通过实例体会分布的意义和作用。
2.在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图。
3.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。
4.通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。
5.通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。
【教学重点】会列频率分布表,画频率分布直方图、频率折线图和茎叶图。
【教学难点】能通过样本的频率分布估计总体的分布。
(一)知识回顾(二)新课导入【探究】同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图的形状也会不同。
不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断。
分别以1和0.1为组距重新作图,然后谈谈你对图的印象。
(三)新课讲授连接频率直方图中各小长方形上端中点的折线,叫频率分布折线图。
画一组数据的频率分布直方图,可以按以下的步骤进行:第一步:求极差,即数据中最大值与最小值的差;第二步:决定组距与组数:组距=极差/组数;第三步:分组,通常对组内数值所在区间,取左闭右开区间 , 最后一组取闭区间;第四步:登记频数,计算频率,列出频率分布表;第五步:画出频率分布直方图(纵轴表示频率/组距)。
当样本容量无限增大,分组的组距无限缩小,那么频率分布折线图就会无限接近一条光滑曲线。
总体密度曲线总体密度曲线反映了总体在各个范围内取值的百分比,精确地反映了总体的分布规律。
是研究总体分布的工具。
用样本分布直方图去估计相应的总体分布时,一般样本容量越大,频率分布直方图就会无限接近总体密度曲线,就越精确地反映了总体的分布规律,即越精确地反映了总体在各个范围内取值百分比。
1、茎叶图的概念:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用精品文献资料分享 频率分布直方图和折线图教案 第20课时 频率分布直方图和折线图 【学习导航】 知识网络 学习要求 1.频率分布直方图的作法,频率分布直方图更加直观形象地反映出总体分布的情况; 2.频率分布折线图的作法,优点是反映了数据的变化趋势,如果样本容量足够大,分组的组距足够小,则这条折线将趋于一条曲线,称为总体分布的密度曲线。 【课堂互动】 自学评价 案例1 下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条形图表示. 星 期 一 二 三 四 五 件 数 6 2 3 5 1 累 计 6 8 11 16 17 解 用EXCEL作条形图: (1)在EXCEL工作表中输入数据,光标停留在数据区中; (2)选择“插入/图表”,在弹出的对话框中点击“柱形图”; (3)点击“完成”,即可看到如下频数条形图.
案例2 从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,数据如下(单位:cm)。试作出该样本的频率分布直方图和折线图. 168 165 171 167 170 165 170 152 175 174 165 170 168 169 171 166 164 155 164 158 170 155 166 158 155 160 160 164 156 162 160 170 168 164 174 171 165 179 163 172 180 174 173 159 163 172 167 160 164 169 151 168 158 168 176 155 165 165 169 162 177 158 175 165 169 151 163 166 163 167 178 165 158 170 169 159 155 163 153 155 167 163 164 158 168 167 161 162 167 168 161 165 174 156 167 166 162 161 164 166 【解】上一课时中,已经制作好频率分布表,在此基础上, 我们绘制频率分布直方图. (1)作直角坐标系,以横轴表示身高,纵轴表示 ; (2)在横轴上标上150.5,153.5,156.5,…,180.5表示的点。(为方便起见,起始点150.5可适当前移); (3)在上面标出的各点中,分别以连结相邻两点的线段为底作矩形,高等于该组的 至此,就得实用精品文献资料分享 到了这组数据的频率分布直方图,如下图 0.08 0.06 0.04
0.02 150.5 153.5 156.5 159.5 162.5 165.5 168.5 171.5 174.5 177.5 180.8 同样可以得到这组数据的折线图. 0.08 0.06 0.04
0.02 150.5 153.5 156.5 159.5 162.5 165.5 168.5 171.5 174.5 177.5 180.8 【小结】 1.利用直方图反映样本的频率分布规律,这样的直方图称为频率分布直方图(frequency histogram),简称频率直方图。 2. 频率直方图比频率分布表更直观、形象地反映了样本的分布规律。 3.如果将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图(frequency polygon) 4.频率分布折线图的的首、尾两端如何处理: 取值区间两端点须分别向外延伸半个组距,并取此组距上的x轴上的点与折线的首、尾分别相连 5.如果将样本容量取得足够大,分组的组距取得足够小,则这条折线趋于一条曲线,这一曲线称为总体分布的密度曲线。 6. 频率分布表的优点在于数据明显,利于对总体相应数据的计算或说明;频率分布折线图的优点在于数据的变化趋势直观,易于观察数据分布特征,且与总体分布的密度曲线关系密切;频率分布直方图则两者兼顾但两者皆不足.所以三种分布方法各有优劣,应需要而运用. 【精典范例】 例1 为了了解一大片经济林的生长情况,随机测量其中的100株的底部周长,得到如下数据表(长度单位:cm) 实用精品文献资料分享 135 98 102 110 99 121 110 96 100 103 125 97 117 113 110 92 102 109 104 112 109 124 87 131 97 102 123 104 104 128 105 123 111 103 105 92 114 108 104 102 129 126 97 100 115 111 106 117 104 109 111 89 110 121 80 120 121 104 108 118 129 99 90 99 121 123 107 111 91 100 99 101 116 97 102 108 101 95 107 101 102 108 117 99 118 106 119 97 126 108 123 119 98 121 101 113 102 103 104 108 (1) 编制频率分布表; (2) 绘制频率分布直方图; (3) 估计该片经济林中底部周长小于100cm 的树木约占多少,周长不小于120cm的树木约占多少。 【解】 (1)从表中可以看出,这组数据的最大值为135,最小值为80,故全距为55,可将其分为11组,组距为5。 从第一组 开始,将各组的频数,频率和 填入表中 分 组 频 数 频 率 1 0.01 0.002 2 0.02 0.004 4 0.04 0.008 14 0.14 0.028 24 0.24 0.048 15 0.15 0.030 12 0.12 0.024 9 0.09 0.018 11 0.11 0.022 6 0.06 0.012 2 0.02 0.004 合计 100 1 0.2 (2)绘制频率分布直方图: 0.05 0.04 0.03 0.02 0.01 80 85 90 95 100 105 110 115 120 125 (3)从频率分布表可以看出,该样本中 小于100的频率为: 0.01+0.02+0.04+0.14=0.21, 不小于120的频率为: 0.11+0.06+0.02=0.19 故可估计该片经济树林中底部周长小于100cm的树木约占21%,周长不小于120cm的树木约占19% 追踪训练 1. 在调查某产品尺寸过程中,将其尺寸分成若干组, 是其中的一组.已知该组的频率为 ,该组的直方图的高为 ,则 等于 ( C ) A. B. C. D. 2.有一个容量为50的样本,数据分组及各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),实用精品文献资料分享 11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5),4. (1)列出样本频率分布图表; (2)画出频率分布直方图; (3)画出数据频率折线图. 解: (1)频率分布表为: 分组 累计频数 频数 频率 [12.5,15.5) 3 3 0.06 [15.5,18.5) 11 8 0.16 [18.5,21.5) 20 9 0.18 [21.5,24.5) 31 11 0.22 [24.5,27.5) 41 10 0.20 [27.5,30.5) 46 5 0.10 [30.5,33.5) 50 4 0.08 合计 50 1.00 (2)频率分布直方图为: (3)数据频率折线图为: 3.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示. 根据条形图可得这50名学生这一天平均每天的 课外阅读时间为( B ) A.0.6小时 B.0.9小时 C.1.0小时 D.1.5小时
第5课时6.2.2频率分布直方图和折线图 分层训练 1.下列说法正确的是 ( ) (A) 直方图的高表示取某数的频数 (B) 直方图的高表示该组个体在样本中出现的频率 (C) 直方图的高表示该组个体在样本中出现的频率与组距的比 2.在频率分布直方图中,各个小长方形的面积表示 ( ) (A) 落在相应各组的数据的频数 (B) 相应各组的频率 (C) 该样本所分成的组数 (D) 该样本的样本容量 3.在100个人中,有40个学生,21个干部,29个工人,10个农民,则0.29是工人的( ) (A)频数 (B)频率 (C)累计频率 (D)累计频数 4.对于样本频率分布折线图与总体密度曲线的关系,下列说法中正确的是 ( ) (A)频率分布折线图与总体密度曲线无关 (B)频率分布折线图就是总体密度曲线 (C)样本容量很大的频率分布折线图就是总体密度曲线 (D)如果样本容量无限增大,分组的组距无限减小,那么频率分布折线图就会无限接近于总体密度曲线。 5.在频率分布直方图中,所有矩形的面积和为_____________ 6.200辆汽车通过某一段公路的时速如下图所示,则时速在 的汽车大约有______辆 频率 0.4 0.3 0.2 实用精品文献资料分享 0.1 0 40 50 60 70 80 时速(km) 7.如果将频率分布直方图中各相邻矩形的上底边的中点顺次连接起来,得到的折线,我们称之为这组数据的____________________ 8.如果将样本容量取得足够大,分组的组距足够小,那么频率折线将趋于一条曲线,我们称这条曲线为总体分布的______________________ 思考 运用 9.测得20个毛坯重量(单位:克)如下表: 重量 185 187 192 200 202 频数 1 1 1 2 2 重量 205 206 207 208 210 频数 1 1 2 1 1 重量 214 215 216 218 227 频数 1 2 1 2 1 (1)列出样本频率分布表(含累计频率); (2)画出频率分布直方图
10.有一个容量为50的样本,数据的分组及各组的频数如下: 3 8 9 11 10 5 4 (1)列出样本的频率分布表; (2)画出频率分布直方图 (3)根据频率分布直方图估计,数据落在 的可能性约是多少?