频率分布直方图考试题知识分享

合集下载

频率分布直方图考试题

频率分布直方图考试题

频率分布直方图北鲲五班练习题1.用样本估计总体,下列说法正确的是()A.样本的结果就是总体的结果B.样本容量越大,估计就越精确C.样本的标准差可以近似地反映总体的平均状态D.数据的方差越大,说明数据越稳定2.一支田径队有男队员56人,女队员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本,则应抽取男队员的人数为()A.12 B.14 C.16 D.183.某学校有教职工共160人,其中有教师104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,则在20人的样本中应抽取后勤人员的人数为( )A. 3B. 4C. 5D. 64.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.为了了解该单位职工的健康情况,决定采用分层抽样的方法,从中抽取容量为15的样本.则从上述各层中依次抽取的人数分别是()A. 8,4,3B. 6,5,4C. 7,5,3D. 8,5,25. 某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距抽取样本,将全体会员随机按1~200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第1组至第3组抽出的号码依次是()A. 3,8,13B. 2,7,12C. 3,9,15D. 2,6,126.一个容量为n的样本,分成若干组,已知某组的频数和频率分别是40,0.125,则n的值为A. 640B.320C.240D. 1607.个容量为32的样本,已知某组样本的频率为0.125,则该组样本的频数为.A. 2B. 4C. 6D. 8 ( )8.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为( )A.45,75,15B. 45,45,45C.30,90,15D. 45,60,309.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别各抽取的人数是( )A. 6,12,18B. 7,11,19C. 6,13,17D. 7,12,1710.某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用的抽样方法是( ).A.简单随机抽样法B.系统抽样法C.分层抽样法D.抽签法11.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2 :3 :5.现用分层抽n样方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么此样本的容量12.某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人,为了解普通话在该校教师中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70人的样本进行普通话水平测试,其中不到40岁的教师中应抽取的人数是___________.13.在某次学生考试的成绩中随机抽取若干学生的成绩,分组与各组的频数如下:[40,50),4;[50,60),1;[60,70),10;[70,80),11;[80,90),18;[90,100),6,估计本次考试的及格率为__________ . 14.把容量是100的样本分成8组,从第1组到第4组的频数分别是15,17,11,13,第5组到第7组的频率之和是0.32,那么第8组的频率是.15.《中华人民共和国道路交通安全法》 规定:车辆驾驶员血液酒精浓度在20~80 mg/100mL (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100mL (含80)以上时,属醉酒驾车。

作业-11.10-频率分布直方图

作业-11.10-频率分布直方图

作业-11.10-频率分布直方图一、单选题1.耀华中学全体学生参加了主题为“致敬建党百年,传承耀华力量”的知识竞赛,随机抽取了400名学生进行成绩统计,发现抽取的学生的成绩都在50分至100分之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示,下列说法正确的是()A.直方图中x的值为0.004B.在被抽取的学生中,成绩在区间[70,80)的学生数为30人C.估计全校学生的平均成绩为84分D.估计全校学生成绩的样本数据的80%分位数约为93分二、多选题三、填空题四、解答题3.为了解学生的周末学习时间(单位:小时),高一年级某班班主任对该班40名学生某周末的学习时间进行了调查,将所得数据按照[0,4),[4,8),[8,12),[12,16),[16,20]分成5组.得到的频率分布直方图如图所示.(1)求该班学生该周末的学习时间不少于8小时的人数;(2)试估计这40名同学该周末学习时间的平均数.(同一组中的数据用该组区间的中点值为代表)4.冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行.为了弘扬奥林匹克精神,增强学生的冬奥会知识,广安市某中学校从全校随机抽取50名学生参加冬奥会知识竞赛,并根据这50名学生的竞赛成绩,绘制频率分布直方图(如图所示),.其中样本数据分组区间[40,50),[50,60),,[80,90),[90,100](1)求频率分布直方图中a的值:(2)求这50名学生竞赛成绩的众数和中位数.(结果保留一位小数)5.20名学生某次数学考试成绩(单位:分)的频率分布直方图如图.(1)求频率分布直方图中a的值;50,60中的学生人数;(2)估计总体中成绩落在[)(3)根据频率分布直方图估计20名学生数学考试成绩的众数,中位数;。

高考频率分布直方图知识点

高考频率分布直方图知识点

高考频率分布直方图知识点高考题频率分布直方图知识点在学生的学习生涯中,高考是一个极为重要的里程碑。

为了能在高考中取得好成绩,学生们不仅要掌握各学科的基础知识,还需要熟悉高考题型和考点。

而对于数学科目来说,直方图是高考频率分布的一个重要知识点。

下面将以直方图为主题,讨论其相关知识点。

直方图是一种用来表示数据分布情况的图形。

它由一系列高度不等的矩形组成,每个矩形代表一个数据区间,高度表示该区间内数据的频数或频率。

首先,我们先来了解一下直方图的构成。

直方图的横轴通常表示数据的取值范围,纵轴表示频数或频率。

每个矩形的宽度可以根据数据的分布情况来确定,它们可以等宽也可以不等宽。

矩形的高度则代表了数据的频数或频率。

直方图的制作需要经过以下几个步骤。

首先,根据给定的数据集,将数据按照一定的区间进行分组。

一般来说,划分区间时需要保证每个区间的宽度相等,并且包含足够多的数据点。

然后,统计每个区间内的数据个数或频率,并将其绘制成对应高度的矩形。

最后,根据实际需要,可以给直方图添加标题和坐标轴标签等。

直方图不仅能够展示数据的分布情况,还可以帮助我们观察和分析数据的特征和规律。

通过观察直方图,我们可以了解到数据的集中趋势、离散程度以及异常值等重要信息。

比如,直方图的峰度可以反映数据的分布形态是平坦还是陡峭,而直方图的偏度可以反映数据的偏斜程度。

在考试中,直方图也被广泛应用于频率分布题目中。

考生需要根据给定的数据分布情况,回答一些与直方图相关的问题。

例如,考生可以根据直方图估计数据的平均值、中位数和众数等统计指标。

同时,直方图还可以帮助考生判断数据是否满足正态分布或其他特定分布形态。

此外,在解答与直方图相关的题目时,考生还需要熟悉直方图的性质和特点。

例如,直方图的面积表示数据的频数或频率总和。

而不同的数据分布形态会对直方图的形状产生影响。

当数据分布近似正态分布时,直方图呈现出钟形曲线,对称分布的数据则呈现出对称形状的直方图。

概率专题:频率分布直方图

概率专题:频率分布直方图
为小区服务,这样的话小区住户满意度会高一些.
例 8.某校在一次期末数学测试中,为统计学生的考试情况,从学校的 2000 名学生中随机抽取 50 名学生的
考试成绩,被测学生成绩全部介于 65 分到 145 分之间(满分 150 分)
,将统计结果按如下方式分成八组:
第一组[65,75)
,第二组[75,85),……第八组[135,145],如图是按上述分组方法得到的频率分布直方
区住户的满意度等级为不满意的概率大?若是要选择一个物业公司来管理老旧小区的物业,从满意度角
度考虑,应该选择哪一个物业公司?说明理由.
【解析】解:(Ⅰ)作出如图所示的频率分布直方图,
B 区住户满意度评分的频率分布直方图如图所示
A 区住户满意度评分的平均值为 45×0.1+55×0.2+65×0.3+75×0.2+85×0.15+95×0.05=67.5;
)内,
设中位数为 m,则 0.20+0.24+(m﹣70)×0.036=0.5,
解得 m≈71.67,
所以中位数约为 71.67.
例 11.某高中数学建模兴趣小组的同学为了研究所在地区男高中生的身高与体重的关系,从若干个高中男
在[120,140)之间的学生人数为:100×(10×0.030+0.020)=50 人,
1
又用分层抽样的方法在[120,140)之间的学生 50 人中抽取 5 人,即抽取比例为: ,
10
1
所以成绩在[120,130)之间的学生中抽取的人数应,30× 10 =3,即 b=3,
故选:D.
例 2.从某企业生产的某种产品中随机抽取 100 件,测量这些产品的一项质量指标值,由测量表得如下频数

高中数学复习典型题专题训练118---频率直方图

高中数学复习典型题专题训练118---频率直方图

高中数学复习典型题专题训练118频率直方图列出样本数据的频率分布表和频率分布直方图的步骤: ①计算极差:找出数据的最大值与最小值,计算它们的差;②决定组距与组数:取组距,用极差组距决定组数;③决定分点:决定起点,进行分组;④列频率分布直方图:对落入各小组的数据累计,算出各小数的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图,知小长方形的面积=组距×频率组距=频率.频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x 来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.题型一 频率分布直方图【例1】 (2010西城二模)某区高二年级的一次数学统考中,随机抽取200名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.知识内容典例分析板块二.频率直方图则这200名同学中成绩大于等于80分且小于90分的学生有______名.【例2】 (2010东城二模)已知一个样本容量为100的样本数据的频率分布直方图如图所示,样本数据落在[6,10)内的样本频数为 ,样本数据落在[2,10)内的频率为 .【例3】 (2010北京)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a = .若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[]140,150内的学生中选取的人数应为 .【例4】 (2010江苏高考)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]540,中,其频率分布直方图如图所示,则其抽样的100根中,有____根在棉花纤维的长度小于20mm .(mm)频率组距【例5】 (2009湖北15)下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数据落在[)610,内的频数为 ,数据落在[)210,内的概率约为 .【例6】 (2009福建3)A .0.13B .0.39C .0.52D .0.64【例7】 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )时间(h)A .0.6hB .0.9hC .1.0hD .1.5h【例8】 为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[)4555,,[)5565,,[)6575,,[)7585,,[)8595,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)5575,的人数是 .产品数量0.0200.0150.0100.005【例9】 (2009山东8)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96106],,样本数据分组为[)9698,,[)98100,,[)100102,,[)102104,,[104106],.已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .45【例10】 某路段检查站监控录象显示,在某时段内,有1000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为右图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于90km/h 的车辆数为( )A .200B .600C .500D .300【例11】 (2006年全国II )一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本频率分布直方图,为了分析居民的收入与年龄、学历、职业等方面的联系,要从这10000人中用分层抽样的方法抽出100人做进一步调查,则在[25003000],(元)月收入段应抽出_____人.0.00050.00040.00030.00020.0001频率组距月收入(元)【例12】 如图为某样本数据的频率分布直方图,则下列说法不正确的是( )频率A .[610),的频率为0.32 B .若样本容量为100,则[1014),的频数为40 C .若样本容量为100,则(10] ,的频数为40 D .由频率分布布直方图可得出结论:估计总体大约有10%分布在[1014),【例13】 (2006北京模拟)下面是某学校学生日睡眠时间的抽样频率分布表:【例14】 (2010崇文一模)为了调查某厂2000名工人生产某种产品的能力,随机抽查了m 位工人某天生产该产品的数量,产品数量的分组区间为[)10,15,[)15,20,[)20,25,[)25,30,[30,35],频率分布直方图如图所示.已知生产的产品数量在[)20,25之间的工人有6位. ⑴求m ; 10 15 20 25 30 35产品数量⑵工厂规定从各组中任选1人进行再培训,则选取5人不在同一组的概率是多少?【例15】 考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm )如下:⑴ 作出频率分布表; ⑵ 画出频率分布直方图.【例16】(2010陕西卷高考)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:/cm/cm⑴估计该小男生的人数;⑵估计该校学生身高在170~185cm之间的概率;⑶从样本中身高在165~180cm之间的女生..中任选2人,求至少有1人身高在170~180cm 之间的概率.【例17】从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,如下(单位:cm).作出该样本的频率分布表,画出频率分布直方图及折线图,并根据作出的频率分布直方图估计身高不小于170的同学的人数.【例18】为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.10.30.4,,.第一小组的频数是5.⑴求第四小组的频率和参加这次测试的学生人数;⑵在这次测试中,学生跳绳次数的中位数落在第几小组内?⑶参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩优秀率是多少?O频率组距次数149.5124.599.574.549.5【例19】 为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:⑴ 填充频率分布表的空格(将答案直接填在表格内); ⑵ 补全频数条形图;⑶ 若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?【例20】 (2010丰台一模)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.85987654322198653328698765叶茎1009080706050分数频率组距0.040.0280.0160.008⑴求全班人数及分数在[)80,90之间的频数;⑵估计该班的平均分数,并计算频率分布直方图中[)80,90间的矩形的高;⑶若要从分数在[]80,100之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[]90,100之间的概率.【例21】某地区为了了解70~80岁老人的日平均睡眠时间(单位:h).随机选择了50位老人的进行调查.下表是这50位老人日睡眠时间的频率分布表.在上述统计数据中,一部分计算见算法流程图(其中←可用=代替),则输出的S的值是.。

高一频率分布直方图知识点和例题

高一频率分布直方图知识点和例题

高一频率分布直方图知识点和例题例1、关于频率分布直方图的下列说法中,正确的是()。

(A)、直方图的高表示某数的频率(B)、直方图的高表示该组上的个体在样本中出现的频率(C)、直方图的高表示该组上的个体与组距的比值( D)、直方图的高表示该组上的个体在样本中解析:在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,其面积表示数据的取值落在相应区间上的频率,因此每一个小矩形的高表示该组上的个体在祥本中出现的频率与组距的比值,所以选( D)。

二、识图计算类例2、为了了解某地区高三学生的身体发有情况,抽查了该地区100名年龄为17.5岁至18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5 ) 的学生人数是()。

(A)20(B)30(C)40(D)50解:本题主要考查频率分布直方图和总体分布的估计等知识,同时考查图形的识别能力。

由频率直方图可知组距为2,故学生中体重在[56.5,64.5 ) 的频率为:(0.03+0.05+0.05+0.07 ) x 2= 0.4 ,所以100名学生中体重[56.5,64.5]的学生人数有:0. 4X100= 40人。

故选择C。

例3:某校高一某班共有64名学生,下图是该班某次数学考试成绩的频率分布直方图,根据该图可知,成绩在110 ^ 120间的同学大约有( )。

A、10B、11C、13D、16解析:通过直方图可知:成绩在110^120的频率是:10.05_ 0.10.15_0.320.2.所以成绩在110/~120之间的同学大约有:64X 0.2=12.813人。

故选择c。

例4一个社会调查机构就某地居民的月收入调在了100井根据所符数繁面了样本的频率分布直方图(如下图)大为了分析居民的收入与年龄、学历、职业等方面的关系,要从这1000人中再用分层抽样方法抽出100人。

作进一步调查。

则在230.3600 (元)股入段应抽出。

利用频率分布直方图计算中位数知识分享.doc

利用频率分布直方图计算中位数知识分享.doc

利用频率分布直方图计算中位数从下列频率分布直方图中估计所有中位数与众数之和为(答案:7400如何用频率分布直方图求方差,屮位数,平均数,众数平均数则是每组频率的中间值乘频数再相加 平均数二4 <3^0,02^7*0.08+11*0 09+17*0 03) =8 48方差二 1 何0848广2十(7-848广2"11-8 48广2斗15-848广2十(19-848汽]二先 3504 中位数就是频率分布直方圏面积的1半所对应的值 即左右面积和为0 5就行了。

设中位数为9杈则? <OJ2+O.08^)=O.5x=OB25所以中位数为9.(]质 k 数就是频率最高的中间值 就是11 您的满意是我维续的动力!)元。

0.0005 t 频率戲距0.0002 0.0001]月收\(元!1000 1500 2000 2500 3090 3500 40000.0004 卜 0.0^03己知一组数据的频率分布直方图如图所示•求众数、中位数、平均数•封仙在换專号布必芳開中,金敷是很•检卜衣芳那諂庭边巧中克極主林的值9 □俭蛙昙血苛卜七方尼的如:刈黑的竹屛蛭「军口业昙笆小萩方葩竝比甲I 点的嵐坐标与对应權牢的舉的和-宙此求岀即h,irffi 单:胸饗军分滞直再13町ML自[Q*atn+6・mO"ILG扁碳而从響零的介界銓& BT护ttffc物册.平场變肖56 « Q. 3*66 *0. 4*?5 «U.】5+盹"0・"肪虫0・占译I *題可用预不和帝頁产89・第看了牢險悔的心皆,中值歎和F垢或•蔚胆劃・簞閉幻应杞毘处帥.申伦鱼塩购釦更*・骨网岸出畠「h•眄如图所示是一样本的频率分布直方图,则由图形屮的数据,可以估计众数与中位数)分别是0.1 0.04jjL ■ ■ ■01 5 10 15 20 数众数是频率分布直方图中最高矩形的底边中点的横坐标,•••中间的一个矩形最高,故10与15的中点是12.5 ,众数是12.5而中位数是把频率分布直方图分成两个面积相等部分的平行于第一个矩形的面积是0・2 ,第三个矩形的面积是0・3 ,故将第二个矩形分成3: 2即可•••中位数是13故选B・为了了解某校1000名初中生右眼视力情况,随机对50名学生右眼视力进行了检查,绘制了如下统计表和频率分布直方图.|视力| 0.1 || 0.2 | 1 0.3 I I 0.4 I| 0.5 || 0.6 || 0.7 || 0.8 ||1人数「II X 1 1 3 || 2|| 3 || 4|| 2 || IA •12.5 12.5B •12.5 13C . 13 12.5 D. 13 13Y轴的直线横坐标请解 答下列问题:(1)补全统计表和频率分布直方图:(2 )填空:在这个问题中,样本是血•名学牛右眼视力,在这个样本中,视力的中血数是1 ,视力的众 数落在频率分布直方图(从左至右依次是第一、二、三、四丄五小组)的第四小组内;(3 )如果右眼视力在0.6及0.6以下的必须娇正,试估计该校右眼视力必须娇正的学生约有多少人?组和第三组的频率,接着得到其他小组的频率,然后利用这些已知条件可以求出观力为 。

2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习(附答案)

2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习(附答案)

2024学年八年级数学经典好题专项(频数分布表和频数分布直方图)练习一、选择题1、一组数据的最大值与最小值之差为80,若取组距为9,则分成的组数应是( ) A. 7 B. 8 C. 9 D. 102、一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分 ( )A.10组 B.9组 C.8组 D.7组3、现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的为 ( ) A. 9 B. 12 C. 15 D. 184、某棉纺厂为了了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x (单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x <32这个范围的频率为( )棉花纤维长度x频数 0≤x <8 1 8≤x <16 2 16≤x <24 8 24≤x <32 6 32≤x <403A.0.8 B .0.7 C .0.4 D .0.25、小杰调查了本班同学的体重情况,画出频数直方图如图所示,下列结论中,错误的是( )A. 全班总人数为45人B. 体重在50~55 kg 的人数最多C. “45~50 kg ”这一组的频率比“60~65 kg ”这一组的大0.1D. 体重在60~65 kg 的人数占全班总人数的196、某一组数据中,已知最大值是84,最小值是52,若分成6组,且组距为整数,某组组中值为72.5,则这组数据可能是( )A. 51.5~57.5B. 69.5~75.5C. 68.5~76.5D. 70.5~74.57、为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图. 若25次为及格,则及格人数占总人数的( )A. 56.7%B. 90%C. 16.7%D. 33.3%8、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.260二、填空题9、一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果取组距为3,那么应分成 组10、有30个数据,其中最大值为40,最小值为15,若取组距为4,则应该分成 组11、有一个含有50个数据的数据组,已知最小数据是15,最大数据是45,且各数据都是整数,则这50个数据分为8组时,组距是________;若第1组的下限为14.5,则其上限为________,最末一组的上限为________.12、阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取若干名学生进行调查,并依据调査结果绘制了如下不完整的统计表.则表中的a=____.组别时间/时频数(人)频率A 0≤t≤0.560.15B 0.5≤t≤1 a 0.313、某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数分布表(部分)如下:项目 乒乓球 羽毛球 篮球 足球频数 80 50百分比 40% 25% m则表格中m的值为14、某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示,则a= .组号 分组 频数一 6≤m<7 2二 7≤m<8 7三 8≤m<9 a四 9≤m≤10 215、一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为 组16、小丽抽样调查了学校40名同学的体重(均精确到1kg),绘制了如图频数分布直方图,那么在该样本中体重不小于55kg的频率是 .17、某地区中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是 人.组别 立定跳远 坐位体前屈 实心球 一分钟跳绳频率 0.4 0.35 0.1 0.1518、空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为 %.19、将100个数据分成①~⑧组,如表所示:编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧频数 4 8 12 24 18 7 3那么第④组的频数为 .20、若小明统计了他家12月份打电话的通话时长,并列出频数分布表,则通话时长不超过10min的频率是 .通话时长 x/min 0<x≤5 5<x≤10 10<x≤15 x>15频数(通话次数)20 16 20 4三、解答题21、体育委员统计了全班同学60s跳绳的次数,并列出频数表如下:次数 60≤x<80 80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180频数 2 4 21 13 8 4 (1)全班共有多少名学生?(2)组距是多少?组数是多少?(3)跳绳次数在120≤x<160范围内的学生有多少?22、每年的6月6日是全国爱眼日.某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查.如图所示为利用所得的数据绘制的频数直方图(长方形的高表示该组人数).请你根据图中提供的信息,回答下列问题:(1)本次调查共抽测了____名学生.(2)在这个问题中,样本是指_____________________.(3)视力在4.85~5.15这一组内的频数是_______.(4)如果视力小于4.85均属视力不良,那么该校约有_________名学生的视力不良,应给予治疗、矫正.23、为了了解某地九年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数直方图,请结合图形解答下列问题:(1)这个问题中的总体是 ;(2)竞赛成绩在84.5~89.5分这一小组的频率是 ;(3)若竞赛成绩在90分以上(含90分)的同学可以获得奖励,则估计该地获得奖励的九年级学生约有________人.24、在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频数直方图如下图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12.请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件,2件作品获奖,问:这两组哪一组获奖率较高?25、在开展“经典阅读”活动中,某校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计图表.根据图表信息回答下列问题:(1)填空:a=____,b=____,m=____,n=____.(2)将频数直方图补充完整.(3)若该校有3000名学生,请根据上述调查结果,估计该校学生一周的课外阅读时间不足3 h的人数.26、为了让地震受灾的儿童得到救助,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次调查样本的容量是 ;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区共有1000户住户参与捐款,请根据以上信息估计,全社区捐款不少于300元的户数是 户.27、为了了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘制成如图所示的频数直方图,已知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:(1)图中a的值为____.(2)绘制扇形统计图时,成绩x在“70≤x<80”范围内所对应扇形的圆心角的度数为____.(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀”的学生大约有____人.28、为庆祝中华人民共和国成立70周年,郑州市某校组织八年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校八年级学生进行抽样调查,根据所得数据绘制出如下统计图表根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E的圆心角度数是 ;(3)请补全频数分布直方图;(4)已知该校八年级共有学生400人,请估计身高在160≤x<170的学生约有多少人?参考答案一、选择题1、一组数据的最大值与最小值之差为80,若取组距为9,则分成的组数应是( C )A. 7B. 8C. 9D. 102、一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分 ( A )A.10组 B.9组 C.8组 D.7组3、现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的为 ( B )A. 9B. 12C. 15D. 184、某棉纺厂为了了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这个范围的频率为(A)棉花纤维长度x 频数0≤x<8 18≤x<16 216≤x<24824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.25、小杰调查了本班同学的体重情况,画出频数直方图如图所示,下列结论中,错误的是(C )A. 全班总人数为45人B. 体重在50~55 kg 的人数最多C. “45~50 kg ”这一组的频率比“60~65 kg ”这一组的大0.1D. 体重在60~65 kg 的人数占全班总人数的19 【解】 8+10+14+8+5=45(人),故A 选项正确. 体重在50~55 kg 的人数有14人,最多,故B 选项正确. “45~50 kg ”这一组的频率是10÷45=29, “60~65 kg ”这一组的频率是5÷45=19, 29-19=19≠0.1,故C 选项错误.5÷45=19,故D 选项正确. 故选C.6、某一组数据中,已知最大值是84,最小值是52,若分成6组,且组距为整数,某组组中值为72.5,则这组数据可能是( B ) A. 51.5~57.5 B. 69.5~75.5 C. 68.5~76.5 D. 70.5~74.57、为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图. 若25次为及格,则及格人数占总人数的( A )A. 56.7%B. 90%C. 16.7%D. 33.3%8、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是( )A.280 B.240 C.300 D.260【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100﹣30﹣24﹣10﹣8=28(人),∴1000280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.二、填空题9、一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果取组距为3,那么应分成 4 组10、有30个数据,其中最大值为40,最小值为15,若取组距为4,则应该分成 7 组11、有一个含有50个数据的数据组,已知最小数据是15,最大数据是45,且各数据都是整数,则这50个数据分为8组时,组距是________;若第1组的下限为14.5,则其上限为________,最末一组的上限为________.[解析] 45-15=30,3<30÷8<4,∴组距应为4.若第1组的下限为14.5,则其上限为14.5+4=18.5;最末一组的上限为14.5+4×8=14.5+32=46.5.[答案] 418.546.512、阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取若干名学生进行调查,并依据调査结果绘制了如下不完整的统计表.则表中的a=____.组别时间/时频数(人)频率A 0≤t≤0.560.15B 0.5≤t≤1 a 0.3【解析】∵被调查的总人数为6÷0.15=40(人),∴B组的人数为40×0.3=12(人),即a=12.13、某中学抽取部分学生对“你最喜欢的球类运动”调查问卷,收集整理数据后列频数分布表(部分)如下:项目 乒乓球 羽毛球 篮球 足球频数 80 50百分比 40% 25% m则表格中m的值为 10%14、某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示,则a= 9 .组号 分组 频数一 6≤m<7 2二 7≤m<8 7三 8≤m<9 a四 9≤m≤10 215、一个容量为60的样本,样本中最大值是172,最小值是150,取组距为3,则该样本可以分为 8 组16、小丽抽样调查了学校40名同学的体重(均精确到1kg),绘制了如图频数分布直方图,那么在该样本中体重不小于55kg的频率是 .【解答】解:观察直方图可知:因为该样本中体重不小于55kg的频数为:9+5+2=16,所以该样本中体重不小于55kg的频率是0.4.故答案为:0.4.17、某地区中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是 人.组别 立定跳远 坐位体前屈 实心球 一分钟跳绳频率 0.4 0.35 0.1 0.15【解答】解:∵频率,∴频数=频率×总数=0.35×40=14人.故答案为14.18、空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为 %.【解答】解:空气质量类别为优和良的天数占总天数的百分比为100%=80%, 故答案为:80.19、将100个数据分成①~⑧组,如表所示:编号 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧频数 4 8 12 24 18 7 3那么第④组的频数为 24.【解答】解:由题意可得,第④组的频数为:100﹣4﹣8﹣12﹣24﹣18﹣7﹣3=24,故答案为:24.20、若小明统计了他家12月份打电话的通话时长,并列出频数分布表,则通话时长不超过10min的频率是 0.6 .通话时长 x/min 0<x≤5 5<x≤10 10<x≤15 x>15频数(通话次数)20 16 20 4三、解答题21、体育委员统计了全班同学60s跳绳的次数,并列出频数表如下:次数 60≤x<80 80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180频数 2 4 21 13 8 4 (1)全班共有多少名学生?(2)组距是多少?组数是多少?(3)跳绳次数在120≤x<160范围内的学生有多少?解:(1)全班共有2+4+21+13+8+4=52(名)学生.(2)组距是80-60=20次,组数是6.(3)跳绳次数在120≤x<160范围内的学生有13+8=21(人).22、每年的6月6日是全国爱眼日.某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查.如图所示为利用所得的数据绘制的频数直方图(长方形的高表示该组人数).请你根据图中提供的信息,回答下列问题:(1)本次调查共抽测了__160__名学生.(2)在这个问题中,样本是指__160名学生的视力情况__.(3)视力在4.85~5.15这一组内的频数是__40__.(4)如果视力小于4.85均属视力不良,那么该校约有__1250__名学生的视力不良,应给予治疗、矫正.23、为了了解某地九年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数直方图,请结合图形解答下列问题:(1)这个问题中的总体是 ;(2)竞赛成绩在84.5~89.5分这一小组的频率是 ;(3)若竞赛成绩在90分以上(含90分)的同学可以获得奖励,则估计该地获得奖励的九年级学生约有________人.解(1)某地九年级学生参加消防知识竞赛的成绩(2)=0.32.(3)该地九年级获得奖励的人数约是(13+7)÷1%=2000(人)24、在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频数直方图如下图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12.请解答下列问题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件,2件作品获奖,问:这两组哪一组获奖率较高?【解】 (1)12÷42+3+4+6+4+1=60(件).(2)第四组上交的作品数量最多,有12×64=18(件).(3)第四组的获奖率为1018=59,第六组的获奖率为2÷⎝⎛⎭⎫12×14=23=69. ∵59<69,∴第六组获奖率较高.25、在开展“经典阅读”活动中,某校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计图表.根据图表信息回答下列问题:(1)填空:a =____,b =____,m =____,n =____. (2)将频数直方图补充完整.(3)若该校有3000名学生,请根据上述调查结果,估计该校学生一周的课外阅读时间不足3 h 的人数.【解】 (1)∵b =18÷0.12=150,∴n =36÷150=0.24,∴m =1-0.12-0.3-0.24-0.14=0.2,∴a=0.2×150=30.(2)补全频数直方图如解图中斜纹所示.(3)3000×(0.12+0.2)=960.答:估计该校学生一周的课外阅读时间不足3 h的人数为960.26、为了让地震受灾的儿童得到救助,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次调查样本的容量是 ;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区共有1000户住户参与捐款,请根据以上信息估计,全社区捐款不少于300元的户数是 户.解:(1)B组捐款户数是10,则A组捐款户数为10×=2,样本容量为(2+10)÷(1﹣8%﹣40%﹣28%)=50.(2)统计表C、D、E 组的户数分别为20,14,4.组别 捐款额(x)元 户数A 1≤x<50 aB 100≤x<200 10C 200≤x<300 20D 300≤x<400 14E x≥400 4(3)估计全社区捐款不少于300元的户数是1000×(28%+8%)=360(户).27、为了了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘制成如图所示的频数直方图,已知成绩x(单位:分)均满足“50≤x <100”.根据图中信息回答下列问题: (1)图中a 的值为____.(2)绘制扇形统计图时,成绩x 在“70≤x <80”范围内所对应扇形的圆心角的度数为____. (3)此次比赛共有300名学生参加,若将“x ≥80”的成绩记为“优秀”,则获得“优秀”的学生大约有____人.【解】 (1)a =30-(2+12+8+2)=6,故a =6.(2)成绩x 在“70≤x <80”范围内所对应扇形的圆心角的度数为360°×1230=144°. (3)获得“优秀”的学生大约有300×8+230=100(人).28、为庆祝中华人民共和国成立70周年,郑州市某校组织八年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校八年级学生进行抽样调查,根据所得数据绘制出如下统计图表根据图表提供的信息,回答下列问题: (1)这次抽样调查,一共抽取学生 人; (2)扇形统计图中,扇形E 的圆心角度数是 ;(3)请补全频数分布直方图;(4)已知该校八年级共有学生400人,请估计身高在160≤x<170的学生约有多少人?【解答】解:(1)这次抽样调查,一共抽取学生4÷10%=40(人);(2)扇形统计图中,扇形E的圆心角度数是36054°,故答案为:40;54°;(3)身高在160≤x<170的人数为:40×20%=8人,补全频数分布直方图如图所示;(4)400×45%=180(人),答:估计身高在160≤x<170的学生约有180人.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频率分布直方图考试

频率分布直方图北鲲五班练习题
1.用样本估计总体,下列说法正确的是()
A.样本的结果就是总体的结果 B.样本容量越大,估计就越精确
C.样本的标准差可以近似地反映总体的平均状态 D.数据的方差越大,说明数据越稳定
2.一支田径队有男队员56人,女队员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本,则应抽取男队员的人数为()
A.12 B.14 C.16 D.18
3.某学校有教职工共160人,其中有教师104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,则在20人的样本中应抽取后勤人员的人数为 ( )
A. 3
B. 4
C. 5
D. 6
4.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.为了了解该单位职工的健康情况,决定采用分层抽样的方法,从中抽取容量为15的样本.则从上述各层中依次抽取的人数分别是()
A. 8,4,3
B. 6,5,4
C. 7,5,3
D. 8,5,2
5. 某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距抽取样本,将全体会员随机按1~200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第1组至第3组抽出的号码依次是()
A. 3,8,13
B. 2,7,12
C. 3,9,15
D. 2,6,12
6.一个容量为n的样本,分成若干组,已知某组的频数和频率分别是40,0.125,则n 的值为
A. 640
B.320
C.240
D. 160
7.个容量为32的样本,已知某组样本的频率为0.125,则该组样本的频数为.
A. 2
B. 4
C. 6
D. 8 ( )
8.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600
人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取
的人数分别为( ) A.45,75,15 B. 45,45,45 C.30,90,15 D. 45,60,30
9.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的
某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人
分别各抽取的人数是( ) A. 6,12,18 B. 7,11,19 C. 6,13,17 D. 7,12,17 10.某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,老师收取了
学号能被5整除的15名同学的作业本,这里运用的抽样方法是 ( ).
A.简单随机抽样法
B.系统抽样法
C.分层抽样法
D.抽签法
11.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2 :3 :5.
现用分层抽
样方法抽出一个容量为n的样本,样本中A种型号产品有16件,那么此样本的容

n
12.某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人,
为了解普通话在该校教师中的推广普及情况,用分层抽样的方法,从全体教师中
抽取一个容量为70人的样本进行普通话水平测试,其中不到40岁的教师中应抽
取的人数是___________.
13.在某次学生考试的成绩中随机抽取若干学生的成绩,分组与各组的频数如
下:[40,50),4;[50,60),1;[60,70),10;[70,80),11;[80,90),18;[90,100),6,估计
本次考试的及格率为__________ .
14. 把容量是100的样本分成8组,从第1组到第4组的频数分别是15,17,11,13,第5组到第7组的频率之和是0.32,那么第8组的频率是 .
15.《中华人民共和国道路交通安全法》 规定:车辆驾驶员血液酒精浓度在20~80 mg/100mL (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100mL (含80)以上时,属醉酒驾车。

据有关调查,在一周内,某地区查处酒后驾车和醉酒驾车共500人.如图是对这500人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为__________
16.随机抽取100名学生,测得他们的身高(单位cm )按照区间
[)[)[)[)[)[)155,160,160,165,165,170,170,175,175,180,180,185分
组,得到样本身高的频率分布直方图(如图).
(Ⅰ).求频率分布直方图中的x 值及身高在170cm 以上的学生人数;
(Ⅱ).将身高在[)[)[)170,175,175,180,180,185区间内的学生依次记
为,,A B C 三组,用分层抽样的方法从这三组中抽取6人,求从这三组分别抽取的人数;
(Ⅲ).在(Ⅱ)的条件下要从6名学生中抽取2人,用列举法计算B 组中至少有1人被抽中的概率(第三问如做不出来,可暂时放下)
17.某部门计划对某路段进行限速,为调查限速60 km/h 是否合理,对通过该路段的500辆汽车的车速进行检测,将所得数据按[40,50),[50,60),
20 30 40 50 60 70 80 90 100
酒精含(0.010.00.00
0.0频
[60,70),[70,80]分组,绘制成如图所示的频率分布直方图.则这500辆汽车中车速低于限速的汽车有
辆.
18.(本题满分12分)
本学期,大兴区有300名学生报名参加了北京市高一年级数学竞赛的初赛,现随机抽取50名学生的成绩进行统计分析.
(1)完成频率分布表,并根据表中数据画出频率分布直方图;
分组频数频率
[50,60) 10
[60,70) 15
[70,80) 15
[80,90) 5
[90,100
)
5


50
19.(北京市理科试题)某校从参加高三年级期末考试的学生中抽出60名学生,并统计了他们的历史成绩(成绩均为整数且满分为100分),把其中不低于50分的成绩分成五段
[)[)]
100
,
90
[
70
,
60
,
60
,
50Λ后,画出部分频率分布直方图(如图),那么历史
成绩在[)80,70
的学生人数为。

车速
O4050607080
0.010
0.035
0.030
a
频率
组距
O
成绩
频率/组距
50 60 70 80 90 100
0.01
0.02
0.03
20.(本小题满分10分)
对甲、乙两名学生的学习成绩进行抽样分析,各抽相同的5门功课,如下表:
科目
学生
语文数学英语物理化学
甲60 90 70 80 70
乙75 60 70 80 80
(1)试比较甲、乙各门功课成绩的平均分的大小;
(2)试比较甲、乙学习成绩的稳定性,并说明理由.
21.随机抽取某中学甲乙两班各6名学生,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图.
(Ⅰ)判断哪个班的平均身高较高, 并说明理由;(Ⅱ)计算甲班的样本方差;
(Ⅲ)现从乙班这6名学生中随机抽取两名学生,求至少有一名身高不低于175cm的学生被抽中的概率. 0 3
8 2
1 4 7
22.右图是某年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎
叶图(其中m 为数字0—9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为21,a a ,则一定有( )
A .21a a >
B .21a a <
C .21a a =
D .21,a a 的大小与m 的值有关
23.甲乙两名运动员在某项测试中的8次成绩如茎叶图所示,12,x x 分别表示甲乙两名运动员这项测试成绩的平均数,12,s s 分别表示甲乙两名运动员这项测试成绩的标准差,则有( )A .12x x >,12s s < B .12x x =,12s s < C .12x x =,
12s s = D .12x x <,12s s >
24.如图,是CCTV 青年歌手大奖赛上某位选手得分的茎叶 图,去掉一个最高分和一个最低分后,所剩数据的方 差为( )
A .6
47
B .9
C .
7
38 D .
7
80
25.右面茎叶图表示的是甲、乙两人在5次综合测评中的 成绩,其中一个数字被污损.则甲的平均成绩超过 乙的平均成绩的概率为(A )52(B )107(C )54(D )10
9
26.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是 、。

相关文档
最新文档