Multisim实验报告

合集下载

multisim实验二实验报告

multisim实验二实验报告

仲恺农业工程学院实验报告纸_自动化学院_(院、系)_工业自动化_专业_144_班_电子线路计算机仿真课程实验二模拟运算电路仿真实验一、实验目的1、掌握在Multisim平台上进行集成运算放大器仿真实验的方法2、掌握用集成运算放大器组成比例、加法、减法和积分电路的方法。

二、实验设备PC机、Multisim11。

三、实验内容1. 反相比例运算电路(1)创建电路创建如图所示反相比例运算电路,并设置各元器件参数。

图2- 1 反相比例运算电路(2)仿真测试①闭合仿真开关。

②观察万用表,显示输出电压有效值为5V,打开示波器窗口,如图所示。

图2- 3 输入、输出波形图(3)实验原理如图所示,这是典型的反相比例运算电路。

输入电压u I 通过电阻R 作用于集成运放的反向输入端,故输出电压uo 与u I 反相。

同相输入端通过电阻R ’接地。

由“虚短”的原则,有 u N = u P = 0由“虚断”的原则,有 i R = i FRu u R oN I -=-N u u 整理,得因此,u o 和u I 成比例关系,比例系数为-R f /R ,负号表示u o 与u I 反相。

在这里,R f =100k Ω,R=10k Ω,u I =0.5,所以2. 同相比例运算电路 (1)创建电路创建如下图所示电路,并设置电路参数。

图2-4 反向比例运算电路图2- 2 输出电压有效值If o u RR -=u -5V 0.5*-10u ==-=I fo u RR图2- 5 同相比例运算电路(2)仿真测试 ①闭合仿真开关。

②观察交流万用表,显示输出电压有效值为5.5V ,打开示波器窗口,如图所示。

观察u I 和u O 波形,由大小和相位关系,可以得出u O = 11u I ,与理论值相符。

(3)实验原理由“虚短”和“虚断”,有 u P = u N = u I 且图2- 6 输出电压有效值图2-7 同相比例运算电路仿真波形图2-8 同相比例运算电路fNO N Ru u R -=-0u整理,有则I )1(u u RR f O +=上式表明u o 与u I 同相且u o 大于u I 。

电子技术实验报告(Multisim的应用)

电子技术实验报告(Multisim的应用)

实验报告(一)
课程名称:电子技术
实验项目:multisim的基本使用
专业班级:机电
姓名:座号:09
实验地点:仿真室
实验时间:
指导老师:成绩:
一.实验目的:
了解multisim7软件界面各分区的功能;
掌握电路创建方法与基本测试方法;
掌握虚拟仪器万用表、示波器、函数发生器的使用方法。

二.实验内容:
一、电路创建与基本测试
二、常用虚拟仪器的使用
三.实验步骤:一、电路创建与基本测试
1.创建电路1-1,测试开关闭合与断开时电路中发光二极管的状态。

2.创建电路1-2,测试R1和R2及电源的电压。

改变R1或R2的值为2K,再次观察结果。

电路创建的步骤为:
1、调用元器件
2、电路连接
3、电路文件存盘
4、电路功能测试
二、常用虚拟仪器的使用
1.万用表
(1)创建电路2-3
电路2-3
(2)分别测试电路2-3中三个小电路中的电流、电压和电阻
2.函数发生器与示波器
(1)创建电路2-4
电路2-4
(2)将XFG1设置成500Hz,10V的方波,XFG2设置成1KHz,10V 的方波,观察示波器的波形。

四.实验总结:
1.说明电路创建的步骤有那些?
答:调用元器件、电路连接、电路文件存储、电路功能测试
2.说明如何放置电路所需的元器件(以12V直流电压源为例)。

答:先找出12V直流电压源放置,再找出所需元件隔一些距离放置,然后从电压源引出电线与所需元件连接起来,组成一个闭合回路,其次检查电路的接线是否正确,最后调整电路元件位置使其电路更直观。

学生签名:
年月日。

模拟电子线路multisim仿真实验报告

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。

3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。

二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.仿真电路图V110mVrms 1kHz0°R1100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V4521R75.1kΩ9XMM16E级对地电压25.静态数据仿真记录数据,填入下表仿真数据(对地数据)单位;V计算数据单位;V基级集电极发射级Vbe Vce RP10k 26.动态仿真一1.单击仪表工具栏的第四个,放置如图,并连接电路。

V110mVrms 1kHz0°100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V52R75.1kΩXSC1A BExt Trig++__+_6192.双击示波器,得到如下波形5.他们的相位相差180度。

27.动态仿真二1.删除负载电阻R6V110mVrms1kHz0°100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V52XSC1A BExt Trig++__+_6192.重启仿真。

记录数据.仿真数据(注意填写单位)计算Vi有效值Vo有效值Av3.分别加上,300欧的电阻,并填表填表.4.其他不变,增大和减少滑动变阻器的值,观察VO的变化,并记录波形28.仿真动态三1.测量输入端电阻。

multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。

在这里,我们将引入Multisim的使用以及电路仿真实验报告。

Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。

通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。

1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。

在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。

在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。

接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。

最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。

1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。

通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。

同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。

希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。

2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。

它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。

使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。

2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。

multisim 实验报告

multisim 实验报告

multisim 实验报告Multisim 实验报告引言:Multisim 是一款电子电路仿真软件,可用于设计、分析和验证各种电子电路。

本实验旨在使用 Multisim 软件对不同类型的电路进行仿真,并通过实验结果和分析,深入了解电子电路的工作原理和性能。

一、直流电路实验1.1 电压分压器电路仿真电压分压器是一种常见的电路,能将输入电压分为不同比例的输出电压。

通过Multisim 软件,我们可以模拟不同电阻值下的电压分压情况,并观察输出电压与输入电压的关系。

1.2 电流分流器电路仿真电流分流器是一种能将输入电流分为不同比例的输出电流的电路。

通过Multisim 软件,我们可以模拟不同电阻值下的电流分流情况,并观察输出电流与输入电流的关系。

二、交流电路实验2.1 RC 电路仿真RC 电路是由电阻和电容组成的简单交流电路。

通过 Multisim 软件,我们可以模拟不同电阻和电容值下的交流电路响应情况,并观察电压和电流的变化。

2.2 RLC 电路仿真RLC 电路是由电阻、电感和电容组成的复杂交流电路。

通过 Multisim 软件,我们可以模拟不同电阻、电感和电容值下的交流电路响应情况,并观察电压和电流的变化。

三、数字电路实验3.1 逻辑门电路仿真逻辑门是数字电路中常见的基本组件,用于实现逻辑运算。

通过Multisim 软件,我们可以模拟不同逻辑门的输入和输出情况,并观察逻辑门的工作原理。

3.2 计数器电路仿真计数器是一种能够进行计数操作的电路。

通过 Multisim 软件,我们可以模拟不同计数器的计数过程,并观察计数器的工作状态和输出结果。

结论:通过 Multisim 软件的实验仿真,我们深入了解了不同类型的电子电路的工作原理和性能。

通过观察和分析实验结果,我们可以更好地理解电路中的各种参数和元件的作用,为电子电路设计和分析提供了有力的工具和支持。

通过不断实践和探索,我们可以进一步提高对电子电路的理解和应用能力,为实际电路设计和故障排除提供更加准确和可靠的解决方案。

multisim实验四实验报告

multisim实验四实验报告

multisim实验四实验报告仲恺农业⼯程学院实验报告纸__⾃动化学院_(院、系)__⼯业⾃动化__专业__144_班_电⼦线路计算机仿真课程实验四:触发器及其应⽤仿真实验⼀、实验⽬的1.掌握集成JK触发器和D触发器的逻辑功能及其使⽤⽅法。

2.熟悉触发器之间相互转换的设计⽅法。

3.熟悉Multisim中逻辑分析仪的使⽤⽅法。

⼆、实验设备PC机、Multisim仿真软件。

三、实验内容1.双JK触发器74LS112逻辑功能测试(1)创建电路创建如下图所⽰电路,并设置电路参数。

图4-1 74LS112逻辑功能测试(2)仿真测试①J1和J5分别74LS112的异步复位端输⼊,J2和J4分别为J、K数据端输⼊,J3为时钟端输⼊,X1和X2指⽰74LS112的输出端Q和Q_的状态。

②异步置位和异步复位功能测试。

闭合仿真开关拨动J1为“0”、J5为“1”,其他开关⽆论为何值,则74LS112被异步置“1”,指⽰灯X1亮,X2灭。

理解异步置位的功能。

拨动J1为“1”、J5为“0”,其他开关⽆论为何值,则74LS112被异步清“0”,指⽰灯X1灭,X2灭,理解异步复位的功能。

③74LS112逻辑功能测试⾸先拨动J1和J5,设定触发器的初态。

接着,拨动J1和J5均为“1”,使74LS112处于触发器⼯作状态。

然后,拨动J2-J4,观察指⽰灯X1和X2亮灭的变化,尤其注意观察指⽰灯令亮灭变化发⽣的时刻,即J3由“1”到“0”变化的时刻,从⽽掌握下降沿触发的集成边沿JK触发器的逻辑功能。

如下图所⽰:图4-2 JK触发器逻辑功能测试设定触发器的初态为Q = 1。

将J2置1后,再将J3置1,可以观察到此时触发器状态并⽆改变。

将J3清0,观察到输出Q = 1。

同样的,将J2清0,同时将J4置1,在J3由1->0的时刻,可以观察到Q = 0。

2.JK触发器构成T触发器(1)创建电路创建如图所⽰电路,并设置电路参数。

图4-3 74LS112构成T触发器(2)仿真测试①闭合仿真开关。

Multisim实验报告

Multisim实验报告

课程:Multisim实验报告班级:10电信本2班姓名: 6 2 2学号:*********教师:***实验一 负反馈放大器电路一. 负反馈放大器电路工作原理图1 带有电压串联负反馈的两级阻容耦合放大器图1所示为带有负反馈的两级阻容耦合放大电路,在电路中通过R13把输出电压引回到输入端,加在晶体管Q1的发射极上,在发射极电阻R6上形成反馈电压。

根据反馈的判断法可知,它属于电压串联负反馈。

1. 闭环电压放大倍数056211243122(//)/71201010100%f f D S o X Y R f R R R C C C RC R R R R R r Vu DivR U KU U mA V V π=====≥=++=±+ 其中 uf 1u u uA A A F =+ 式中,u A 为基本放大器(无反馈)的电压放大倍数,既开环电压放大倍数;1u u A F +为反馈深度,其大小决定了负反馈对放大器性能改善的程度。

2. 反馈系数6u 136F R R R =+ 3. 输入电阻 (1)if u u i R A F R =+式中,i R 为基本放大器的输入电阻。

4. 输出电阻1o of uo uR R A F =+ 式中,o R 为基本放大器的输出电阻;uo A 为基本放大器L R =∞时的电压放大倍数。

二. 实验现象(a )无负反馈(b )有负反馈图2 负反馈对放大器失真的改善(a )中示波器输出信号失真较严重,通过开关Key=A 的闭合,(b )中输出波形失真得到很明显的改善。

图3 未加负反馈时放大电路的幅频特性图4 加入负反馈放大电路的幅频特性引入负反馈后,放大电路总得通频带得到了展宽。

实验二 射极跟随器一. 射极跟随器工作原理图1 射极跟随器原理图1. 输入电阻i R43(1)()i be R r R R β=+++2. 输出电阻o R//be be o E r r R R ββ=≈式中,34E R R R =+。

Multisim实验总结和和体会

Multisim实验总结和和体会

Multisim实验总结和和体会院系:物电学院专业:08 电工指导教师:杨金姓名:吕厚良(20081342079)Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。

它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。

Multisim 被美国NI公司收购以后,其性能得到了极大的提升。

最大的改变就是:Multisim 9与LABVIEW 8的完美结合:(1)可以根据自己的需求制造出真正属于自己的仪器;(2)所有的虚拟信号都可以通过计算机输出到实际的硬件电路上; (3)所有硬件电路产生的结果都可以输回到计算机中进行处理和分析。

Multisim 9组成:1.―――构建仿真电路2.―――仿真电路环境3.multi mcu ------ 单片机仿真4.――FPGA、PLD,CPLD等仿真5.――FPGA、PLD,CPLD等仿真6.―― 通信系统分析与设计的模块7.―― PCB设计模块:直观、层板32层、快速自动布线、强制向量和密度直方图8.-(自动布线模块)1.器件建模及仿真;2.电路的构建及仿真;3.系统的组成及仿真;4.仪表仪器原理及制造仿真。

器件建模及仿真:可以建模及仿真的器件:模拟器件(二极管,三极管,功率管等);数字器件(74系列,COMS系列,PLD,CPLD等);FPGA器件。

单元电路、功能电路、单片机硬件电路的构建及相应软件调试的仿真。

系统的组成及仿真:Commsim 是一个理想的通信系统的教学软件。

它很适用于如‘信号与系统’、‘通信’、‘网络’等课程,难度适合从一般介绍到高级。

使学生学的更快并且掌握的更多。

Commsim含有200多个通用通信和数学模块,包含工业中的大部分编码器,调制器,滤波器,信号源,信道等,Commsim 中的模块和通常通信技术中的很一致,这可以确保你的学生学会当今所有最重要的通信技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器静态工作点的仿真方法及其对放大器性能的影响3、学习放大器静态工作点、放大电压倍数、输入电阻、输出电阻的仿真方法,了解共射极电路的特性二、虚拟实验仪器及器材双踪示波器、信号发生器、交流毫伏表、数字万用表三、实验步骤4、静态数据仿真电路图如下:当滑动变阻器阻值为最大值的10%时,万用表示数为。

仿真得到三处节点电压如下:则记录数据,填入下表: 仿真数据(对地数据)单位:V 计算数据 单位:V 基极V (3) 集电极V (6) 发射级V (7) Vbe VceRp10K Ω5、 动态仿真一R151kΩR25.1kΩR320kΩR41.8kΩR5100kΩKey=A 10 %V110mVrms 1000 Hz 0°V212 VC110µFC210µFC347µF2Q12N2222A 3R7100Ω81XSC1ABExt Trig++__+_746R61.5kΩ5(1)单击仪器表工具栏中的第四个(即示波器Oscilloscope),放置如图所示,并且连接电路。

(注意:示波器分为两个通道,每个通道有+和-,连接时只需要连接+即可,示波器默认的地已经接好。

观察波形图时会出现不知道哪个波形是哪个通道的,解决方法是更改连接的导线颜色,即:右键单击导线,弹出,单击wire color,可以更改颜色,同时示波器中波形颜色也随之改变)(2)右键V1,出现properties,单击,出现对话框,把voltage的数据改为10mV,Frequency的数据改为1KHz,确定。

(3)单击工具栏中运行按钮,便可以进行数据仿真。

(4)A BExt Trig+ +_ _+_电路图如下: 示波器波形如下:由图形可知:输入与输出相位相反。

6、 动态仿真二(1)删除负载电阻R6,重新连接示波器如图所示R151kΩR25.1kΩR320kΩR41.8kΩR5100kΩKey=A 10 %V110mVrms 1000 Hz 0°V212 VC110µFC210µFC347µF 2Q12N2222A 3R7100Ω81XSC1ABExt Trig++__+_74056(2)重新启动仿真,波形如下:记录数据如下表:(注:此表RL为无穷)仿真数据(注意填写单位)计算 Vi有效值 Vo有效值 Av(3)加上RL,分别将RL换为千欧和300欧,记录数据填表:R15.1kΩR251kΩR320kΩR41.8kΩC110uFC210uFR6100kΩKey=A10%V110mVrms1kHz0°V212 VQ12N2222AC347uF1354R7100Ω6XMM18XSC1A BExt Trig++__+_2R55.1kΩ7仿真数据(注意填写单位)计算RL Vi Vo Av Ω330Ω(4)其他不变,增大和减小滑动变阻器的值,观察Vo的变化,并记录波形:综上可得到下列表格:动态仿真三1、测输入电阻Ri,电路图如下在输入端串联一个千欧的电阻,如图所示,并且连接一个万用表,如图连接。

启动仿真,记录数据,并填表。

万用表的示数如下:则填表如下:2、测量输出电阻Ro如图所示:*万用表要打在交流档才能测试数据,其数据为VL。

电路图及万用表示数如下:如图所示:*万用表要打在交流档才能测试数据,其数据为V0则可得下表:思考题:1、画出电路如下:R175ΩR2100ΩV115 VV215 VQ12N3904Q22N390634U1DC 10M W0.403V+-U2DC 10M W0.294V+-XFG12XSC1A BExt Trig++__+_162、第一个单击,第二个单击。

3、双击该原件,进行参数修改。

4、波形如下:实验心得:通过本次实验学会了Multisim 基本操作,学到如何翻转元件、连线以及一些测试工具如示波器、万用表等。

借助于这个软件,以后很多现象可以不用通过实际实验进行验证,直接在计算机上就可以完成,较为方便。

实验二射极跟随器画出电路图如下:V13000mVrms 1kHz 0°V212 VR182kΩR21.8kΩR31.8kΩQ12N2222A C110uFC210uF123560射极输出波形如下:选取一个区域放大如下:设备扫描参数如下:则max y和min y差距最小时rr1=138667Ω,则将R1阻值更改为138KΩ。

改后图如下:V13000mVrms1kHz0°V212 VR1138kΩR21.8kΩR31.8kΩC110uFC210uF16Q12N2222A253直流仿真得如下图:则可填写下表:Vb Vc Ve Ie=Ve/Re 接下来测量放大倍数,如下图:万用表档位在交流档上,数据填入下表:Vi Vo Av=Vo/Vi3V下一步,测输入电阻,如下图:根据分压公式可以计算输入电阻,得到下表:Vs Vi Ri=Vi*Rs/(Vs-Vi)3VΩ下一步,测输出电阻,如下图:(开关断开时,测Vo)(开关闭合时,测VL)记录到下表:Vo VL Ro=(Vo-VL)*RL/VLΩ思考题:1、电路图如下:V1120 Vrms 60 Hz 0°T1TS_PQ4_10D11B4B421243C110uFR11kΩ234XSC1A BExt Trig++__+_15输入与输出的波形如下:2、分析射极跟随器的性能和特点:射极跟随器件可以将输入电压近似保留的输出,即电压增益Av为1,输出电阻很小大概几十欧,输入电阻很大大概几十千欧。

实验心得:本次实验模拟了射极跟随器,更好地理解了射极跟随器的性能和特点,了解了如何估算集电极静态工作点的电阻,并得到了电压增益,输入、输出电阻等值同时对Multisim 软件的操作更加熟练了。

实验三负反馈放大电路画出电路图如下:V15mVrms1kHz0°V212 VR151kΩR224kΩR33kΩR41.8kΩR5100ΩR620kΩR747kΩR81kΩR93kΩR105.1kΩR111.5kΩR123kΩR13100ΩC110uF2J1Key = AC210uF7C310uFC410uF11C510uFC612J2Key = A135Q12N2222AQ22N2222A81034614915 1静态直流仿真结果如下图:则记录到下表:三极管Q1三极管Q2 Vb Vc Ve Vb Vc Ve下一步进行交流测试:开环RL=∞电路图和万用表示数如下:开环RL=电路图和万用表示数如下:闭环RL=无穷电路图和万用表示数如下:闭环RL=电路图和万用表示数如下:则记录下表:RL图中R11Vi Vo Av 开环RL=无穷(S2开)RL=(S2闭)闭环RL=无穷(S2开)RL=(S2闭)下一步检查负反馈对失真的改善,将记录到的波形填入下表:在开环情况下适当加大Vi的大小,使其输出失真,记录波形闭合开关S1,并记录波形波形可见负反馈使输出增益减小,但是可以提高不失真度。

下一步测试放大频率特性,得到输出端的幅频特性如下:开环时:闭环时:则填入下表:开环闭环图形图形fL fH fL fH思考题:分析如下的幅频特性和输出波形。

开关接电阻时,输出波形与幅频特性如下:V112 Vrms1kHz 0°R151ΩR251ΩR936kΩR1068kΩRc110kΩRb110kΩR85.1kΩR710kΩ02Q12N2714Q22N271414Rc210kΩ6V212 V 5R610kΩKey=A50%78Rb210kΩ39J1Key = Space1011Q32N27141314V312XSC1ABExt T rig++__+_15开关接三极管时,波形和幅频特性如下:V112 Vrms1kHz0°R151ΩR251ΩR936kΩR1068kΩRc110kΩRb110kΩR85.1kΩR710kΩ2Q12N2714Q22N271414Rc210kΩ6V212 V50R610kΩKey=A50%78Rb210kΩ39J1Key = Space1011Q32N27141314V3120XSC1A BExt T rig++__+_15实验心得:学会了用Multisim进行幅频特性分析,并且更好地理解了负反馈的作用,即牺牲增益来换取更大的频带,使输出尽量不失真。

实验四差动放大电路调节放大器零点。

电路图以及万用表示数如下:V112 VV212 VJ1Key = AR110kΩR610kΩ1Q12N2222A2R210kΩQ22N2222AR8100ΩKey=A50%67J3Key = Space8R35.1kΩR910kΩQ32N2222A91011R710kΩ13J2Key = A14R436kΩ12R568kΩ415XMM135万用表示数较接近于0当开关S3在左端时,静态电压仿真如下:当开关S3在第二时,静态电压仿真如下:将所测数据填入下表:测量值Q1Q2R9C B E C B E U S3在左端S3在第二0下一步,测量差模电压放大倍数。

更改后电路如下:(1)典型差动放大电路单端输入:V112 VV212 VR110kΩR610kΩQ12N2222A2R210kΩQ22N2222AR8100ΩKey=A50%67J3Key = Space8R35.1kΩR910kΩQ32N2222A91011R710kΩ13J2Key = A14R436kΩ12R568kΩ415V3100mVrms1kHz0°1XMM13XMM25万用表示数如下:(2)、恒流源差动放大电路单端输入:万用表示数如下:R110kΩR610kΩQ12N2222A 2R210kΩQ22N2222A R8100ΩKey=A 50%67J3Key = Space 8R35.1kΩR910kΩQ32N2222A91011R710kΩ13J2Key = A14R436kΩ012R568kΩ415V3100mVrms 1kHz 0° 13XMM25(3)、典型差动放大电路共模输入: 万用表示数如下:(4)、恒流源差动放大电路共模输入:V112 V V212 VR110kΩR610kΩQ12N2222A 2R210kΩQ22N2222A R8100ΩKey=A 50%67J3Key = Space 8R35.1kΩR910kΩQ32N2222A91011R710kΩ13J2Key = AR436kΩ012R568kΩ415V31 Vrms 1kHz 0° 0XMM13XMM2514V112 VV212 VR110kΩR610kΩQ12N2222A2R210kΩQ22N2222AR8100ΩKey=A50%67J3Key = Space8R35.1kΩR910kΩQ32N2222A91011R710kΩ13J2Key = AR436kΩ12R568kΩ415V31 Vrms1kHz0°XMM13XMM2514万用表示数如下:综上,可得到以下表格:典型差动放大电路恒流源差动放大电路单端输入共模输入单端输入共模输入Ui100mV1V100mV1VUc1Uc2Ad1=Uc1/Ui无无Ad=Uo/Ui无无Ac1=Uc1/Ui无 无 Ac=Uo/Ui 无无CMRR=|Ad1/Ac1|思考题:1、 由上表可知,当差动放大电路接入恒流源时,CMRR 将有明显的提高。

相关文档
最新文档