小学数学比和比例应用题(小升初)
小升初总复习:比和比例(试题)-六年级下册数学人教版

比及比例小升初总复习练习题一、选择题1、圆柱体和圆锥体的体积比是3:1,如果它们的底面积相等,那么它们的()A.高也相等B.高的比是1:3 C.高的比是3:12、女生占全班人数的45%,这个班男生与女生人数的比是()。
A.3∶2 B.11∶9 C.9∶113、把3:5的前项加上9,要使比值不变,后项应加上()A.9 B.12 C.154、若4x=3y(x≠0)则()。
A.x∶y=4∶3 B.x∶4=y∶3 C.y∶4=x∶3 D.4∶x=3∶y5、一个三角形三个内角的度数比是1∶1∶2,则这个三角形是()。
A.直角三角形B.钝角三角形C.锐角三角形6、两个圆柱形容器,它们的高相等,底面半径的比是1∶3,它们的体积比是()。
A.1∶3 B.1∶6 C.1∶9 D.1∶17、已知2x=y-4(y>4),那么x和y()。
A.成正比例B.成反比例C.不成比例二、填空题1、一幅地图的比例尺是1∶2000000,量得甲、乙两地的图上距离为24厘米,甲、乙两地的实际距离是()千米;丙、丁两地的实际距离是180km,在这幅地图上,丙、丁两地的图上距离是()厘米。
2、非0自然数A和B,如果A=13B,那么A、B的最大公因数是(),A和B成()比例。
3、把10克糖放入70克水中,糖和糖水的比是()4、在比例里,两个内项的积是2,如果一个外项是0.5,那么另一个外项是()。
5、一个精密零件的实际长度是6毫米,在图纸上的长度是6厘米,这张图纸的比例尺是()。
6、如图是一个平行四边形,其中三角形A比三角形B多4.5平方厘米,三角形B的面积与三角形C的面积比是2:3,则平行四边形面积为___________ 。
7、A 、B 两圆的重叠部分占圆A 的52,占圆B 的41,那么圆B 面积与圆A 面积之比为________ 。
三、解决问题1、一列货车前往灾区运送救灾物资,3小时行驶了150km ,从出发点到灾区共有450km ,按照这样的速度,走完全程一共需要多少小时?(用比例解)2、在1:1800000的地图上一段6cm 长的公路,在另外一幅地图上同样的这条公路长8cm ,求另外这幅地图的比例尺.3、冬冬家的客厅是正方形的,用边长0.8m 的方砖铺地,正好需要50块。
小升初比和比例应用题专题练习(应用题)人教版六年级下册数学

人教版小升初比和比例应用题专题练习学校:___________姓名:___________班级:___________考号:___________一、解答题1.希望小学六年级学生中,男生与女生的人数比为7∶5,又转来15名男生,这时男生与女生的人数比为3∶2。
希望小学六年级现在有多少名学生?2.下面是三名同学某次足球练习情况。
姓名射门/次射中/次张晓156李欣105王浩1810(1)张晓的射中次数与射门次数的比是(),比值是()。
(2)李欣的射中次数与射门次数的比是(),比值是()。
(3)王浩的射中次数与射门次数的比是(),比值是()。
(4)马上举行全省小学生足球赛,各个小学推荐一名优秀的足球选手。
如果你是体育老师,你会推荐谁去?为什么?3.甲、乙、丙三人参加长跑比赛,甲和乙速度比是3:4,乙和丙速度的比是2∶5,求甲、乙、两三人速度的比.4.五(1)班男、女生人数比是12:11,又转来4名女生后,全班共有50人,求现在男、女生的人数比?5.某工厂有三个车间,第一车间人数与总数的比是1∶4,第二车间人数是第三车间的78。
第一车间比第三车间少21人,这个工厂一共有多少人?6.园林绿化队要栽一批树苗,第一天栽了总数的15%,第二天栽了76棵,这时剩下的与已栽的棵数的比是3:5.这批树苗一共有多少棵?7.新学期,六(一)班购置图书50本,要分给班上的男生和女生,男生人数和女生人数的比是1∶4,男生和女生各能分到多少本书?8.老师给班里买了90本儿童读物,按4∶5分别借给一组和二组。
这两个组各借书多少本?(用两种方法解答)9.一台播种机第一次工作3时,播种17100m2;第二次工作4时,播种22800m2,分别写出每次播种的面积和工作时间的比,你认为它们能组成比例吗?为什么?10.两个外项的积加上两个内项的积结果是120,其中一个内项是最小的质数,一个外项是最小的合数,请你写出所有符合条件的比例。
11.五一假期,郑磊和爸爸妈妈自驾去外地看外婆。
人教版小升初比和比例应用题专题练习

人教版小升初比和比例应用题专题练习学校:___________姓名:___________班级:___________考号:___________一、解答题1.足球场要对所有座位进行维护,上半月维护的个数与总数的比是1∶5。
如果再维护(1)判断这种丝线的长度和应付金额是不是成正比例,并说明理由。
(2)根据表中数据,在如图中描出这种丝线的长度和应付金额所对应的点,再把这些点依次连接起来。
(3)300元可以买米这种丝线;购买35米这种丝线需要元。
16.疫情期间,志愿者要给某封控小区地面和门窗进行消杀,按照说明,3.5mL的消毒液需要加入1050mL的水,按照此方法,如果用200mL的消毒液,需要加入多少升水?(用比例解答)17.一间教室用边长4分米的方砖铺地,需要300块,如果改用边长5分米的方砖铺地,可以少用多少块砖?18.在一幅比例尺为的地图上,量得瑞丽到A市的距离是15厘米。
今年瑞丽疫情期间,一辆大卡车从A市运送医疗紧急物品经过8小时到达瑞丽,该卡车的平均速度是每小时多少千米?19.将一个钟表的零件画在图纸上长是5厘米,这幅图纸的比例尺是40∶1,这个零件的实际长度是多少毫米?20.(1)下面方格纸上三角形ABC的顶点A的位置可以用(8,7)表示,那么顶点B 的位置用数对表示是,顶点C的位置用数对表示是。
(2)在方格纸上画出三角形ABC向左平移4格得到的图形。
(3)在方格纸上画出三角形ABC绕C点逆时针旋转90°得到的图形。
(4)在方格纸上将梯形放大,使放大后的图形每边的长是原来的2倍。
参考答案:54×=24(米),54×=30(米),14,最后用分数乘法求出男生、女生各分到多少本图书。
50×114+=14=40(本)答:男生分到10本书,女生分到【点睛】掌握按比例分配问题的解题方法是解答题目的关键。
个;乙35个35,乙每天做的零件个数占零件总个数的35,最后用零件总个数乘他们每天各自做的零件个数占全部零件个数的分率;方法二:把每天两人做的零件总个数平均分成()份,甲每天做的零件个数占其中的份,乙每天做的零件个数占其中的份,先求出每份的量,最后乘各自对应的份数,据此解35=21(个)535=35(个)每份的量:56÷(3+(2x+60)×5=(7x+60)×210x+60×5=14x+60×210x+300=14x+12014x-10x=300-1204x=180x=180÷4x=45所以A的原价为7×45=315(元)B的原价为2×45=90(元)答:A商品的原价是315元,B商品的原价是90元。
六年级下学期数学小升初比和比例专项练习及答案(基础+提升)

六年级下学期数学小升初比和比例专项练习一.选择题(共20题,共40分)1.在下列各组量中,成正比例的量是()。
A.路程一定,速度和时间B.长方体底面积一定,体积和高C.正方形的边长和面积2.三个数的比是1∶2∶3,平均数是60,则最大的一个数是()。
A.30B.90C.603.下面()中的四个数不能组成比例。
A.16,8,12,6B.8,3,12,42C.14,2,,D.0.6,1.5,20,504.()能与:组成比例。
A.3:4B.4:C.3:D.:5.同时同地,物体的高度和影长()。
A.成正比例B.成反比例C.不成比例6.汽车总辆数一定,每排停放的辆数和停放的排数()。
A.成正比例B.成反比例C.不成比例D.不成反比例7.当X、Y互为倒数时,X与Y()。
A.成正比例B.成反比例C.不成比例8.人的体重和身高()。
A.不成比例B.成正比例C.成反比例9.把一个长8m,宽6m的长方形画在作业本上,选择比例尺比较合适的是()。
A.1:10B.1:100C.1:1000010.下面的两种相关联的量成反比例的是(并说明理由)()。
A.长方形的周长一定,长和宽。
B.圆锥的体积一定,底面积和高。
11.下面第()组的两个比不能组成比例。
A.7∶8和14∶16B.0.6∶0.2和3∶1C.19∶110 和10∶912.下面各比,能和0.4∶组成比例的是()。
A.∶B.5∶8C.8∶5 D .∶13.当()一定时,平行四边形的底和高成反比例。
A.底B.高C.面积14.如果A×2=B÷3,那么A∶B=()。
A.2∶3B.6∶1C.1∶615.下面几句话中,正确的有()。
①路程一定,速度和时间成反比例;②正方形的面积和边长成正比例;③三角形面积一定,底和高成反比例;④x+y=25,x与y成反比例.A.①和②B.①和③C.①和④D.③和④16.下面x和y成正比例关系的是()。
A.=yB.3x=4yC.y=x-3D.=5+17.把9、3、21再配上一个数使这四个数组成一个比例式,这个数可能是()。
六年级下册数学小升初比和比例专项练习附完整答案(网校专用)

六年级下册数学小升初比和比例专项练习一.选择题(共20题,共42分)1.在下面各比中,能与:组成比例的比是()。
A.4:3B.3:4C.:3 D.:2.给一个房间铺地砖,所需砖的块数与每块砖的()成反比例。
A.边长B.面积C.体积3.如果圆锥的底面半径一定,那么圆锥的体积与圆锥的高()。
A.成正比例B.成反比例C.不成比例4.下面几句话中,正确的有()。
①路程一定,速度和时间成反比例;②正方形的面积和边长成正比例;③三角形面积一定,底和高成反比例;④x+y=25,x与y成反比例.A.①和②B.①和③C.①和④D.③和④5.下面成正比例的量是()。
A.差一定,被减数和减数B.单价一定,总价和数量C.互为倒数的两个数6.下面x和y成正比例关系的是()。
A.=yB.3x=4yC.y=x-3D.=5+7.根据a×b=c×d.下面不能组成比例的是()。
A.d∶a和b∶cB.a∶c和d∶bC.b∶d和a∶c D.a∶d和c∶b8.分子一定,分母和分数值()。
A.成正比例B.成反比例C.不成比例D.不成反比例9.在一幅比例尺是()的地图上,量得上海到杭州的距离是3.4厘米,上海到杭州的实际距离是170千米。
A.1∶500B.1∶50000C.1∶500000D.1∶500000010.下面四句话中错误的有()句。
①教师节、儿童节、国庆节所在的月份都是小月。
②四个圆心角是90°的扇形可以拼成一个圆。
③如果两个质数的和仍是质数,那么它俩的积一定是偶数。
④如果ab+4=40,那么a与b成反比例。
A.1B.2C.3D.411.圆柱的体积一定,它的高和()成反比例。
A.底面半径B.底面积C.底面周长12.当X、Y互为倒数时,X与Y()。
A.成正比例B.成反比例C.不成比例13.和一定,加数和另一个加数()。
A.成正比例B.成反比例C.不成比例14.混凝土公司要配置一种混凝土,将黄沙、石子和水泥的质量按照4:6:1的比进行搅拌。
(小升初高频考点)比和比例(专项训练)六年级下册数学人教版

(小升初高频考点)比和比例(专项训练) 2022-2023学年六年级下册数学人教版一.选择题(共8小题)1.(2022•金平区)一个圆柱体的侧面积展开后是正方形,这个圆柱体底面的直径与高的比是( ) A .1:πB .π:1C .1:2π2.(2022•罗源县)如果牛的只数比羊的只数少15,那么牛的只数和羊的只数的比是( ) A .1:5B .5:1C .4:5D .5:43.(2022•河北区)( ):40=3()=3÷8=( )%按顺序填空完全正确的是( ) A .15,8,37.5B .15,37.5,8C .8,15,37.5D .37.5,15,84.(2022•偃师市)如果A :B =16,那么(A ×6):(B ×6)=( ) A .1B .16C .1:1D .无法确定5.(2022•黔东南州)A ÷3=B ×7,A 和B 的最简整数比是( ) A .3:7B .21:1C .7:36.(2022•虞城县)两半圆的半径的比是1:2,它们的面积比是( ) A .1:2B .1:3C .1:4D .1:67.(2022•如皋市)如果12x =23y (x 、y ≠0),那么x :y =( ) A .3:4B .4:3C .2:3D .3:28.(2023•巴州区)下列关系式中x 、y 都不为0,则x 与y 不是成反比例关系的是( ) A .x =4yB .y =3÷xC .x =1y×π D .x =y 4二.填空题(共8小题)9.(2023•巴州区)小梅参加体育锻炼后喝了一杯100毫升含盐5%的盐水,盐和盐水的比是 。
10.(2022•淅川县)习近平总书记在全国教育大会上提出教育要“五育并举”。
西海小学六年级正在参加劳动实践周活动,优优准备做扎染,用15克紫色颜料和6千克水配制染料液。
配成的染料与水的比是 。
11.(2022•唐山) :64=6()= ÷ =0.375= %12.(2022•竞秀区)3:5的前项乘4,要使比值不变,后项应加上 . 13.(2023•巴州区)58:0.125化成最简整数比是 ,比值是 。
小升初专项训练比和比例应用题

小升初专项训练比和比例应用题练习1.三个分数的和是214,它们的分母相同,分子的比为3∶5∶7,这三个最简分数是______。
2.五年级甲、乙两班人数的比是5∶4,在义务劳动中,如果从甲班调21人到乙班后,甲、乙两班人数的比是2∶3,甲、乙两班原来各有_____人。
3.在3∶5里,如果前项加上6,要使比值不变,后项应加上_______。
4.光明小学有三个年级,一年级学生人数占全校学生总人数的25%,二年级与三年级学生人数的比是3∶4。
已知一年级学生比三年级学生少40人,一年级有学生______人。
5.甲、乙两人同时从A 、B 两地相向而行,甲行完全程要6小时。
两人相遇时,所行距离之比是3∶2,这时甲比乙多行18千米,乙每小时行_____千米。
6.甲、乙两人步行的速度之比是13∶11,如果甲、乙两人分别由A 、B 两地同时出发,相向而行,0.5小时后相遇,如果他们同向而行,那么甲追上乙需要_____小时。
7.甲、乙两数的和是1.98,如果把乙数的小数点向右移动一位,这两个数的比是1∶1,原来甲数是_____,乙数是_______。
8.甲、乙两人同时骑自行车从东、西两镇相向而行,甲和乙的速度比为3∶4,已知甲行了全程的13离相遇地点还有20千米,相遇时甲比乙少行_____千米。
9.小军行走的路程比小红多14,而小红行走的时间比小军多110,小军与小红速度比是_______。
10.车过河交费3元,马过河交费2元,人过河交费1元。
某天,车、马过河数的比为2∶9,马、人过河数的比为3∶7,这天共收到过河费945元,求这天渡过河的车、马、人各是___________。
11.王师傅制造一种机器零件,制造每个所用的时间,由过去的9分钟,减少到5分钟。
过去每天制造80个零件。
现在每天制造_____个机器零件。
12.一个车间有两个小组,第一小组与第二小组人数的比是5∶3;如果第一小组14人到第二小组时,第一小组与第二小组的比则是1∶2。
小升初重点专题比和比例(易错专项)-小学数学六年级下册

小升初重点专题:比和比例(专项训练)-小学数学六年级下册苏教版一、单选题1.下面各组比中,比值相等的一组是( )。
A .14:15=4:5B .16:15=15:16C .3:2.5=6:52.六(2)班男生人数是女生的53,女生人数与全班人数的比是( )。
A .3∶5 B .3∶8 C .8∶33.100克糖水中有25克糖,糖与糖水的比和糖与水的比分别为( )。
A .1:4和1:3B .1:4和1:5C .1:5和1:44.一个三角形三个内角度数的比是5:3:2,这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形5.甲数的45等于乙数的23(甲数、乙数都不为0),那么甲数与乙数的比是( ) A .23 B .6:5 C .5:66.一个长方形的周长是100厘米,长与宽的比是3:2,这个长方形的面积是( )。
A .600平方厘米 B .100平方厘米 C .2400平方厘米二、判断题7.把一个比的前项扩大到原来的3倍,后项缩小到原来13,它的比值不变。
( ) 8.12、今年小华和小芳的年龄比是4:5,那么3年后她们的年龄比还是4:5。
( )9.等腰直角三角形中,顶角和底角度数的比是2:1。
( )10.已知甲、乙两个数的比是5:7,那么甲数比乙数少25。
( ) 11.一杯糖水溶液,糖和水的比是1∶6,喝掉12后糖与水的比是1∶3。
( ) 三、填空题12.把78×310=38×710改写成比例 。
13.在一个比例中,两个外项互为倒数,其中一个内项是25,另一个内项是 。
14.如果5a =6b ,那么a :b = : ;b :a = : 。
15.学校合唱队原来男、女生人数的比是2:3;后来又有8名男生加入合唱队,这时合唱队正好有48人,现在合唱队男、女生人数的比是 。
16.将10千米的公路,用5厘米在纸上画出来,比例尺是 。
17.大小两个圆的直径的比是3∶2,它们的半径之比是 ,周长之比是 ,面积之比是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲 比和比例、工程、路程等应用题
一、基础知识
两个数的的比实际上就是两个数的商 a:b=b
a =a ÷
b a:b=c:d 可以化作
b a =d
c ;也可以化作a ×d=c ×b 。
三个数的比叫连比,如a:b:c ,满足a:b:c=na: nb:nc(n ≠0)。
正比例: y=kx
反比例: y ·x =k (定值)或y=k/x
例如:速度v 一定时,路程s 与时间t 成正比例即s=vt 速度v 与时间t 就成反比例;即v=s/t
工作效率一定时,工作量与工作时间成正比例,即工作量=工作效率×工作时间;工作效率与 工作时间成反比例;工作效率=工作量/工作时间
浓度一定时,溶质重量与溶液重量成正比例,即溶质重量=溶液重量×浓度
溶质重量一定时,浓度与溶液重量成反比例;浓度=溶液重量/溶质重量
二、典型例题
例1、①a 的75等于b 的4
3,那么b a :=________. ①4:3:=b a ,6:5:=c b ,那么=c b a ::__________.
例2、甲、乙两个瓶子里装的酒精体积相等,甲瓶中究竟与水的体积比是3:1,乙瓶中究竟与水的体积比是4:1,现在把两瓶溶液混合在一起,这时酒精和水的体积比是多少?
例3、在比例尺为1:4000000的地图上,量得A 城与B 城的距离是2.5厘米,一辆汽车以每小时50千米的速度从A 城开往B 城,几小时可以到达?
例4、甲、乙、丙三个数的比试6:7:8,已知这三个数的平均数是42,求甲、乙、丙三个数各是多少?
例5、甲、乙两个课外小组人数比是5:3,如果从甲组调9人去乙组,那么甲、乙两组人数比是2:3,求甲、乙两组原来各有多少人.
例6、有两支同样质地的蜡烛,粗细、长短不同,一支能燃烧3.5小时,一支能燃烧5小时,当燃烧2小时的时候,两支蜡烛的长度恰好相同,这两支蜡烛长度之比是多少?
三、比和比例应用题随堂练习
1、甲乙两厂人数的比是7∶6。
从甲厂调360人到乙厂后,甲乙两厂人数比为2∶3,甲乙两厂原有多少人?
2、一辆汽车在甲、乙两站之间匀速行驶,往返一次共用去4小时(停车时间不计算在内)。
已知汽车去时速度为每小时45千米,返回时速度为每小时30千米,甲乙两站相距多少千米?
3、A 、C 两站相距10千米,A 、B 两站相距2千米,甲车从A 站,乙车从B 站同时向C 站开去,当甲车到达C 站时,乙车距C 站还有0.5千米,甲车是在离C 站多远的地方追上乙车的?
4、某班在一次数学考试中,平均成绩是78分,男、女生各自的平均成绩分别是75.5分、81分。
这个班男、女生人数的比是多少?
5、王师傅原定在若干小时内加工完一批零件。
他估算了一下,如果按原定速度加工120个零件后工作效率提高25%,可提前40分钟完成;如一开始工作效率就提高20%的话,就可提前1小时完成。
他原计划每小时加工多少个零件?
6、一只野兔跑出80步后,猎狗才追它。
野兔跑8步的路程,猎狗只需跑3步;猎狗跑4步的时间,野兔要跑9步。
那么猎狗至少要跑多少步才能追上野兔?
7、某团体100名会员,男会员与女会员的人数之比是14∶11,会员分成三个组,甲组人数与乙、丙两组人数之和一样多,且各组男会员与女会员人数之比是:甲:(12∶13)、乙:(5∶
3)、丙:(2∶1)。
那么丙组有多少名男会员?
四、巩固练习
1、一个三角形的三个内角之比是2:3:4,求这个三角形三个内角的度数。
2、将88厘米的铁丝焊成一个长方体框架,长方体长、宽、高的比是5:4:2,求这个长方体的体积是多少立方厘米?
3、有一块合金,其中铜与锡的比试4:3,如果再加入8克铜,所得新合金共63克,求新合金铜和锡的比是多少?
4、在比例尺为1:5000000的地图上量得A 、B 两地的距离是5厘米,若把比例尺改为1:4000000,那么A 、B 两地应画多少厘米?
5、已知3:1:=y x ,11:12:=z y ,求z y x ::.
6、两个杯子里装有体积相等的盐水溶液.一个杯子里盐与水的体积之比是5:2,另一个杯子里盐与水的体积之比是1:3,若把两个杯子里的盐水混合,那么混合后盐与水的比是多少?
7、甲数的5
2等于乙数的25%,甲数与乙数的比是多少? 8、长方形草坪ABCD 被分成面积相等的甲、乙、丙和丁四份,其中图形甲长和宽的比是1:2:=b a ,求其中图形乙的长和宽的比是多少.
9、某班一次测试全班平均分是82分,男生的平均分是79分,女生的平均分是87分,求这个班男生与女生人数的比.
10、甲、乙两包糖的重量比是3:4,如果从甲包取50克放入乙包,则两包的重量比是2:5,求两包糖的总重量.
11、甲走的路程比乙多31,乙用的时间比甲多5
1,求甲、乙两人的速度比. 12、明明读一本故事书,已读的页数和未读的页数比是2:5,如果再读20页,则已读和未读页数的比是3:4,求这本书有多少页.
13、直角三角形三条边的长度比是3:4:5,已知这个三角形的周长是36厘米,求三角形面积.
14、某校合唱队与舞蹈队人数之比是3:2,如果将合唱队的队员调10名到舞蹈队,那么这时的人数比是7:8,原合唱队有多少人?
15、王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的,李先生的年龄是另外三人年龄和的
,赵先生的年龄是其他三人年龄和的,杨先生26岁,你知道王先生多少岁吗?
16、某学校入学考试,参加的男生与女生人数之比是4:3。
结果录取91人,其中男生与女生人数之比是8:5。
未被录取的学生中,男生与女生人数之比是3:4。
问报考的共有多少人?
17、幼儿园大班和中班共有32名男生,18名女生。
已知大班男生数与女生数的比为5:3,中班男生数与女生数的比为2:1,那么大班有女生多少名?
18、有若干个突击队参加某工地会战,已知每人突击队人数相同,而且每个队的女队员的人数是该队的男队员的
,以后上级从第一突击队调走了该队的一半队员,而且全是男队员,于是工地上的全体女队员的人数是剩下的全体男队员的,问开始共有多少支突击队参加会战?
19、一堆围棋子有黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,求开始时黑棋子与白棋子各有多少枚?
21314
118
7178。