(完整word版)频率分布与直方图练习题.doc
概率频率分布直方图练习题【范本模板】

(1)估计这60名乘客中候车时间少于10分钟的人数;
组别
候车时间
人数
一
2
二
6
三
4
四
2
五
1
(2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
记从“一等品中随机抽取2件,2件等级系数都是8"为事件 ,
则 包含的基本事件有 共3种, ………11分
故所求的概率 . ……………………12分
4、解:(1)共有1400名学生,高二级抽取的人数为 (人)…………3分
(2)“服务满意度为3”时的5个数据的平均数为 ,……………4分
所以方差 ………………7分
组别
达标
不达标
总计
甲班
8
乙班
54
合计
120
7、(本小题满分12分)
对某校高一年级学生参加社区服务次数统计,随机抽去了 名学生作为样本,得到这 名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表如下:
(1)求出表中 的值;
(2)在所取样本中,从参加社区服务的次数不少于 次的学生中任选 人,求至少一人参加社区服务次数在区间 内的概率.
三等品的频率为 ,故估计该厂产品的三等品率为 .………………………6分
(2)样本中一等品有6件,其中等级系数为7的有3件,等级系数为8的有3件,…7分
记等级系数为7的3件产品分别为 、 、 ,等级系数为8的3件产品分别为 、 、 ,则从样本的一等品中随机抽取2件的所有可能为: , , , , , , , , , , , , , 共15种, …………10分
频率分布与直方图练习题

频率分布直方图练习题1.(2009山东卷)某工厂对一批产品进行了抽样检测 •右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品 净重的范围是[96 ,106],样本数据分组为[96,98), [98,100),[100, 102),[102,104),[104,106],已知样本中产品净重小于 100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是 (). A.90B.75C. 60D.452. ( 2011杭州质检)某初一年级有500名同学,将他们的身 高(单位:cm )数据绘制成频率分布直方图(如图),若要 从身高在120,130 , 130,140 ,140,1501三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在130,140内的学生中选取的人数为 ____________ . 3.( 2009湖北卷)下图是样本容量为 200的频率分布直方图。
根据样本的频率分布直方图估计,样本数据落在【 6, 10】内的频数为 _______ ,数据落在(2, 10)内的概 率约为 ____________ 。
(kJ* ■4.(2011华附月考)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1, 0.3, 0.4,第一小组的频数为 5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)估计在这次测试中,学生跳绳次数的中位数、众数、平均数及方差。
5. (2011惠州调研)右图是2010年在惠州市举行的全省运动会上,七位评委为某跳水比赛项 目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩 数据的平均数和方差分别为()A . 84, 4.84B . 84, 1.6C . 85, 1.6D . 85, 46. (2011佛山一检)某班同学利用国庆节进行社会实践,对进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为 低碳族”,否则称为 非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:7. 下图甲是某市对当地干部的月收入情况调查后画出的样本频率分布直方图,图乙已知图甲中从左向右第一组的频数为 4000.在样本中记月收入在[1000,1500), [1500,2000), [2000, 2500) , [2500 , 3000) , [3000, 3500) , [3500 , 4000]的人数依次为 A 「A ?、…、人6・图 乙是统计图甲中月工资收入在一定范围内的人数的算法流程图,则样本的容量n=_;图乙输出的 S= __.(用数字作答) 8•为了了解某地区高三学生的身体发育情况,抽查了该地区(MOD MOOt AA 十~Aj” ............./辅出百/[25,55]岁的人群随机抽取 n 人低碳娱的人数占本组的频率策1组120 0.6第二组1勺5P第三组琢)1000 5[40.45)|:30 4300.3 第六组邓习15D-3图甲(I )补全频率分布直方图并求 n 、a 、 p 的值;(n )略100名年龄为17.5岁〜18岁的男生体重(kg),得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5 , 64.5)的学生人数是 ___________________________9. 某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;…… 第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图•设成绩小于17秒的学生人数占全班总人数的百分比为X,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可分析出x和y分别为_______________ .10. 在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30 日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形高的比为2 :3 :4 : 6:4:1 ,第三组的频数为12,请解答下列问题:(1 )本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?11. 为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2 : 4 : 17 :15 :9 : 3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2 )若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?但具体落到实处应该是一种尊重,一种接人待物的方式方法。
《频数分布表和频数分布直方图》课后练习

《频数分布表和频数分布直方图》课后练习一、选择题:1. 一个容量为80的样本最大值为141,最小值为50,取组距为10, 则可以分成( ).A. 10 组B. 9 组C. 8 组D. 7 组2. 已知在一个样本中,50 个数据分别落在5 个组内, 第一、二、三、五组数据频数分别为2、8、15、5,则第四组数据的频数和频率分别为( )A.25 .50%B. 20 。
50%C. 20.40%D.25.40%3. 下列说法正确的是( )A. 样本的数据个数等于频数之和B. 扇形统计图可以告诉我们各部分的数量分别是多少C. 如果一组数据可以用扇形统计图表示,那么它一定可以用频数分布直方图表示•D. 将频数分布直方图中小长方形上面一边的一个端点顺次连结起来, 就可以得到频数折线图.4. 在1000个数据中,用适当的方法抽取50 个作为样本进行统计,频数分布表中54.5~57.5 这一组的频率为0.12,那么估计总体数据落在54.5~57.5 之间的约有( )A. 120 个B. 60 个C. 12 个D. 6 个5. 在样本的频数分布直方图中,有11个小长方形,若中间一个长方形的面积等于其他10个小长方形面积的和的四分之一,且样本数据有160个,则中间一组的频数为( )A. 0.2B. 32C. 0.25D. 40二、填空题:6. 对某班同学的身高进行统计( 单位:厘米),频数分布表中165.5~170.5 这一组学生人数是12,频率为0.25,则该班共有_____ 名同学.7. 为了帮助班上的两名贫困学生解决经济困难,班上的20 名学生捐出了息的零化钱,他们捐款数如下:( 单位:元) 19,20,25,30,24,23,25, 29,27,27,28,28,26,27,21,30,20,19,22,20. 班主任老师准备将这组数据制成频数分布直方图,以表彰他们的爱心. 制图时先计算最大值与最小值的差是___,若取组距为2,则应分成_______ 组; 若第一组的起点定为18.5. 则在26.5~28.5 范围内的频数为三.解答题:8.2003年中考结束后,某市从参加中考的12000名学生中抽取200名学生的数学成绩(考生得分均为整数,满分120分)进行统计,评估数学考试情况,经过整理得到如下频数分布直方图,请回答下列问题:(1)此次抽样调查的样本容量是____ ;(2)补全频数分布直方图⑶若成绩在72分以上(含72分) 为及格,请你评估该市考生数学成绩的及格率与数学考试及格人数。
频率分布直方图 小练 (含答案)

频率分布直方图小练1.为增强市民的环保意识,某市面向全市增招环保知识义务宣传志愿者.从符合条件的志愿者中随机选取名志愿者,其年龄频率分布直方图如图所示,其中年龄(岁)分成五组:第组,第组,第组,第组,第组.得到的频率分布直方图(局部)如图所示.(1)求第组的频率,并在图中补画直方图;(2)从名志愿者中再选出年龄低于岁的志愿者名担任主要宣讲人,求这名主要宣讲人的年龄在同一组的概率.解析(1)0.3,图见:(1)第4组的频率为.....1分, ............................2分,则补画第4组的直方图如图所示:.............................................4分(2)设“从20名志愿者中再选出年龄低于30岁的志愿者3名担任主要宣讲人, 其年龄均在同一组”为事件A...............................................5分第一组的人数为人第二组的人数为人......................6分设第一组的志愿者为m,第二组的4名志愿者分别为a,b,c,d.......................7分从m, a,b,c,d中选出3名志愿者共有10种选取方法。
.........10分其中都在第二组的共有4种选取方法..........11分所以,所求事件的概率为........................12分2.某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取份,试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在的学生人数为6.(Ⅰ)估计所抽取的数学成绩的众数;(Ⅱ)用分层抽样的方法在成绩为和这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在恰有1人的概率.考点6.统计图表解析解:(Ⅰ)由频率分布直方图可知:样本的众数为75.…………3分(Ⅱ)由频率分布直方图可得:第三组的频率:,所以,…………………………………………4分第四组的频数:;第五组的频数:;用分层抽样的方法抽取5份得:第四组抽取:;第五组抽取:.……7分记抽到第四组的三位同学为,抽到第五组的两位同学为则从5个同学中任取2人的基本事件有:,,共10种.其中分数在恰有1人有:,共6种.所求概率:.……………………………12分3.某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间,将统计结果分成组:,,,,,绘制成如图所示的频率分布直方图.(Ⅰ)求直方图中的值;(Ⅱ)求续驶里程在的车辆数;(Ⅲ)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程为的概率.考点6.统计图表解析解:(Ⅰ)由直方图可得:∴.------------------3分(Ⅱ)由题意可知,续驶里程在的车辆数为:------------------5分(Ⅲ)由(Ⅱ)及题意可知,续驶里程在的车辆数为,分别记为,续驶里程在的车辆数为,分别记为,设事件“其中恰有一辆汽车的续驶里程为”----------------------7分从该辆汽车中随机抽取辆,所有的可能如下:共种情况,----------------10分事件包含的可能有共种情况,则.------------------12分4.某中学高三(1)班共有50名学生,他们每天自主学习的时间在180到330分钟之间,将全班学生的自主学习时间作分组统计,得其频率分布如下表所示:组序分组频数频率第一组[180,210)50.1第二组[210,240)100.2第三组[240,270)120.24第四组[270,300)a b第五组[300,330)6c(1)求表中a、b、c的值;(2)某课题小组为了研究自主学习时间与成绩的相关性,需用分层抽样的方法从这50名学生中随机抽取20名作统计分析,则在第二组学生中应抽取多少人?(3)已知第一组学生中有3名男生和2名女生,从这5名学生中随机抽取2人,求恰好抽到1名男生和1名女生的概率.某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间。
高二数学频率分布直方图练习题

高二数学频率分布直方图练习题在高二数学学习中,频率分布直方图是一个重要的概念和工具。
它能够帮助我们直观地了解数据的分布情况,并能够进行一些有关数据分析的操作。
下面是一些高二数学频率分布直方图练习题,希望能对同学们的学习有所帮助。
1. 一家超市通过调查了解到顾客每天购买的饮料数量,数据如下:2, 3, 2, 4, 1, 2, 4, 2, 3, 2, 1, 3, 2, 1, 2, 4, 2, 3, 2, 1根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。
2. 某班级同学们的体重数据如下:52, 55, 53, 57, 54, 56, 55, 51, 58, 60, 59, 62, 63, 64, 61, 56, 55, 54, 57, 59根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。
3. 某城市某月份的降水量数据如下:20, 15, 18, 22, 17, 19, 23, 16, 21, 20, 15, 20, 19, 23, 20, 18, 16, 22, 19, 17根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。
4. 下面是一组学生在一次月考中的数学成绩数据:90, 85, 78, 92, 88, 79, 81, 85, 86, 90, 84, 88, 92, 89, 77, 82, 84, 87, 91, 83根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。
5. 某工厂生产了一批产品,产品的重量数据如下:2.5, 2.7, 2.8, 2.6, 2.9, 2.7, 2.6, 2.8, 2.7, 2.6, 2.8, 2.7, 2.5, 2.8, 2.6, 2.9根据以上数据绘制频率分布直方图,并确定众数、中位数、均值。
以上是几道关于频率分布直方图的练习题。
通过解决这些题目,我们可以巩固对频率分布直方图的理解和应用,提高数据分析的能力。
在实际问题中,频率分布直方图也可以用来对比不同数据集的分布情况,帮助我们做出更好的决策。
七年级数学频数分布表和频数分布直方图练习题

图3数学: 12.3频数分布表和频数分布直方图一、选择题1、( 0 7 湖州)如图1是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是( ) A.该班总人数为50人 B.步行人数为30人C.骑车人数占总人数的20%D.乘车人数是骑车人数的2.5倍2、(08温州)体育老师对九年级(1)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成频数分布直方图(如图2).由图可知,最喜欢篮球的频率是( )A .二、解答题3、 (07义乌) 每年的6月6日是全国的爱眼日,让我们行动起来,爱护我们的眼睛!某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查,下图3是利用所得数据绘制的频数分布直方图(视力精确到0.1).请你根据此图提供的信息,回答下列问题: (1)本次调查共抽测了 名学生;(2)视力在4.9及4.9以上的同学约占全校学生比例为多少?步行 30%乘车50%骑车 图1图2(3)如果视力在第1,2,3组范围内(视力在4.9以下)均属视力不良,应给予治疗、矫正.请计算该校视力不良学生约有多少名?4、(08宁德)“五一”期间,新华商场贴出促销海报,内容如图4.在商场活动期间,统计了200人次的摸奖情况,绘制成如图5(1)补齐频数分布直方图;(2)求所调查的200人次摸奖的获奖率;(3)若商场每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元?图4 购物券人次图55、(08湛江)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题.(1) 指出这个问题中的总体.(2) 求竞赛成绩在79.5~89.5这一小组的频率.(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.6、(08西宁)中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有50名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A B C D ,,,四等,并绘制成下面的频数分布表(注:6~7的意义为大于等于6分且小于7分,其余类似)和扇形统计图(如图9).频数分布表等级 分值 跳绳(次/1分钟) 频数A9~10 150~170 48~9 140~150 12 B 7~8 130~140 176~7 120~130 mC 5~6 110~120 04~5 90~110 nD3~4 70~90 1 0~3 0~70 0(1)求m n ,的值;(2)在抽取的这个样本中,请说明哪个分数段的学生最多?请你帮助老师计算这次1分钟跳绳测试的及格率(6分以上含6分为及格).7、(08湘潭市)某县七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解6图8图9本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计:请你根据不完整的频率分布表. 解答下列问题: (1)补全频率分布表; (2)补全频数分布直方图;(3)若将得分转化为等级,规定得分低于59.5分评为“D ”,59.5~69.5分评为“C ”,69.5~89.5分评为“B ”,89.5~100.5分评为“A ”,这次15000名学生中约有多少人评为“D ”?如果随机抽取一名参赛学生的成绩等级,则这名学生的成绩评为“A ”、“B ”、“C ”、“D ”哪一个等级的可能性大?请说明理由.8、(08常州)为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行,并画了部分频数分布直方图(图、表如下):cm)成绩(分) 图10图11根据以上图表,回答下列问题:(1)M=_______,m=_______,N=_______,n=__________; (2)补全频数分布直方图.9、(08泰州)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________; (2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?10、(08台州)八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A B C D E,,,,五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家图12务的时间,制作成如下的频数分布表和扇形统计图.(1)求的值;(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.B AE DC 40% (第22题)学生帮父母做家务活动评价等级分布扇形统计图参考答案1、B ;2、D ;3、解:(1)由条形统计图可得,本次调查共抽测学生人数为:10+20+30+40+60=160 (2)视力在4.9及4.9以上的人数为40+20=60(人),所占的比例为:6031608= (3)视力在第1,2,3组的人数在样本中所占的比例为10051608=. ∴该校视力不良学生约有5200012508⨯=(人).4、解:⑴获得20元购物劵的人次:200-(122+37+11)=30(人次). 补齐频数分布直方图,如图所示:⑵摸奖的获奖率:%39%1002078=⨯.⑶675.6200501120305370122=⨯+⨯+⨯+⨯=x .6.675×2000=13350(元)估计商场一天送出的购物券总金额是13350元.5、 解: (1) 总体是某校2000名学生参加环保知识竞赛的成绩.(2)15150.256912151860==++++答:竞赛成绩在79.5~89.5这一小组的频率为0.25.(3)9200030069121518⨯=++++ 答:估计全校约有300人获得奖励.6、解:(1)根据题意,得50(412171)16m n +=-+++=;171006450m+⨯=%%. 则161732m n m +=⎧⎨+=⎩①②购物券人次30解之,得151m n =⎧⎨=⎩(2)7~8分数段的学生最多及格人数412171548=+++=(人),及格率481009650=⨯=%% 答:这次1分钟跳绳测试的及格率为96%. 7. 解:(1)略; (2)略 ;(3)150000.05750⨯=(人) B 的频率为0.20.310.51+=,大于A 、C 、D 的频率,故这名学生评为B 等的可能性最大.8、略9、(1)a=8,b=12,c=0.3.(每对一个给1分) (2)略(3)算出样本中噪声声级小于75dB 的测量点的频率是0.3 0.3×200=60∴在这一时噪声声级小于75dB 的测量点约有60个. 10、略。
八年级数学-频数分布表与直方图练习题(含解析)

八年级数学-频数分布表与直方图练习题(含解析)1.考察50名学生的年龄,列频数分布表时,这些学生的年龄落在了5个小组中,第一、二、三、五组的数据个数分别是2,8,15,5,则第四组的频数是( A )A.20 B.10 C.15 D.30解析:∵第一、二、三、五组的数据个数分别是2,8,15,5,∴第四组的频数是50-(2+8+15+5)=20.故选A.2.为了绘制频数分布直方图,先要对数据分组,若一个样本的容量为80,最大值为141,最小值为50,取组距为10,则可以分成( A )A.10组 B.9组 C.8组 D.7组解析:141-50=9191÷10=9.1,9.1>9,∴分成10组.故选A.3.在频数分布直方图中,小长方形的高( C )A.与频数成正比B.是该组的频率C.是该组对应的频数D.是该组的组距解析:由作图可知.故选C.4.赵老师想了解本校“生活中的数学”知识大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有27人.100份“生活中的数学”知识大赛试卷的成绩频数分布直方图解析:由题可知,成绩在89.5~109.5分数段的学生有24人,成绩在109.5~129.5分数段的学生有3人,所以成绩不低于90分的学生共有24+3=27(人).5.将50个数据分成五组,列出频数分布表,其中第一小组的频数为6,第二小组与第五小组的频数之和为20,那么第三小组和第四小组的频数之和为24.解析:50-6-20=24.6.为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”.学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分.本次决赛,学生成绩为x(分),且50≤x<100,将其按分数分为五组,绘制出以下不完整表格:组别成绩x/分频数频率一50≤x<6020.04二60≤x<70100.2三70≤x<8014b四80≤x<90 a 0.32五90≤x<10080.16(1)本次决赛共有50名学生参加;(2)直接写出表中a=16,b=0.28;(3)请补全如图所示的频数分布直方图;解:补全的频数分布直方图如图所示.(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48%.7.为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别/m频数1.09~1.1981.19~1.29121.29~1.39a1.39~1.4910(1)求a的值,(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29 m(含1.29 m)以上的人数.解:(1)a=50-8-12-10=20,某校九年级50名学生跳高测试成绩的频数直方图20+10 50=300(人).(2)该年级学生跳高成绩在1.29 m(含1.29 m)以上的人数是500×。
2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习(附答案)

2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习一、选择题1、一组数据的最大值与最小值之差为80,若取组距为9,则分成的组数应是( ) A. 7 B. 8 C. 9 D. 102、一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分 ( )A.10组 B.9组 C.8组 D.7组3、现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的为 ( ) A. 9 B. 12 C. 15 D. 184、某棉纺厂为了了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x (单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x <32这个范围的频率为( )棉花纤维长度x频数 0≤x <8 1 8≤x <16 2 16≤x <24 8 24≤x <32 6 32≤x <403A.0.8 B .0.7 C .0.4 D .0.25、小杰调查了本班同学的体重情况,画出频数直方图如图所示,下列结论中,错误的是( )A. 全班总人数为45人B. 体重在50~55 kg 的人数最多C. “45~50 kg ”这一组的频率比“60~65 kg ”这一组的大0.1D. 体重在60~65 kg 的人数占全班总人数的196、某一组数据中,已知最大值是84,最小值是52,若分成6组,且组距为整数,某组组中值为72.5,则这组数据可能是( )A. 51.5~57.5B. 69.5~75.5C. 68.5~76.5D. 70.5~74.57、为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图. 若25次为及格,则及格人数占总人数的( )A. 56.7%B. 90%C. 16.7%D. 33.3%8、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.260二、填空题9、一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果取组距为3,那么应分成 组10、有30个数据,其中最大值为40,最小值为15,若取组距为4,则应该分成 组11、有一个含有50个数据的数据组,已知最小数据是15,最大数据是45,且各数据都是整数,则这50个数据分为8组时,组距是________;若第1组的下限为14.5,则其上限为________,最末一组的上限为________.12、阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取若干名学生进行调查,并依据调査结果绘制了如下不完整的统计表.则表中的a=____.组别时间/时频数(人)频率A 0≤t≤0.560.15B 0.5≤t≤1 a 0.313、某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数分布表(部分)如下:项目 乒乓球 羽毛球 篮球 足球频数 80 50百分比 40% 25% m则表格中m的值为14、某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示,则a= .组号 分组 频数一 6≤m<7 2二 7≤m<8 7三 8≤m<9 a四 9≤m≤10 215、一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为 组16、小丽抽样调查了学校40名同学的体重(均精确到1kg),绘制了如图频数分布直方图,那么在该样本中体重不小于55kg的频率是 .17、某地区中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是 人.组别 立定跳远 坐位体前屈 实心球 一分钟跳绳频率 0.4 0.35 0.1 0.1518、空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为 %.19、将100个数据分成①~⑧组,如表所示:编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧频数 4 8 12 24 18 7 3那么第④组的频数为 .20、若小明统计了他家12月份打电话的通话时长,并列出频数分布表,则通话时长不超过10min的频率是 .通话时长 x/min 0<x≤5 5<x≤10 10<x≤15 x>15频数(通话次数)20 16 20 4三、解答题21、体育委员统计了全班同学60s跳绳的次数,并列出频数表如下:次数 60≤x<80 80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180频数 2 4 21 13 8 4 (1)全班共有多少名学生?(2)组距是多少?组数是多少?(3)跳绳次数在120≤x<160范围内的学生有多少?22、每年的6月6日是全国爱眼日.某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查.如图所示为利用所得的数据绘制的频数直方图(长方形的高表示该组人数).请你根据图中提供的信息,回答下列问题:(1)本次调查共抽测了____名学生.(2)在这个问题中,样本是指_____________________.(3)视力在4.85~5.15这一组内的频数是_______.(4)如果视力小于4.85均属视力不良,那么该校约有_________名学生的视力不良,应给予治疗、矫正.23、为了了解某地九年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数直方图,请结合图形解答下列问题:(1)这个问题中的总体是 ;(2)竞赛成绩在84.5~89.5分这一小组的频率是 ;(3)若竞赛成绩在90分以上(含90分)的同学可以获得奖励,则估计该地获得奖励的九年级学生约有________人.24、在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频数直方图如下图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12.请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件,2件作品获奖,问:这两组哪一组获奖率较高?25、在开展“经典阅读”活动中,某校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计图表.根据图表信息回答下列问题:(1)填空:a=____,b=____,m=____,n=____.(2)将频数直方图补充完整.(3)若该校有3000名学生,请根据上述调查结果,估计该校学生一周的课外阅读时间不足3 h的人数.26、为了让地震受灾的儿童得到救助,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次调查样本的容量是 ;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区共有1000户住户参与捐款,请根据以上信息估计,全社区捐款不少于300元的户数是 户.27、为了了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘制成如图所示的频数直方图,已知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:(1)图中a的值为____.(2)绘制扇形统计图时,成绩x在“70≤x<80”范围内所对应扇形的圆心角的度数为____.(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀”的学生大约有____人.28、为庆祝中华人民共和国成立70周年,郑州市某校组织八年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校八年级学生进行抽样调查,根据所得数据绘制出如下统计图表根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E的圆心角度数是 ;(3)请补全频数分布直方图;(4)已知该校八年级共有学生400人,请估计身高在160≤x<170的学生约有多少人?参考答案一、选择题1、一组数据的最大值与最小值之差为80,若取组距为9,则分成的组数应是( C )A. 7B. 8C. 9D. 102、一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分 ( A )A.10组 B.9组 C.8组 D.7组3、现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的为 ( B )A. 9B. 12C. 15D. 184、某棉纺厂为了了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这个范围的频率为(A)棉花纤维长度x 频数0≤x<8 18≤x<16 216≤x<24824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.25、小杰调查了本班同学的体重情况,画出频数直方图如图所示,下列结论中,错误的是(C )A. 全班总人数为45人B. 体重在50~55 kg 的人数最多C. “45~50 kg ”这一组的频率比“60~65 kg ”这一组的大0.1D. 体重在60~65 kg 的人数占全班总人数的19 【解】 8+10+14+8+5=45(人),故A 选项正确. 体重在50~55 kg 的人数有14人,最多,故B 选项正确. “45~50 kg ”这一组的频率是10÷45=29, “60~65 kg ”这一组的频率是5÷45=19, 29-19=19≠0.1,故C 选项错误.5÷45=19,故D 选项正确. 故选C.6、某一组数据中,已知最大值是84,最小值是52,若分成6组,且组距为整数,某组组中值为72.5,则这组数据可能是( B ) A. 51.5~57.5 B. 69.5~75.5 C. 68.5~76.5 D. 70.5~74.57、为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图. 若25次为及格,则及格人数占总人数的( A )A. 56.7%B. 90%C. 16.7%D. 33.3%8、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.260【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.二、填空题9、一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果取组距为3,那么应分成 4 组10、有30个数据,其中最大值为40,最小值为15,若取组距为4,则应该分成 7 组11、有一个含有50个数据的数据组,已知最小数据是15,最大数据是45,且各数据都是整数,则这50个数据分为8组时,组距是________;若第1组的下限为14.5,则其上限为________,最末一组的上限为________.[解析] 45-15=30,3<30÷8<4,∴组距应为4.若第1组的下限为14.5,则其上限为14.5+4=18.5;最末一组的上限为14.5+4×8=14.5+32=46.5.[答案] 418.546.512、阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取若干名学生进行调查,并依据调査结果绘制了如下不完整的统计表.则表中的a=____.组别时间/时频数(人)频率A 0≤t≤0.560.15B 0.5≤t≤1 a 0.3【解析】∵被调查的总人数为6÷0.15=40(人),∴B组的人数为40×0.3=12(人),即a=12.13、某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数分布表(部分)如下:项目 乒乓球 羽毛球 篮球 足球频数 80 50百分比 40% 25% m则表格中m的值为 10%14、某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示,则a= 9 .组号 分组 频数一 6≤m<7 2二 7≤m<8 7三 8≤m<9 a四 9≤m≤10 215、一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为 8 组16、小丽抽样调查了学校40名同学的体重(均精确到1kg),绘制了如图频数分布直方图,那么在该样本中体重不小于55kg的频率是 .【解答】解:观察直方图可知:因为该样本中体重不小于55kg的频数为:9+5+2=16,所以该样本中体重不小于55kg的频率是0.4.故答案为:0.4.17、某地区中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是 人.组别 立定跳远 坐位体前屈 实心球 一分钟跳绳频率 0.4 0.35 0.1 0.15【解答】解:∵频率,∴频数=频率×总数=0.35×40=14人.故答案为14.18、空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为 %.【解答】解:空气质量类别为优和良的天数占总天数的百分比为100%=80%, 故答案为:80.19、将100个数据分成①~⑧组,如表所示:编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧频数 4 8 12 24 18 7 3那么第④组的频数为 24.【解答】解:由题意可得,第④组的频数为:100﹣4﹣8﹣12﹣24﹣18﹣7﹣3=24,故答案为:24.20、若小明统计了他家12月份打电话的通话时长,并列出频数分布表,则通话时长不超过10min的频率是 0.6 .通话时长 x/min 0<x≤5 5<x≤10 10<x≤15 x>15频数(通话次数)20 16 20 4三、解答题21、体育委员统计了全班同学60s跳绳的次数,并列出频数表如下:次数 60≤x<80 80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180频数 2 4 21 13 8 4 (1)全班共有多少名学生?(2)组距是多少?组数是多少?(3)跳绳次数在120≤x<160范围内的学生有多少?解:(1)全班共有2+4+21+13+8+4=52(名)学生.(2)组距是80-60=20次,组数是6.(3)跳绳次数在120≤x<160范围内的学生有13+8=21(人).22、每年的6月6日是全国爱眼日.某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查.如图所示为利用所得的数据绘制的频数直方图(长方形的高表示该组人数).请你根据图中提供的信息,回答下列问题:(1)本次调查共抽测了__160__名学生.(2)在这个问题中,样本是指__160名学生的视力情况__.(3)视力在4.85~5.15这一组内的频数是__40__.(4)如果视力小于4.85均属视力不良,那么该校约有__1250__名学生的视力不良,应给予治疗、矫正.23、为了了解某地九年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数直方图,请结合图形解答下列问题:(1)这个问题中的总体是 ;(2)竞赛成绩在84.5~89.5分这一小组的频率是 ;(3)若竞赛成绩在90分以上(含90分)的同学可以获得奖励,则估计该地获得奖励的九年级学生约有________人.解(1)某地九年级学生参加消防知识竞赛的成绩(2)=0.32.(3)该地九年级获得奖励的人数约是(13+7)÷1%=2000(人)24、在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频数直方图如下图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12.请解答下列问题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件,2件作品获奖,问:这两组哪一组获奖率较高?【解】 (1)12÷42+3+4+6+4+1=60(件).(2)第四组上交的作品数量最多,有12×64=18(件).(3)第四组的获奖率为1018=59,第六组的获奖率为2÷⎝⎛⎭⎫12×14=23=69. ∵59<69,∴第六组获奖率较高.25、在开展“经典阅读”活动中,某校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计图表.根据图表信息回答下列问题:(1)填空:a =____,b =____,m =____,n =____. (2)将频数直方图补充完整.(3)若该校有3000名学生,请根据上述调查结果,估计该校学生一周的课外阅读时间不足3 h 的人数.【解】 (1)∵b =18÷0.12=150,∴n =36÷150=0.24,∴m =1-0.12-0.3-0.24-0.14=0.2,∴a=0.2×150=30.(2)补全频数直方图如解图中斜纹所示.(3)3000×(0.12+0.2)=960.答:估计该校学生一周的课外阅读时间不足3 h的人数为960.26、为了让地震受灾的儿童得到救助,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次调查样本的容量是 ;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区共有1000户住户参与捐款,请根据以上信息估计,全社区捐款不少于300元的户数是 户.解:(1)B组捐款户数是10,则A组捐款户数为10×=2,样本容量为(2+10)÷(1﹣8%﹣40%﹣28%)=50.(2)统计表C、D、E 组的户数分别为20,14,4.组别 捐款额(x)元 户数A 1≤x<50 aB 100≤x<200 10C 200≤x<300 20D 300≤x<400 14E x≥400 4(3)估计全社区捐款不少于300元的户数是1000×(28%+8%)=360(户).27、为了了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘制成如图所示的频数直方图,已知成绩x(单位:分)均满足“50≤x <100”.根据图中信息回答下列问题: (1)图中a 的值为____.(2)绘制扇形统计图时,成绩x 在“70≤x <80”范围内所对应扇形的圆心角的度数为____. (3)此次比赛共有300名学生参加,若将“x ≥80”的成绩记为“优秀”,则获得“优秀”的学生大约有____人.【解】 (1)a =30-(2+12+8+2)=6,故a =6.(2)成绩x 在“70≤x <80”范围内所对应扇形的圆心角的度数为360°×1230=144°. (3)获得“优秀”的学生大约有300×8+230=100(人).28、为庆祝中华人民共和国成立70周年,郑州市某校组织八年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校八年级学生进行抽样调查,根据所得数据绘制出如下统计图表根据图表提供的信息,回答下列问题: (1)这次抽样调查,一共抽取学生 人; (2)扇形统计图中,扇形E 的圆心角度数是 ;(3)请补全频数分布直方图;(4)已知该校八年级共有学生400人,请估计身高在160≤x<170的学生约有多少人?【解答】解:(1)这次抽样调查,一共抽取学生4÷10%=40(人);(2)扇形统计图中,扇形E的圆心角度数是36054°,故答案为:40;54°;(3)身高在160≤x<170的人数为:40×20%=8人,补全频数分布直方图如图所示;(4)400×45%=180(人),答:估计身高在160≤x<170的学生约有180人.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率分布直方图练习题
1.(2009 山东卷 )某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的
产品净重(单位:克)数据绘制的频率分布直方图,其中产品频率 /组距净重的范围是[96 , 106] ,样本数据分组为 [96 ,98), [98,100),
0.150
0.125
[100 , 102), [102 ,104),[104 , 106], 已知样本中产品净重小于x
100 克的个数是 36,则样本中净重大于或等于98 克并且0.075 0.050
小于 104 克的产品的个数是( ).
A.90
B.75
C. 60
D.45 96 98 100 102 104 106 克
2.( 2011 杭州质检)某初一年级有500 名同学,将他们的身
高(单位: cm)数据绘制成频率分布直方图(如图),若要
从身高在 120,130 , 130,140 , 140,150 三组内的学
生中,用分层抽样的方法选取30 人参加一项活动,则从身
高在 130,140 内的学生中选取的人数为.
3(. 2009 湖北卷)下图是样本容量为200 的频率分布直方图。
根据样本的频率分布直方图估计,样本数据落在【6, 10】
内的频数为,数据落在( 2,10)内的概
率约为。
4(. 2011 华附月考)为了了解小学生的体能情况,
抽取了某小学同年级部分学生进行跳绳测试,将
所得数据整理后,画出频率分布直方图如图所
示,已知图中从左到右前三个小组的频率分别是
0.1, 0.3, 0.4,第一小组的频数为 5.
(1)求第四小组的频率;
(2)参加这次测试的学生人数是多少?
(3)估计在这次测试中,学生跳绳次数的中位数、众数、平均数及方差。
5.(2011 惠·州研 )右是 2010 年在惠州市行的全省运会上,七位委某跳水比目打出的分数的茎叶,去掉一个最高分和一个最低分后,所剩
数据的平均数和方差分()
A . 84, 4.84 B. 84, 1.6
C. 85, 1.6 D. 85, 4 79
8 4 4 6 4 7
9 3
6. 2011
佛山一)某班同学利用国行社会践,[25,55]
的人群随机抽取 n 人
(
行了一次生活是否符合低碳念的,若生活符合低碳念的称“低碳族”,否称“非低碳族”,得到如下表和各年段人数率分布直方:
(Ⅰ)全率分布直方并求n 、 a 、p的;(Ⅱ)略
7.下甲是某市当地干部的月收入情况后画出的本率分布直方,
已知甲中从左向右第一的数4000.在本中月收入在[1000,1500),[1500 ,2000),[2000,2500),[2500,3000),[3000 ,3500),[3500,4000]的人数依次 A 1、A 2、⋯、A 6.乙是甲中月工收入在一定范内的人数的算法流程,本的容量n= _________ ;乙出的 S= _________ .(用数字作答)
8.了了解某地区高三学生的身体育情况,抽了地区
100 名年 17.5 ~ 18 的男生体重( kg),得到率分
布直方如下:根据上可得100 名学生中体重在[ 56.5,
64.5)的学生人数是.
9.某班 50 名学生在一次百米中,成全部介于13 秒与19 秒之,将果按如下方式分成六:第一,成
大于等于13 秒且小于14 秒;第二,成大于等于14 秒且小于 15 秒;⋯⋯第六,成大于等于18 秒且小于等于 19 秒 .右是按上述分方法得到的率分布直方.
成小于17 秒的学生人数占全班人数的百分比x, 成大于等于15 秒且小于17 秒的学生人数y,从率
分布直方中可分析出x 和 y 分.
10.在学校开展的合践活中,某班行了小制作比,作品上交 5 月 1 日至 30 日,委会把同学上交作品的件数按 5 天一分,
制了率分布直方(如所示),已知从左到右各方形高的
比
2∶ 3∶ 4∶ 6∶ 4∶ 1,第三的数12,解答下列:
(1)本次活共有多少件作品参加比?
(2)哪上交的作品数量最多?有多少件?
(3)比,第四和第六分有10 件、 2 件作品,两哪率高?
11.了了解高一学生的体能情况,某校抽取部分学生
行一分跳次数,将所得数据整理后,画出
率分布直方(如所示),中从左到右各小方形
面之比2∶ 4∶ 17∶ 15∶ 9∶ 3,第二小数12. (1)第二小的率是多少?本容量是多少?
(2)若次数在 110 以上(含 110 次)达,估学校全体高
一学生的达率是多少?。