最新北师大版初中数学常量与变量(含答案)
北师大版七年级下册数学第三章 变量之间的关系含答案(基础题)

北师大版七年级下册数学第三章变量之间的关系含答案一、单选题(共15题,共计45分)1、函数y=+中自变量x的取值范围是()A.x≤2B.x≤2且x≠1C.x<2且x≠1D.x≠12、函数y=x2﹣1中自变量x的取值范围()A.x≠1B.x=1C.x>1D.全体实数3、下列函数中,自变量x的取值范围是x>3的是()A.y=x﹣3B.C.D.y=4、小王计划用100元钱买乒乓球,所购买球的个数W(个)与单价n(元)的关系式w=中()A.100是常量,W,n 是变量B.100,W是常量,n 是变量C.100,n 是常量,W是变量D.无法确定5、设半径为r的圆的面积为S,则S=πr2,下列说法错误的是()A.变量是S和r,B.常量是π和2C.用S表示r为r=D.常量是π6、下列函数中,自变量x的取值范围是x>﹣2的是()A.y=x+2B.y=C.y=D.y=7、函数y=中,自变量x的取值范围是()A.x≠2B.x>2C.x<2D.x≠48、下列给出的式子中,x是自变量的是()A.x=5B.2x+y=0C.2y 2=4x+3D.y=3x﹣19、小丽从济南给远在广州的爸爸打电话,电话费随着时间的变化而变化,在这个过程中,因变量是()A.小丽B.时间C.电话费D.爸爸10、函数y=+的自变量x的取值范围是()A.x≤3B.x≠4C.x≥3且x≠4D.x≤3或x≠411、下列函数中自变量取值范围选取错误的是()A.y= 中x≠0B.y=x 2中x取全体实数C.y= 中x≠﹣1 D.y= 中x≥112、如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A.y=x+2B.y=x 2+2C.y=D.y=13、函数y=中自变量x的取值范围为()A.x≥2B.x≥-2C.x≥0D.x≤-214、在函数y= 中,自变量x的取值范围是()A.x≠4B.x≠﹣4C.x≠0且x≠4D.x<415、函数y=+中自变量x的取值范围是()A.x≤2B.x=3C.x<2且x≠3D.x≤2且x≠3二、填空题(共10题,共计30分)16、小王在一家公司打工,报酬为20元/小时,设小王这个月工作的时间为t 时,应得报酬为m元,则m关于t的解析式是________.17、如图所示的函数图象反映的过程是:小明从家去书店看一会儿书,又去学校取封信后马上回家,其中x表示时间(单位:小时),y表示小明离家的距离(单位:千米),则小明从学校回家的平均速度为________ 千米∕小时.18、如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,下列结论:①若通话时间少于120分,则A方案比B方案便宜20元;②若通话时间超过200分,则B方案比A方案便宜12元;③若通讯费用为60元,则B方案比A方案的通话时间多;④若两种方案通讯费用相差10元,则通话时间是145分或185分.其中正确结论的序号是________.19、一种圆环(如图),它的外圆直径是8厘米,环宽1厘米.①如果把这样的2个圆环扣在一起并拉紧(如图2),长度为________厘米;②如果用x个这样的圆环相扣并拉紧,长度为y厘米,则y与x之间的关系式是________.20、在函数y= +(x﹣1)0中,自变量x的取值范围是________.21、一皮球从高处落下,如果每次弹起的高度总是它下落高度的一半,则反弹高度h与落地次数n的对应关系的函数解析式为________.22、在圆的面积和半径之间的关系式S=πr2中,S随着r的变化而变化.其中,________是常量,________是变量.23、在函数y= 中,自变量x的取值范围是________.24、函数y= 中,自变量x的取值范围是________.25、函数中,自变量x的取值范围是________.三、解答题(共6题,共计25分)26、已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.(4)粗略说一说易拉罐底面半径对所需铝质量的影响.27、设路程为s km,速度为v km/h,时间t h,指出下列各式中的常量与变量.(1)v=;(2)s=45t﹣2t2;(3)vt=100.28、如图,在正方形ABCD中,E为BC边上的点(不与B,C重合),F为CD边上的点(不与C,D重合),且AE=AF,AB=4,设△AEF的面积为y,EC的长为x,求y关于x的函数关系式,并写出自变量x的取值范围.29、已知两个变量x、y满足关系2x﹣3y+1=0,试问:①y是x的函数吗?②x 是y的函数吗?若是,写出y与x的关系式,若不是,说明理由.30、我国是一个严重缺水的国家,我们都应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.5毫升.小燕子同学在洗手时,没有拧紧水龙头,当小燕子离开x(时)后水龙头滴了y(毫升)水.在这段文字中涉及的量中,哪些是常量,哪些是变量?参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、A5、B6、D7、A8、D9、C11、A12、C13、A14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)27、28、29、30、。
北师大版七年级数学下册第三章 变量之间的关系(考点讲解)(含解析)

第三章 变量之间的关系【学习目标】1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.感受生活中存在的变量之间的依赖关系. 3.能读懂以不同方式呈现的变量之间的关系.4.能用适当的方式表示实际情境中变量之间的关系,并进行简单的预测. 【考点总结】要点一、变量、常量的概念在一个变化过程中,我们称数值发生变化的量为变量.数值始终不变的量叫做常量.特别说明:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. t 是自变量,s 是因变量. 要点二、用表格表示变量间关系借助表格,我们可以表示因变量随自变量的变化而变化的情况.特别说明:表格可以清楚地列出一些自变量和因变量的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等. 要点三、用关系式表示变量间关系关系式是我们表示变量之间关系的另一种方法.利用关系式(如3y x =),我们可以根据任何一个自变量的值求出相应的因变量的值.特别说明:关系式能揭示出变量之间的内在联系,但较抽象,不是所有的变量之间都能列出关系式. 要点四、用图象表示变量间关系图象是我们表示变量之间关系的又一种方法,它的特点是非常直观.用图象表达两个变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.特别说明:图象法可以直观形象地反映变量的变化趋势,而且对于一些无法用关系式表达的变量,图象可以充当重要角色. 【例题讲解】类型一、常量、自变量与因变量例1、根据心理学家研究发现,学生对一个新概念的接受能力y 与提出概念所用的时间x (分钟)之间有如表所示的关系:(1)上表中反映的两个变量之间的关系,哪个是自变量?哪个是因变量?(2)根据表格中的数据,提出概念所用时间是多少分钟时,学生的接受能力最强?(3)学生对一个新概念的接受能力从什么时间开始逐渐减弱?【答案】(1)“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)13分钟;(3)从第13分钟以后开始逐渐减弱【分析】(1)根据表格中提供的数量的变化关系,得出答案;(2)根据表格中两个变量变化数据得出答案;(3)提供变化情况得出结论.【详解】解:(1)表格中反映的是:提出概念所用时间与对概念的接受能力这两个变量,其中“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)根据表格中的数据,提出概念所用时间是13分钟时,学生的接受能力最强达到59.9;(3)学生对一个新概念的接受能力从第13分钟以后开始逐渐减弱.【点睛】本题考查用表格表示变量之间的关系,理解自变量、因变量的意义以及变化关系是解决问题的关键.【训练】某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的).(1)在这个变化过程中,每月的乘车人数x与每月利润y分别是变量和变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)当每月乘车人数为4000人时,每月利润为多少元?【答案】(1)每月的乘车人数,每月利润;(2)2000人;(3)4000元【分析】(1)根据函数的定义即可求解;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,即可求解;(3)有表中的数据推理即可求解.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;故答案为:每月的乘车人数,每月利润;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,故答案为:2000;(3)有表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,利润为0元,故每月乘车人数为4000人时,每月的利润是(4000-2000)÷500×1000=4000元.【点睛】本题考查了根据表格与函数知识,正确读懂表格,理解表格体现变化趋势是解题关键.类型二、用表格表示变量间关系例2、一辆小汽车在告诉公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用时间t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?(3)当t每增加1秒,v的变化情况相同吗?在哪个时间段内,v增加的最快?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.【答案】(1)时间与速度;时间;速度;(2)0到3和4到10,v随着t的增大而增大,而3到4,v随着t的增大而减小;(3)不相同;第9秒时;(4)1秒.【分析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出v的变化趋势;(3)根据表中的数据可得出V的变化情况以及在哪1秒钟,V的增加最大;(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案.【详解】解:(1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加最大; (4)由题意得:120千米/小时=12010003600⨯(米/秒),由33.328.9 4.4-=,且28.924.2 4.7 4.4-=>, 所以估计大约还需1秒.【点睛】本题主要考查函数的表示方法,常量与变量;关键是理解题意判断常量与变量,然后结合图表得到问题的答案即可.【训练】某路公交车每月有x 人次乘坐,每月的收入为y 元,每人次乘坐的票价相同,下面的表格是y 与x 的部分数据.x /人次500 1000 1500 2000 2500 3000 … y /元1000200040006000…(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)请将表格补充完整.(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入-支出费用)【答案】(1)反映了收入y 与人次x 两个变量之间的关系,其中x 是自变量,y 是因变量;(2)表格见解析;(3)7000人次. 【分析】(1)根据表格即可得出结论;(2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元,即可得出结论; (3)先求出每增加1人次乘坐,每月的收入就增加2元,然后求出总收入即可求出结论; 解:(1)反映了收入y 与人次x 两个变量之间的关系,其中x 是自变量,y 是因变量. (2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元, 表格补充如下:÷=(元)(3)10005002()÷(人次)4000+100002=7000答:每月乘坐该路公交车要达到7000人次【点睛】此题考查的是变量与常量的应用,掌握实际问题中的等量关系是解决此题的关键.类型三、用关系式表示变量间关系例3.按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.①题中有几个变量?②你能写出两个变量之间的关系吗?【答案】①有2个变量;②能,函数关系式可以为y=4x+2.【解析】试题分析:①根据变量和常量的定义可得结果;②由图形可知,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.x张餐桌共有6+4(x﹣1)=4x+2.试题解析:①观察图形:x=1时,y=6,x=2时,y=10;x=3时,y=14;…可见每增加一张桌子,便增加4个座位,因此x张餐桌共有6+4(x﹣1)=4x+2个座位.故可坐人数y=4x+2,故答案为:有2个变量;②能,由①分析可得:函数关系式可以为y=4x+2.【训练】已知,如图,在直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8.P是线段AC上的一个动点,当点P从点C向点A运动时,运动到点A停止,设PC=x,△ABP的面积为y.求y与x之间的关系式.【答案】y=﹣125x+24.【分析】过点B作BD⊥AC于D,则BD为AC边上的高.根据△ABC的面积不变即可求出BD;根据三角形的面积公式得出S△ABP=12AP•BD,代入数值,即可求出y与x之间的关系式.【详解】如图,过点B作BD⊥AC于D.∵S△ABC=12AC•BD=12AB•BC,∴BD=8624105 AB BCAC⋅⨯==;∵AC=10,PC=x,∴AP=AC﹣PC=10﹣x,∴S△ABP=12AP•BD=12×(10﹣x)×245=﹣125x+24,∴y与x之间的关系式为:y=﹣125x+24.【点睛】此题考查直角三角形的面积求法,列关系式的方法,能理解图形中三角形的面积求法得到高线BD的值是解题的关键.类型四、用图象表示变量间关系例4、巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?【答案】(1)t,s;(2)2,6;(3)小明距起点的距离为300米.【分析】解析(1)观察函数图象即可找出谁是自变量谁是因变(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)设t秒时,小明第一次追上朱老师,列出关系式即可解答【详解】解:(1)在上述变化过程中,自变量是t,因变量是s;(2)朱老师的速度420200110=2(米/秒),小明的速度为42070=6(米/秒);故答案为t,s;2,6;(3)设t秒时,小明第一次追上朱老师根据题意得6t=200+2t,解得t=50(s),则50×6=300(米),所以当小明第一次追上朱老师时,小明距起点的距离为300米.【点睛】此题考查一次函数的应用,解题关键在于看懂图中数据【训练】如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中, 是自变量, 是因变量;(2)甲的速度乙的速度(大于、等于、小于);(3)6时表示;(4)路程为150km,甲行驶了小时,乙行驶了小时;(5)9时甲在乙的(前面、后面、相同位置);(6)乙比甲先走了3小时,对吗?.【答案】(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对. 【解析】试题分析:(1)根据自变量与因变量的含义得到时间是自变量,路程是因变量;(2)甲走6小时行驶100千米,乙走3小时走100千米,则可得到他们的速度的大小;(3)6时两图象相交,说明他们相遇;(4)观察图形得到路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)观察图象得到t=9时,乙的图象在甲的上方,即乙行驶的路程远些;(6)观察图象得到甲先出发3小时后,乙才开始出发.试题解析:解:(1)函数图象反映路程随时间变化的图象,则t是自变量,s是因变量;(2)甲的速度是100÷6=503千米/小时,乙的速度是100÷3=1003千米/小时,所以甲的速度小于乙的速度;(3)6时表示他们相遇,即乙追赶上了甲;(4)路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)t=9时,乙的图象在甲的上方,即乙行驶的路程远些,所以9时甲在乙的后面;(6)不对,是乙比甲晚走了3小时.故答案为(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对. 考点:函数的图象.【训练】根据图回答下列问题.(1)图中表示哪两个变量间的关系?(2)A、B两点代表了什么?(3)你能设计一个实际事例与图中表示的情况一致吗?【答案】(1)时间与价钱;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元5月2日花100元5月3日花250元5月4日花200元5月5日花300元5月6日花150元5月7日花250元【解析】试题分析:认真分析表中数据再结合身边的事例即可得到结果.(1)图中表示时间与价钱的关系;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元5月2日花100元5月3日花250元5月4日花200元5月5日花300元5月6日花150元5月7日花250元考点:本题考查的是函数的图象点评:解答本题的关键是读懂图象,得到图象的特征及规律,再根据这个规律解决问题.。
北师大版八年级数学上册-第四章一次函数(同步+复习)精品讲义课件

① ② ③ ④ 圆的半径r=2 , 圆的面积S与半径r的关系。 长方形的宽一定时,其长与周长。 王成的年龄与身高。 汽车行驶过程中,路程一定,其速度与时间。
① ② 根据变化过程中变量的实际意义确定。 根据纯代数关系式确定:一看分母不为0;二看 根号内非负(开平方被开方数是非负数); 定义:对于自变量在可取值范围内每一个确定的 值a,函数有唯一确定的对应值,这个对应值称 为“当自变量等于a的函数值“。 函数值与自变量的取值是对应的、相互依赖的。 求法:有表查表;有式代入;有图看图。
2.
函数值:
①
② ③
【例4】做一做
1. 求当x=-2时,函数 y=x2-√x2的函数值. 3x 2. 函数y= —— 中,求自变量 x的取值范围。 √x-2 3. 当x取( 意义。 )时,函数y= ————有
√x -2 4x
五. (补充)函数的图象
1. 定义:把一个函数的自变量的每一个值与对应的函数值分别 做为点的横坐标与纵坐标,在平面直角坐标系中描出所有对 应的点,所有这些点组成的图形叫做该函数的图象。 作法:列表(选值计算画表);描点(对应值为点的坐标); 连线(平滑的直线或曲线)。画出的是近似图象。 作用(学会看图象):
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 一看对应:(变量互求:有关系式用关系式。) 二看趋势:(如何变化) 三看范围:(最大最小局部整体区别看) 四看增减;(上坡下坡) 五看快慢:(陡快缓慢平不变) 六解方程:(组)不等式( 交点-扫描-投影法) 七比大小:(两函数,比大小,找交点,横分段,看变化,求得 解) 八出方案:(寻求生活中最优选择最佳方案) 九取特值:(结合字母常量的几何意义确定常量之间的关系)。 十设坐标:(设横表纵——永远不变的真理)。
北师大版七年级下册第三章变量之间的关系知识点归纳与复习

第三章 变量之间的关系 知识点归纳与复习知识点1 常量与变量1.小亮以每小时8千米的速度匀速行走时,所走路程s(千米)随时间t (小时)的增大而增大,则下列说法正确的是 ( ) A.8和s,t 都是变量 B.8和t 都是变量C. s 和t 都是变量D.8和s 都是变量2.在三角形ABC 中,它的底边是a,底边上的高是h,则三角形面积S=21ah.当a 为定长时,在此式中 ( )A. S,h 是变量,21,a 是常量 B. S,h,a 是变量,21是常量 C. a,h 是变量,21,S 是常量D.S 是变量,21a,h 是常量3.小亮帮母亲预算家庭月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数: 表格中反映的变量是 ,自变量是 ,因变量是 .知识点2 用表格表示变量间的关系4.1-6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y (克)和月龄x (月)之间的关系如表所示,则6个月大的婴儿的体重为 ( )A. 7600克B. 7800克C. 8200克D. 8500克5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系,则下列说法中不正确的是 ( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时.弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg,弹簧长度增加0.5cm6.邓老师设计一个计算程序,输入和输出的数据如下表所示,那么当输入数据是正整数n 时,输出的数据是 .7. 下表是三发电器厂2017年上半年每个月的产量:(1)根据表格中的数据,你能否根据x 的变化,得到y 的变化趋势?(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高? (3)试求2017年上半年的平均月产量是多少?(结果保留整数)知识点3 用关系式表示的变量间关系8.如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔售价,x(支)表示圆珠笔的支数,那么y 与x 之间的关系应该是 ( )9.一个正方形的边长为3cm,它的各边边长减少xcm 厅,得到的新正方形的周长为ycm,则y 与x 之间的关系式是 ( ) A .y=12-4x B .y=4x-12 C .y=12-x D .以上都不对10..在某次试验中,测得两个变量m 和之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的 ( )A. v=2m-2B. v=m 2-1 C. v=3m-3 D. v=m+111.在一定条件下,若物体运动的路程s(米)与时间t (秒)的关系式为s=3t 2+2t+1,则当t=4秒时,该物体所经过的路程为 ( ) A .28米 B .48米 C .57米 D .88米12.某公司制作毕业纪念册的收费如下:设计费与加工费共1000元,另外每册收取材料费4元,则总收费y 与制作纪念册的册数x 的关系式为 .13.同一温度的华氏度数y(°F)与摄氏度数x(℃)之间的关系式是y=59x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为________℃.14.十一期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱剩余油量为30升.(假设行驶过程中汽车的耗油量是均匀的)(1)求该车平均每千米的耗油量,并写出剩余油量Q(升)与行驶路程x(于米)的关系式;(2)当x=280千米时,求剩余油量Q的值.15.将长为40cm、宽为15cm的长方形白纸按图所示的方法黏合起来,黏合部分宽为5cm(1)根据上图,将表格补充完整.(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2018cm吗?为什么?知识点4 用图象表示的变量间关系16.夏天,一杯开水放在桌子土,杯中水的温度T(℃)随时间t变化的关系的大致图象是()17.二十四节气是中国古代劳动人民长期经验积累的结品,它与白昼时长密切相关.当春分秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中,白昼时长超过13小时的节气是 ( )A. 惊蛰B. 小满C. 秋分D. 大寒18.如图,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是( )A .第3分时汽车的速度是40千米/时B .第12分时汽车的速度是0千米/时C .从第3分到第6分,汽车行驶了120千米D .从第9分到第12分,汽车的速度从60千米/时减少到0千米/时19.如图所示的函数图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为______千米∕小时.20. 甲骑自行车,乙乘公交车,从同一地点出发沿相同路线前往某校参加绘画比赛,图中l 甲、l 乙分别表示甲、乙两人前往目的地所行使的路程s (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多21.如图所示,是某港口从上午8时到下午8时的水深情况,据图回答下列问题: (1)在8时到20时这段时间内,大约什么时间港口的水位最深,深度是多少米? (2)在8时到20时这段时间内,大约什么时间港口的水位最浅,深度是多少米? (3)在这段时间里,水深是如何变化的?第20题图第21题图。
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (42)

一、选择题(共10题)1.在圆的周长C=2πR中,常量与变量分别是( )A.2是常量,C,π,R是变量B.2π是常量,C,R是变量C.C,2是常量,R是变量D.2是常量,C,R是变量2.根据你对函数概念的理解,下列曲线表示的函数中,y不是x的函数的是( )A.B.C.D.3.如图,在平行四边形ABCD中,点E从A点出发,沿着AB→BC→CD的方向匀速运动到D点停止.在这个运动过程中,下列图象可以大致表示△AED的面积S随E点运动时间t的变化而变化的是( )A.B.C.D.4.如图所示各图中反映了变量y是x的函数是( )A.B.C.D.5.如图,l1反映了某公司的销售收入(单位:元)与销售量(单位:吨)的关系,l2反映了该公司的销售成本(单位:元)与销售量(单位:吨)的关系,当该公司盈利(收入大于成本)时,销售量应为( )A.大于4吨B.等于5吨C.小于5吨D.大于5吨6.汽车以60千米/时的速度行驶,它驶过的路程s(km)和所用时间t(h)的关系式是s=60t,在这个变化过程中,常量与变量分别是( )A.常量是60,变量是s B.常量是60,t,变量是sC.常量是60,变量是s,t D.常量是t,s,变量是607.下列曲线中表示y是x的函数的是( )A.B.C.D.8.下列关于变量x,y的关系,其中y不是x的函数的是( )A.B.C.D.9.下列各曲线中不能表示y是x函数的是( )A.B.C.D.10.下列曲线中不能表示y是x的函数的是( )A.B.C.D.二、填空题(共7题)11.某种电话卡的收费标准是:月租20元,市话0.3元/分,用户每月的手机费y(元)和通话时间x(分钟)之间的关系式为,其中变量是,常量是.12.某果园有100棵橘子树,平均每棵树结600个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则y关于x的函数表达式为.13.某医药研究院实验一种新药药效时发现,成人如果按规定剂量服用,每毫升血液中含药量y(微克)随时间x(时)的变化情况如图所示.如果每毫升血液中含药量达到3微克以上(含3微克)时治疗疾病为有效,那么有效时长是小时.14.在y=3x中,是自变量,是的函数,是常数.15.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们归纳出为“杠杆原理”.已知,手压压水井的阻力和阻力臂分别是90N和0.3m,则动力F1(单位:N)与动力臂L1(单位:m)之间的函数解析式是.16.一辆汽车以45km/h的速度行驶,设行驶的路程为s(km),行驶的时间为t(h),则s与t的关系式为,自变量是,因变量是.17.经科学家研究,蝉在气温超过28∘C时才会活跃起来,此时边吸树木的汁液边鸣叫,如图是某地一天的气温变化图象,在这一天中,听不到蝉鸣的时间是小时.三、解答题(共8题)18.“绿带城中挂,人在画中游”,张平和王亮同学周末相约骑行于“步移景异,心旷神怡”的温江田园绿道,他们从同一地方同时骑自行车出发(骑行过程中速度保持不变),最后同时到达了同一个地方.如图刻画了他们离出发点的路程(单位:米)与出发后的时间(单位:分钟)之间的关系.已知张平中途两次休息时间相同,三段骑行时间也分别相同;王亮中途休息一次,两段骑行时间相同.张平总的休息时间比王亮的休息时间多6分钟,请结合图中信息解答下列问题:(1) 在这次骑行活动中,他们的骑行路程都是多少米?(2) 求出张平和王亮的骑行速度分别是多少米/分钟?(3) 求出王亮出发后第一次追上张平的时间.19.如图,点E是矩形ABCD对角线AC上的一个动点(点E可以与点A和点C重合),连接BE.已知AB=3cm,BC=4cm.设A,E两点间的距离为x cm,BE的长度为y cm.某同学根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是该同学的探究过程,请补充完整:(1) 通过取点、画图、测量及分析,得到了x与y的几组值,如下表:x(cm)01 1.52 2.53 3.545y(cm) 3.00 2.53 2.42 2.41 2.68 2.94 3.26 4.00说明:补全表格时相关数值保留一位小数.(2) 建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.(3) 结合画出的函数图象,解决问题:当BE=2AE时,AE的长度约为cm(结果保留一位小数).,请把它改写成y=f(x),并求出自变量x的取值范围.20.已知x=3y+25y−321.如图,将平行四边形纸片ABCD沿对角线AC翻折,使点Bʹ落在矩形ABCD所在平面内,BʹC和AD相交于点E,连BʹD.(1) 判断BʹD和AC的位置关系,并证明.(2) 在上图中,若∠B=30∘,AB=2√3,是否存在△ABʹD恰好为直角三角形的情形?若存在,求出BC的长度;若不存在,请说明理由.(3) 若将图中平行四边形纸片ABCD换成矩形纸片ABCD,沿对角线折叠发现所得图形是轴对称图形;将所得图形沿其对称轴再次折叠后,得到的仍是轴对称图形则矩形纸片ABCD的长宽之比是多少?请直接写出结果.22.某电信公司的手机话费的收费标准如下表:通话时间x/min0<x≤11<x≤22<x≤33<x≤4⋯费用y/元0.20.40.60.8⋯(1) 当使用这种手机通话时间分别为2min,2min31s,3min5s,4min时,应交的通话费分别为多少?(2) 给定一个x值,y值都有唯一的值与之对应吗?由此,你觉得y是x的函数吗?23.已知小汽车的耗油量与汽车行驶路程成正比,汽车行驶100千米时耗油15升.(1) 请写出汽车行驶途中所耗油y(升)与行程x(km)之间的函数关系式;(2) 从上海到北京的路程约为1200千米,请在平面直角坐标系中画出这个过程中大致的函数关系图.24.计算下面各题:(1) x2y−3xy2+2x2y−xy2;(2) 3a4−5a2−(2a2−3a4).25.如图,把一个“瘦长”的圆柱(圆钢条)压成一个“矮胖”的圆柱.(1) 在这个变化过程中,观察圆柱的体积、表面积、侧面积、半径、高,指出哪些是变量;(2) 你能求出高ℎ关于半径r的关系式吗?并说出r,ℎ的变化趋势.答案一、选择题(共10题)1. 【答案】B【解析】∵在圆的周长公式C=2πR中,C与R是改变的,π是不变的;∴变量是C,R,常量是2π.故选:B.【知识点】常量、变量2. 【答案】B【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B不正确.【知识点】函数的概念3. 【答案】D【知识点】用函数图象表示实际问题中的函数关系4. 【答案】D【知识点】函数的概念5. 【答案】D【知识点】用函数图象表示实际问题中的函数关系6. 【答案】C【知识点】常量、变量7. 【答案】C【解析】根据函数的定义可知,对于自变量x的任何值,y都有唯一确定的值与之对应,故C正确.【知识点】函数的概念8. 【答案】D【解析】选项A,B,C当x取值时,y有唯一的值对应,故选:D.【知识点】函数的概念9. 【答案】D【解析】观察四个选项中的图形,对于D中的图形,对于某一个自变量x,有不止一个y值与其对应,因此D表示的不是y与x的函数.【知识点】函数的概念10. 【答案】C【知识点】函数的概念二、填空题(共7题)11. 【答案】y=0.3x+20;x,y;20,0.3【知识点】解析式法12. 【答案】y=(100+x)(600−5x)【知识点】解析式法13. 【答案】4【解析】由题意,得当y=3时,x=1或x=5,∴有效时间范围是:5−1=4小时.【知识点】用函数图象表示实际问题中的函数关系14. 【答案】x;y;x;3【知识点】函数的概念15. 【答案】F=27l【解析】∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知手压压水井的阻力和阻力臂分别是90N和0.3m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:90×0.3=Fl,.则F=27l【知识点】解析式法16. 【答案】s=45t;t;s【解析】由题意,得s=45t,其中45是常数,t是自变量,s是因变量.【知识点】变量、解析式法17. 【答案】12【解析】图象不超过28∘C的时间是10−0=10,24−22=2,10+2=12小时,故答案为:12.【知识点】用函数图象表示实际问题中的函数关系三、解答题(共8题)18. 【答案】(1) 张平的速度为:3000÷10=300(米/分钟),骑行的路程为:300×(10×3)=9000(米),答:在这次骑行活动中,他们的骑行路程都是 9000 米.(2) 由题意知:张平休息时间是:50−10×3=20(分钟),设王亮的休息时间为 x 分钟,则张平休息时间为 (x +6) 分钟,x +6=20,解得,x =14,张平的速度为:3000÷10=300(米/分钟),王亮的速度为:9000÷(50−14)=250(米/分钟),答:张平和王亮的骑行速度分别是 300 米/分钟、 250 米/分钟.(3) 3000÷250=12(分钟),答:王亮出发后第一次追上张平的时间是 12 分钟时.【知识点】用函数图象表示实际问题中的函数关系19. 【答案】(1) 根据测量可得:2.5;(2) 根据数据描点画图,即可画图象.(3) 当 BE =2AE 时,即 y =2x 时,如图,y =2x 与原函数图象的交点 M 的横坐标即为所求,可得 AE ≈1.2(1.1−1.3 均可).【知识点】图像法20. 【答案】 y =3x+25x−3,x ≠35.【知识点】解析式法21. 【答案】(1) BʹD =AC ,∵ 四边形 ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠ACB =CAD ,由折叠知 BC =BʹC ,∠ACB =∠ACBʹ,∴∠ACBʹ=∠CAD ,∴AE =CE ,又 ∵BC =BʹC =AD ,∴DE =BʹE ,∴∠EDBʹ=∠EBʹD ,∵∠AEC =∠DEBʹ,∴∠ACBʹ=∠CAD =∠EDBʹ=∠EBʹD ,∴BʹD ∥AC .(2) ∵AD =BC ,BC =BʹC ,∴AD =BʹC ,∵AC ∥BʹD ,∴ 四边形 ACBʹD 是等腰梯形,∵∠B=30∘,∴∠ABʹC=∠CDA=30∘,当∠BʹAD=90∘,AB>BC时,如图1中,设∠ADBʹ=∠CBʹD=y,∴∠ABʹD=y−30∘,解得y=60∘,∴∠ABʹD=y−30∘=30∘,∵ABʹ=AB=2√3,∴AD=√33×2√3=2,∴BC=2,当∠ADBʹ=90∘,AB>BC时,如图2,∵AD=BC,BC=BʹC,∴AD=BʹC,∵AC∥BʹD,∴四边形ACBʹD是等腰梯形,∵∠ADBʹ=90∘,∴四边形ACBʹD是矩形,∴∠ACBʹ=90∘,∴∠ACB=90∘,∵∠B=30∘,AB=2√3,∴BC=√32AB=√32×2√3=3,当∠BʹAD=90∘,AB<BC时,如图3,∵AD=BC,BC=BʹC,∴AD=BʹC,∵AC∥BʹD,∠BʹAD=90∘,∵∠B=30∘,ABʹ=2√3,∴∠ABʹC=30∘,∴AE=2,BEʹ=2AE=4,∴AE=EC=2,∴CBʹ=6,当∠ABʹD=90∘时,如图4,∵AD=BC,BC=BʹC,∴AD=BʹC,∵AC=BʹD,∴四边形ACDBʹ是平行四边形,.∵∠ABʹD=90∘,∴四边形ACDBʹ是矩形,∴∠BAC=90∘,∵∠B=30∘,AB=2√3,=4,∴BC=AB÷√32∴已知当BC的长为2或3或6或4时,△ABʹD是直角三角形.(3) 1:1或√3:1.【解析】(3) 如图5中,①当AB:AD=1:1时,四边形ABCD是正方形,∴∠BAC=∠CAD=∠EABʹ=45∘,∵AE=AE,∠Bʹ=∠AFE=90∘,∴△AEBʹ≌△AEF(AAS),∴ABʹ=AF,此时四边形AFEBʹ是轴对称图形,符合题意.②当AD:AB=√3时,也符合题意,∵此时∠DAC=30∘,∴AC=2CD,∴AF=FC=CD=AB=ABʹ,∴此时四边形AFEBʹ是轴对称图形,符合题意.综上,矩形纸片ABCD的长宽之比是1:1或√3:1.【知识点】30度所对的直角边等于斜边的一半、矩形的性质、平行四边形及其性质、轴对称及轴对称图形、轴对称的性质、全等三角形的性质与判定、勾股定理22. 【答案】(1) 应交的通话费分别为0.4元,0.6元,0.8元,0.8元.(2) 给定一个x值,y值都有唯一的值与之对应,所以y是x的函数.【知识点】列表法、函数的概念23. 【答案】x.(1) y=320(2) 图略.【知识点】图像法、解析式法24. 【答案】(1) 3x2y−4xy2.(2) 6a4−7a2.【知识点】整式的加减运算25. 【答案】(1) 圆柱的表面积、侧面积、半径、高都是变量.(V为圆柱的体积),当r增大时,ℎ减小.(2) ℎ=Vπr2【知识点】解析式法、变量。
新教材【北师大版】七年级下册数学:第三章-变量之间的关系-章末复习(含答案)

(新教材)北师大版精品数学资料期末复习(三) 变量之间的关系01 知识结构本章知识是学习函数的基础,要求掌握表示变量之间关系的三种方法,学会分析变量之间的关系,并能进行简单的预测.02 典例精讲【例1】 下面的表格列出了一个试验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是(C )A .b =d 2B .b =2C .b =d2D .b =d +25【思路点拨】 这是一个用图表表示的关系,可以看出d 是b 的2倍,即可得关系式.【方法归纳】 利用表格表示两个变量之间关系,其对应值清晰明了,但它们之间的关系不够明朗,要结合数据加以分析才能发现潜在的规律.从表示自变量与因变量的表格中辨识自变量与因变量,一般第一栏为自变量,第二栏为因变量.【例2】 下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序(D )①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水(水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系);④一杯越来越凉的水(水温与时间的关系). A .①②④③ B .③④②① C .①④②③ D .③②④①【思路点拨】 观察图象的走势,并与实际情景相联系是解决此题的关键.【方法归纳】 解决此类题重在观察图象并对图象上的数量关系和走势进行分析,抓住图象的转折点,这些转折点往往是运动状态发生改变或者相互的数量关系发生改变的地方.【例3】 如图所示,圆柱的高为10 cm ,当圆柱的底面半径变化时,圆柱的体积也发生变化.(1)在这个变化过程中,圆柱的底面半径是自变量,圆柱的体积是因变量;(2)请你求出圆柱的体积V(cm 3)与圆柱的底面半径R(cm )之间的关系式; (3)R 的值能为负值吗?为什么?(4)当圆柱的底面半径从2 cm 变化到5 cm 时,圆柱的体积变化了多少?(最后结果保留π)【思路点拨】 (1)题目中有两个变量,主动变化的量是圆柱的底面半径,随之变化的是圆柱的体积;在(2)中,根据圆柱的体积=底面积×高即可求出V 与R 之间的关系式;由于R 为圆柱的底面半径,所以(3)中R 不能为负值;在(4)中,分别求出R 1=2 cm 和R 2=5 cm 时圆柱的体积,其差值即为体积的变化量. 【解答】 (2)因为圆柱的体积=底面积×高,所以V =πR 2×10=10πR 2.(3)因为R 为圆柱的底面半径,所以R>0,因此R 不能为负值.(4)因为10πR 22-10πR 21=10π·52-10π·22=10π·(52-22)=210π,所以圆柱体积增加了210π cm 3. 【方法归纳】 当变量之间的关系以图形形式表示时,可根据图形特点寻找有关变量的等量关系.然后根据等量关系列出关系式.值得注意的是,为使实际问题有意义,在求出变量之间的关系式后,要根据具体的题目要求,确定自变量的取值范围. 03 整合集训一、选择题(每小题3分,共30分)1.小亮以每小时8千米的速度匀速行走时,所走路程s(千米)随时间t(小时)的增大而增大,则下列说法正确的是(C ) A .8和s ,t 都是变量 B .8和t 都是变量 C .s 和t 都是变量 D .8和s 都是变量2.已知三角形ABC 的面积为2 cm 2,则它的底边a(cm )与底边上的高h(cm )之间的关系为(D ) A .a =4h B .h =4a C .a =h 4 D .a =4h3.对关系式的描述,不正确的是(D )A .x 看作自变量时,y 就是因变量B .x ,y 之间的关系也可以用表格表示C .x 在非负数范围内,y 的最大值为2D .当y =0时,x 的值为-24.如图所示y =2-x 是某市某天的气温随时间变化的图象,通过观察可知,下列说法中错误的是(C )A .这天15时气温最高B .这天3时气温最低C .这天最高气温与最低气温的差是13℃D .这天有两个时刻气温是30℃5.2017年1月4日上午,小华同学接到通知,他的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是(C )6则表中a 的值为(B )A .21.5B .20.5C .21D .19.57.一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x 表示注水时间,用y 表示浮子的高度,则用来表示变量y 与x 之间关系的选项是(B )8.(衡阳中考)小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分钟)之间的关系,根据图象,下列信息错误的是(A )A .小明看报用时8分钟B .公共阅报栏距小明家200米C .小明离家最远的距离为400米D .小明从出发到回家共用时16分钟9.贝贝利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8 A.861 B.863 C.865 D.86710.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S(阴影部分),则变量S 与t 的大致图象为(A )二、填空题(每小题4分,共20分)11.圆的周长C 与圆的半径r 之间的关系式为C =2πr ,其中常量是2,π.12.一蜡烛高20厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是h =20-4t .13.如图是某个计算y 值的程序,若输入x 的值是32,则输出的y 值是12.14.(义乌中考)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的图象,则小明回家的速度是每分钟步行80米.15.下面由小木棒拼出的系列图形中,第n 个图形由n 个正方形组成,请写出第n 个图形中小木棒的根数S 与n 的关系式S =3n +1.三、解答题(共50分)16.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有一家印刷社,收费y(元)与印刷数量x(张)之间关系如表:(1)(2)从上表可知:收费y(元)随印刷数量x(张)的增加而增大; (3)若要印制1 000张宣传单,收费多少元?解:(1)上表反映了印刷数量和收费两个变量之间的关系,印刷数量是自变量,收费是因变量. (3)由上表可知:印刷数量每增加100张,收费增加15元,所以每张的价格是0.15元. 所以收费y(元)与印刷数量x(张)之间的关系式为y =0.15x. 当x =1 000时,y =0.15×1 000=150(元). 故要印制1 000张宣传单,收费150元.17.(10分)青春期男、女生身高变化情况不尽相同,下图是小军和小蕊青春期身高的变化情况.(1)上图反映了哪两个变量之间的关系?自变量是什么?因变量是什么?(2)A,B两点表示什么?(3)小蕊10岁时身高多少?17岁时呢?(4)比较小军和小蕊青春期的身高情况有何相同与不同.解:(1)反映了身高随年龄的变化而变化的关系,自变量是年龄,因变量是身高.(2)A点表示小军和小蕊在11岁时身高都是140厘米,B点表示小军和小蕊在14岁时身高都是155厘米.(3)小蕊10岁时身高130厘米,17岁时身高160厘米.(4)相同点:进入青春期,两人随年龄的增长而快速长高,并且在11岁和14岁时两人的身高相同;不同点:11岁至14岁间小蕊的身高变化比小军的快些,14岁后小军的身高变化比小蕊的快些.18.(10分)如图所示,在△ABC中,底边BC=8 cm,高AD=6 cm,E为AD上一动点,当点E从点D沿DA向点A运动时,△BEC的面积发生了变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)若设DE长为x(cm),△BEC的面积为y(cm2),求y与x之间的关系式.解:(1)ED长度是自变量,△BEC的面积是因变量.(2)y与x的关系式为y=4x.19.(10分)新成药业集团研究开发了一种新药,在试验药效时发现,如果儿童按规定剂量服用,那么2小时的时候血液中含药量最高,接着逐步衰减,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当儿童按规定剂量服药后:(1)何时血液中含药量最高?是多少微克?(2)A点表示什么意义?(3)每毫升血液中含药量为2微克以上时在治疗疾病时是有效的,那么这个有效期是多长?解:(1)服药后2小时血液中含药量最高,最高是4微克.(2)A点表示血液中含药量为0.(3)有效期为5小时.20.(10分)如图,用一段长为60 m的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设与墙平行的篱笆AB的长为x m,菜园的面积为y m2.(1)试写出y与x之间的关系式;(2)当AB 的长分别为10 m 和20 m 时,菜园的面积各是多少?解:(1)因为与墙平行的篱笆AB 的长为x m , 所以长方形的另一边长为60-x2 m ,则长方形的面积为60-x2·x m 2.所以y 与x 之间的关系式为: y =60-x 2·x =-12x 2+30x. (2)当x =10时,y =-12×102+30×10=250(m 2);当x =20时,y =-12×202+30×20=400(m 2).21.(12分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h ),两车之间的距离为y(km ),图中的折线表示y 与x 之间的关系.根据图象解答下列问题: (1)甲、乙两地之间的距离为900km ; (2)请解释图中点B 的实际意义; (3)求慢车和快车的速度.解:(2)图中点B 的实际意义是:当慢车行驶4 h 时,慢车和快车相遇. (3)由图象可知,慢车12 h 行驶的路程为900 km , 所以慢车的速度为90012=75(km /h ).当慢车行驶 4 h 时,慢车和快车相遇,两车行驶的路程之和为900 km ,所以慢车和快车行驶的速度之和为9004=225(km /h ),所以快车的速度为225-75=150(km /h ).。
新北师大版七下第三章《变量之间的关系》测试卷(含答案) (4)

第四章 变量之间的关系变量的概念自变量 因变量变量之间的关系变量的表达方法表格法 关系式法速度时间图象 图象法路程时间图象一、变量、自变量、因变量、常量。
1、在某一变化过程中,不断变化的量叫做变量(可以取不同数值的量叫做变量)。
2、如果一个变量 y 随另一个变量 x 的变化而变化,则把 x 叫做自变量,y 叫做因变量。
( 3、在某个变化过程中,数值始终不变的量叫做常量。
4、自变量与因变量的确定: (1)自变量是先发生变化的量;因变量是后发生变化的量。
(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。
(3)利用具体情境来体会两者的依存关系。
(4)对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,我们就是说 x 是自变量 y 是应变量。
二、表格 1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。
(1)首先要明确表格中所列的是哪两个量; (2)分清哪一个量为自变量,哪一个量为因变量; (3)结合实际情境理解它们之间的关系。
2、绘制表格表示两个变量之间关系 (1)列表时首先要确定各行、各列的栏目; (2)一般有两行,第一行表示自变量,第二行表示因变量; (3)写出栏目名称,有时还根据问题内容写上单位; (4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。
(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。
三、关系式 1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。
2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。
3、求两个变量之间关系式的途径: (1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式。
(2)根据表格中所列的数据写出变量之间的关系式; (3)根据实际问题中的基本数量关系写出变量之间的关系式; (4)根据图象写出与之对应的变量之间的关系式。
最新北师大版七年级下册数学第三章《变量间的关系》知识点梳理及典型例题

第三章变量之间的关系知识点梳理及典型例题知识回顾——复习路程、速度、时间之间的关系:,,;知识点一常量与变量在一个变化过程中,我们称数值发生变化的量为 .数值始终不变的量为;在某一变化过程中,如果有两个变量x和y,当其中一个变量x在一定范围内取一个数值时,另一个变量y也有唯一一个数值与其对应,那么,通常把前一个变量x叫做,后一个变量y叫做自变量的;注意:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如:s=60t,速度60千米/时是,时间t和里程s为变量.t是,s是。
知识点二用表格表示变量之间的关系表示两个变量之间的关系的表格,一般第一行表示自变量,第二行表示因变量;借助表格,可以表示因变量随自变量的变化而变化的情况。
注意:用表格可以表示两个变量之间的关系时,能准确地指出几组自变量和因变量的值,但不能全面地反映两个变量之间的关系,只能反映其中的一部分,从数据中获取两个变量关系的信息,找出变化规律是解题的关键.知识点三用关系式表示两个变量之间的关系例如,正方形的边长为x,面积为y,则y=x2这个关系式就是表示两个变量之间的对应关系,其中x是,y是;一般地,含有两个未知数(变量)的等式就是表示这两个变量的关系式;【温馨提示】(1)写关系式的关键是写出一个含有自变量和因变量的等式,将表示因变量的字母单独写在等号的左边,右边是用自变量表示因变量的代数式.(2)自变量的取值必须使式子有意义,实际问题还要有实际意义.(3)实际问题中,有的变量关系不一定能用关系式表示出来.【方法技巧】列关系式的关键是记住一些常见图形的相关公式和弄清两个变量间的量的关系.根据关系式求值实质上是求代数式的值或解方程.知识点四用图象表示两个变量间的关系图象法就是用图象来表示两个变量之间的关系的方法;在用图象法表示变量之间的关系时,通常用水平方向的数轴(横轴)上的点表示,用竖直方向的数轴(纵轴)上的点表示,用坐标来表示每对自变量和因变量的对应值所在位置;【温馨提示】图象法能直观、形象地描述两个变量之间的关系,但只是反映两个变量之间的关系的一部分,而不是整体,且由图象确定的数值往往是近似的.【方法技巧】(1)借助图象,过某点分别向横轴、纵轴作垂线可以知道自变量取某个值时,因变量取什么值.(2)借助图象可判断因变量的变化趋势:图象自左向右是上升的,则说明因变量随着自变量的增大而增大,图象自左向右是上升下降的,则说明因变量随着自变量的增大而增大减小,图象自左向右是与横轴平行的,则说明因变量在自变量的增大的过程中保持不变.知识点五变量之间的关系的表示方法比较表示变量之间的关系,可以用、和;其中表格法一目了然,使用方便,但列出的数值有限,不容易看出因变量与自变量的变化规律;关系式法简单明了,能准确反映出整个变化过程中因变量与自变量之间的相互关系,但是求对应值时,要经过比较复杂的计算,而且在实际问题中,有的变量之间的关系不一定能用关系式表示出来;图象法的特点是形象、直观,可以形象地反映出变量之间的变化趋势和某些性质,是研究变量性质的好工具,其不足是由图象法往往难以得到准确的对应值;专题一能从表格中获取两个变量之间关系的信息专题二根据表格确定自变量、因变量及变化规律4.一辆小汽车在高速公路上从静止到启动10秒之间的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个变量是自变量?哪个变量是因变量?(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?(3)当t每增加1 s时,v的变化情况相同吗?在哪一秒钟,v的增加量最大?(4)若在高速公路上小汽车行驶速度的上限为120 km/h,试估计还需几秒这辆小汽车的速度就达到这个上限?专题三用关系式表示两个变量之间的关系5.某水果批发市场香蕉的价格如下表:专题四用关系式求值7.一棵树苗,栽种时高度约为80厘米,为研究它的生长情况,测得数据如下表:(1)此变化过程中是自变量,是因变量;(2)树苗高度h与栽种的年数n之间的关系式为;(3)栽种后后,树苗能长到280厘米.8.某市为了鼓励市民节约用水,规定自来水的收费标准如下表:(1)现已知小伟家四月份用水18吨,则应缴纳水费多少元?(2)写出每月每户的水费y(元)与用水量x(吨)之间的函数关系式.(3)若已知小伟家五月份的水费为17元,则他家五月份用水多少吨?专题五曲线型图象9.温度的变化是人们经常谈论的话题.请你根据图象,讨论某地某天温度变化的情况如图所示:(1)上午10时的温度是度,14时的温度是度;(2)这一天最高温度是度,是在时达到的;最低温度是度,是在时达到的;(3)这一天从最低温度到最高温度经过了小时;(4)温度上升的时间范围为,温度下降的时间范围为;(5)你预测次日凌晨1时的温度是.10.如图,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中.(1)请分别找出与各容器对应的水的高度h和时间t的变化关系的图象,用直线段连接起来;(2)当容器中的水恰好达到一半高度时,请在关系图的t轴上标出此时t值对应点T的位置.专题六折线型图象11.如图,表现了一辆汽车在行驶途中的速度随时间的变化情况.(1)A、B两点分别表示汽车是什么状态?(2)请你分段描写汽车在第0分钟到第19分钟的行驶状况.(3)司机休息5分钟后继续上路,加速1分钟后开始以60 km/h的速度匀速行驶,5分钟后减速,用了2分钟汽车停止,请在原图上画出这段时间内汽车的速度与时间的关系图.栽种以后的年数n/年高度h/厘米1105213031554180……每月每户用水量每吨价(元)不超过10吨部分0.50超过10吨而不超过20吨部分0.75超过20吨部分 1.50第三章 变量之间的关系复习题1.一名同学在用弹簧做实验,在弹簧上挂不同质量的物体后,弹簧的长度就会发生变化,实验数据如下表:(2)弹簧不挂物体时的长度是多少?如果用x 表示弹性限度内物体的质量,用y 表示弹簧的长度,那么随着x 的变化,y 的变化趋势如何?(3)如果此时弹簧最大挂重量为15千克,你能预测当挂重为10千克时,弹簧的长度是多少?2.如图:将边长为20cm 的正方形纸片的四个角截去相同的小正方形,然后将截好的材料围成一个无盖的长方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1 常量与变量
知识要点
了解常量与变量的概念.
在一个过程中,固定不变的量叫做常量,可取不同数值的量叫做变量.常量和变量不是绝对的,而是相对的.常量与变量的相对性,就是说在一过程中的常量在另一过程中可能是变量;同样,在一过程中的变量在另一过程中也可能是常量.在判断常量和变量时,切不可忽视在何变化过程中.
基础能力平台
1.在圆的周长公式C=2πR中,变量是_______,常量是________,若用C来表示R,•则表达式是_______.
2.对于圆的面积公式S=πR2,下列说法中,正确的是()
A.π是变量 B.R2是常量
C.S、π、R都是变量 D.S与R是变量
3.写出下列各问题中的关系式,并指出其中的常量与变量:
(1)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)•的关系式;
(2)n边形的内角和S与边数n的关系式;
(3)梯形上、下底边的长分别是4cm和10cm,梯形的面积为y(cm2)与高x(cm)•的关系式;
(4)n位同学购买单价为9元/本的教科书,每人一本,总金额为y(元)与n的关系式;(5)设地面的气温是21℃,每升高1km,气温就下降6℃.高度hkm处的气温为t℃与h 的关系式;
(6)一个宽3cm、长4cm的长方形,如果它的长增加xcm,宽度不变,•那么面积增加ycm2与x的关系式.
4.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度.
(1)在这个变化过程中,变量和常量分别是什么?
(2)分别计算当x为1km,5km,10km,20km时地壳的温度.(地表温度为2℃)
拓展延伸训练
一辆汽车以45km/h的速度行驶,设行驶的路程为S(km),行驶的时间为t(h).(1)S与t之间的关系式是什么?
(2)在汽车行驶的路程、行驶的时间、行驶的速度这些量中,哪些是常量?•哪些是变量?
(3)用表格表示当t从2时变到10时(每次增加1)时,S相应的值;
(4)t逐渐增加时,S怎样变化?说说你的理由;
(5)当t=0时,S=?,这说明什么?
自主探究提高
1.科学家认为二氧化碳(CO )的释放量越来越多是地球变暖的原因之一,•下表是1960~2000
(1 (2)这些量之间有什么关系?
2.某银行用下图描绘了一周内每天的储蓄额的变化情况:
(1)图中表示的量,哪些是变量?
(2)这一周内,哪天的储蓄额最多,哪天的储蓄额最少?
(3)哪些天的储蓄额大约是相同的?
(4)这一周的平均日储蓄额是多少?
答案:
【基础能力平台】
1.R ,C 2π R=2C π
2.D 3.(1)s=60t ,常量是60千米/时,变量是s (千米)和t (时)
(2)s=180(n-2),常量是180,2,变量是S ,n ;
(3)y=7x ,常量是7,变量是x 、y ;
(4)y=9n ,常量是9,变量是n 、y ;
(5)t=21-6t ,常量是21,6,变量是h ,t ;
(6)•y=3x ,常量是3,变量是x ,y .
4.(1)变量是x ,y ,常量是3.5和t
(2)•当x•为1km ,•5km ,10km ,20km 时,
地壳的温度分别为5.5℃,19.5℃,37℃,72℃
【拓展延伸训练】
(1)s=45t
(2
(4
(5)当t=0时,s=0,这说明汽车原地不动.(静止状态)【自主探究提高】
1.(1)变量是全世界释放的二氧化碳量和年代;
(2)每隔10年,二氧化碳的释放量都在增加
2.(1)变量是日期和储蓄额;
(2)14日的储蓄额最高,11日的储蓄额最低
(3)13日和15日的储蓄额相同,16日和17日的储蓄额相同(4)•日平均储蓄额为38万元.。