(优辅资源)专题03函数的图像与性质-高考数学(理)备考易错点专项复习
函数图像知识点高三

函数图像知识点高三函数图像是高中数学中的重要内容之一,也是高三学生需要掌握的知识点之一。
了解函数图像的性质和特点,对于解决实际问题以及科学研究具有重要意义。
本文将从以下几个方面介绍高三学生需要了解的函数图像知识点。
一、函数的概念与性质函数是自变量和因变量之间的一种关系,通常用$f(x)$来表示。
函数的自变量是$x$,因变量是$f(x)$。
函数的主要性质包括:定义域、值域、单调性、奇偶性、周期性等。
1. 定义域:函数的自变量的取值范围。
2. 值域:函数的因变量的取值范围。
3. 单调性:函数在定义域内的增减趋势。
4. 奇偶性:函数的对称性,即$f(-x)=-f(x)$为奇函数,$f(-x)=f(x)$为偶函数。
5. 周期性:函数在定义域内以一定的周期重复出现。
二、常见函数的图像高三学生需要了解的常见函数及其图像包括:线性函数、二次函数、指数函数和对数函数。
1. 线性函数:线性函数的图像为一条直线,表达式为$f(x)=ax+b$,其中$a$为斜率,$b$为截距。
2. 二次函数:二次函数的图像为一条抛物线,表达式为$f(x)=ax^2+bx+c$,其中$a$为抛物线的开口方向,$b$和$c$则决定了抛物线的位置和形状。
3. 指数函数:指数函数的图像为一条逐渐增长或逐渐衰减的曲线,表达式为$f(x)=a^x$,其中$a>0$且$a\neq 1$。
4. 对数函数:对数函数的图像为一条逐渐增长或逐渐衰减的曲线,表达式为$f(x)=\log_a{x}$,其中$a>0$且$a \neq 1$。
三、函数图像的性质与变换函数图像具有一些常见的性质与变换,包括平移、伸缩、翻转等。
1. 平移:函数图像的平移是指将函数图像沿着坐标轴进行移动。
水平平移会使函数图像在横坐标方向上发生变化,垂直平移会使函数图像在纵坐标方向上发生变化。
2. 伸缩:函数图像的伸缩是指通过改变函数表达式中的参数来改变函数图像的形状和位置。
函数与图像的基本概念与性质

函数与图像的基本概念与性质一、函数的概念与性质1.函数的定义:函数是两个非空数集A、B之间的对应关系,记作f:A→B。
2.函数的性质:(1)一一对应:对于集合A中的任意一个元素,在集合B中都有唯一的元素与之对应。
(2)自变量与因变量:在函数f中,集合A称为函数的定义域,集合B称为函数的值域。
对于定义域中的任意一个元素x,在值域中都有唯一的元素y与之对应,称为函数值。
(3)函数的单调性:若对于定义域中的任意两个元素x1、x2,当x1<x2时,都有f(x1)<f(x2),则称函数f在定义域上为增函数;若对于定义域中的任意两个元素x1、x2,当x1<x2时,都有f(x1)>f(x2),则称函数f在定义域上为减函数。
3.函数的分类:(1)线性函数:形如f(x)=ax+b(a、b为常数,a≠0)的函数。
(2)二次函数:形如f(x)=ax²+bx+c(a、b、c为常数,a≠0)的函数。
(3)分段函数:形如f(x)={g1(x), x∈D1}{g2(x), x∈D2}的函数,其中D1、D2为定义域的子集,且D1∩D2=∅。
二、图像的概念与性质1.函数图像的定义:函数图像是指在平面直角坐标系中,根据函数的定义,将函数的定义域内的每一个点(x, f(x))连接起来形成的图形。
2.函数图像的性质:(1)单调性:增函数的图像呈上升趋势,减函数的图像呈下降趋势。
(2)奇偶性:若函数f(-x)=-f(x),则称函数f为奇函数;若函数f(-x)=f(x),则称函数f为偶函数。
奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
(3)周期性:若函数f(x+T)=f(x),则称函数f为周期函数,T为函数的周期。
周期函数的图像具有周期性。
(4)拐点:函数图像在拐点处,曲线的斜率发生改变。
三、函数与图像的关系1.函数与图像的相互转化:通过函数的解析式,可以在平面直角坐标系中绘制出函数的图像;同时,根据函数图像的形状,可以反推出函数的解析式。
高考函数图像知识点总结

高考函数图像知识点总结函数图像是高考数学中的重要内容,掌握函数图像的知识点对于解题和分析函数的性质非常重要。
在高考中,对于函数的图像,常常需要求出函数的极值、最值、交点等信息,因此掌握函数图像的形态及特点是非常必要的。
本文将对高考函数图像的知识点进行总结,并且分析函数图像的性质。
函数的线性变化是函数图像的重要特点之一。
如果函数y=f(x)的图像经过点(a,f(a)),而a和f(a)是常数,那么如果将函数y=f(x)的每个y值都增加或减少一个常数k,那么图像将上下平移k个单位。
如果将函数y=f(x)的每个x值都增加或减少一个常数k,那么图像将左右平移k个单位。
同时,如果将函数y=f(x)的每个y值都增加或减少一个常数k,那么函数的图像将整体上下平移k个单位,图像的形态不会发生变化。
二次函数的图像形态主要受到二次项系数(a)的影响。
当a>0时,二次函数的图像开口向上,称为抛物线;当a<0时,二次函数的图像开口向下。
同时,二次函数的图像与抛物线的对称轴有关,对称轴的表达式为x=-b/2a,对称轴与图像的交点被称为抛物线的顶点。
指数函数是一类常见的函数,它的图像形态有着明显的特点。
指数函数的图像一般从左下方向上右上方逼近x轴,并且在x轴上有一个一个水平渐近线。
如果指数函数的底数大于1,那么指数函数的图像在x轴右侧呈现上升趋势;如果底数小于1,那么指数函数的图像在x轴右侧呈现下降趋势。
对数函数是指数函数的反函数,其图像形态与指数函数有一定的关联。
当对数函数的底数大于1时,对数函数的图像在x轴右侧呈现上升趋势;当底数小于1时,对数函数的图像在x轴右侧呈现下降趋势。
与指数函数相反,对数函数的图像一般从右上方逼近x轴。
三角函数是高考中经常涉及到的一类函数,在图像形态上有着独特的特点。
正弦函数的图像在[0,2π]的区间内呈现周期性变化,才时间折返并且在图像最高点和最低点与x轴相切。
余弦函数的图像与正弦函数的形态相似,但是相位不同。
函数性质图像知识点总结

函数性质图像知识点总结一、函数的定义在数学上,函数可以定义为一种特殊的关系,它将输入(自变量)映射到输出(因变量)。
具体来说,如果对于每一个自变量值,函数都有唯一的对应因变量值,那么这个关系就是一个函数。
形式上,我们可以用f(x)来表示函数,其中x是自变量,f(x)是对应的因变量。
例如,y = 2x + 3就是一个函数,其中y是因变量,x是自变量。
二、函数的性质1.定义域和值域函数的定义域是指所有可能的自变量值的集合,而值域是所有可能的因变量值的集合。
在图像上,定义域通常表示为x轴上的取值范围,而值域则表示为y轴上的取值范围。
例如,对于函数f(x) = x²,其定义域为所有实数,而值域为非负实数集合。
2.奇函数与偶函数奇函数与偶函数是函数的对称性质。
如果对于任意的x,有f(-x) = -f(x),那么函数f(x)就是奇函数;如果对于任意的x,有f(-x) = f(x),那么函数f(x)就是偶函数。
奇函数在原点对称,而偶函数在y轴对称。
3.单调性函数的单调性是指在定义域上,函数值的增减关系。
如果对于任意的x₁和x₂,当x₁< x₂时有f(x₁)≤f(x₂),那么函数f(x)就是递增的;如果对于任意的x₁和x₂,当x₁< x₂时有f(x₁)≥f(x₂),那么函数f(x)就是递减的。
4.周期性如果存在一个正数T,使得对于所有的x,有f(x+T) = f(x),那么函数f(x)就是周期函数。
其中最小的T称为函数的周期,通常用P来表示。
常见的周期函数有sin(x)和cos(x)。
5.有界性函数的有界性是指函数值的范围限制。
如果存在两个实数M和N,使得对于任意的x,有|f(x)| ≤ M,那么函数f(x)就是有界的。
如果函数在定义域上有上界和下界,则称为有界函数。
6.反函数若对于一个函数f(x),存在一个函数g(x),使得f(g(x)) = x且g(f(x)) = x,那么函数g(x)就是函数f(x)的反函数。
高考数学冲刺函数性质与图像变换全解析

高考数学冲刺函数性质与图像变换全解析高考对于每一位学子来说都是人生中的一次重要挑战,而数学作为其中的关键学科,更是备受关注。
在数学的众多知识点中,函数的性质与图像变换一直是重点和难点。
在高考冲刺阶段,对这部分内容进行全面、深入的复习和理解,将有助于我们在考试中取得更好的成绩。
一、函数的基本性质1、单调性函数的单调性是指函数在定义域内的某个区间上,函数值随自变量的增大而增大或减小的性质。
判断函数单调性的方法通常有定义法、导数法等。
定义法:设函数$f(x)$的定义域为$I$,对于定义域$I$内某个区间$D$上的任意两个自变量的值$x_1$,$x_2$,当$x_1 < x_2$时,都有$f(x_1) < f(x_2)$(或$f(x_1) > f(x_2)$),那么就说函数$f(x)$在区间$D$上是增函数(或减函数)。
导数法:若函数$f(x)$在区间$(a,b)$内可导,当$f'(x) >0$时,函数$f(x)$在区间$(a,b)$内单调递增;当$f'(x) < 0$时,函数$f(x)$在区间$(a,b)$内单调递减。
2、奇偶性奇偶性是函数的另一个重要性质。
若对于函数$f(x)$定义域内的任意一个$x$,都有$f(x) = f(x)$,则称$f(x)$为偶函数;若对于函数$f(x)$定义域内的任意一个$x$,都有$f(x) = f(x)$,则称$f(x)$为奇函数。
判断函数奇偶性的一般步骤为:首先确定函数的定义域是否关于原点对称,如果不对称,则函数既不是奇函数也不是偶函数;如果对称,再判断$f(x)$与$f(x)$的关系。
3、周期性对于函数$f(x)$,如果存在一个不为零的常数$T$,使得当$x$取定义域内的每一个值时,$f(x + T) = f(x)$都成立,那么就把函数$y= f(x)$叫做周期函数,周期为$T$。
常见的周期函数如正弦函数、余弦函数等。
4、对称性函数的对称性包括轴对称和中心对称。
函数图像及知识点总结

函数图像及知识点总结本文将首先介绍函数的概念,接着讨论函数图像的基本特征和性质,然后给出一些常见的函数图像和它们的性质分析,最后总结本文的内容。
一、函数的概念在代数学中,函数是一种对应关系,它将一个集合的元素映射到另一个集合的元素上。
具体地说,一个函数 f 是一个规则,它将集合 A 中的每个元素 x 映射到集合 B 中的一个元素f(x) 上。
其中,集合 A 被称为函数的定义域,集合 B 被称为函数的值域。
如果对于定义域A 中的每个元素 x,都有一个唯一的值 f(x) 与之对应,那么函数 f 是一一对应的,否则称为多对一的。
函数可以用多种方式来表示,比如用代数式、图表、表格或者用文字描述。
在本文中,我们将主要讨论函数图像的性质和特点。
二、函数图像的基本特征和性质在直角坐标系中,函数 f 的图像是它的定义域的点在坐标系中的表示,即点 (x, f(x))。
函数图像的基本特征和性质可以通过其图像的形状和位置来描述。
1. 函数的增减性和极值对于函数 f,如果在定义域的某个区间上,当 x1 < x2 时有 f(x1) < f(x2),那么称函数 f 在该区间上是增加的;如果在该区间上,当 x1 < x2 时有 f(x1) > f(x2),那么称函数 f 在该区间上是减少的。
极值是函数图像中的最高点或最低点,它们可以通过导数或者图像来求得。
2. 函数的奇偶性如果对于函数 f 的所有 x 都有 f(-x) = f(x),那么称函数 f 是偶函数;如果对于函数 f 的所有x 都有 f(-x) = -f(x),那么称函数 f 是奇函数。
3. 函数的周期性如果存在一个正数 T,使得对于函数 f 的所有 x 都有 f(x+T) = f(x),那么称函数 f 是周期函数,其中 T 被称为函数 f 的周期。
4. 函数的对称性如果函数图像关于某个点对称,那么称函数具有对称性。
常见的对称性有关于 x 轴、y 轴和原点的对称性。
函数及其图像总结知识点

函数及其图像总结知识点函数的图像是函数表示的一种形式,它是函数在坐标系中的图形表示。
函数的图像可以帮助我们更直观地理解函数的特点和性质。
在学习函数的过程中,函数的图像是一个非常重要的知识点。
本文将总结函数的相关知识点,以帮助读者更好地掌握这一重要的数学概念。
一、函数的定义在数学中,函数是一种特殊的关系。
如果存在一种依赖关系,使得除了x以外,对每个x都只有唯一的y和y唯一对应某个x,那么就称这种依赖关系为函数。
函数的符号表示通常是f(x)或者y=f(x),其中x为自变量,y为因变量。
函数的定义域是自变量的取值范围,值域是函数的输出范围。
二、常见函数1. 线性函数:y=ax+b,其中a和b为常数。
线性函数的图像是一条直线,斜率a决定了直线的斜率,常数b决定了直线的截距。
线性函数是最简单的函数之一,它们在数学建模中有着广泛的应用。
2. 二次函数:y=ax^2+bx+c,其中a、b和c为常数且a不等于0。
二次函数的图像是一条抛物线,开口向上或向下取决于a的正负。
二次函数在物理学、工程学等领域有着重要的应用。
3. 指数函数:y=a^x,其中a为正实数且不等于1。
指数函数的图像是一条逐渐增长或逐渐减小的曲线。
指数函数在自然科学和经济学中有着广泛的应用。
4. 对数函数:y=loga(x),其中a为正实数且不等于1。
对数函数的图像是一条渐进线,对数函数能够将指数函数的性质转化为更容易理解的形式。
5. 三角函数:包括正弦函数、余弦函数、正切函数等。
三角函数在物理学、工程学和天文学中有着重要应用。
以上函数是常见的、在数学教育中重点研究的函数。
这些函数具有各自的特点和性质,通过学习这些函数,我们可以更好地理解数学中的各种问题,并且为进一步学习高等数学课程打下扎实的基础。
三、函数的性质1. 奇函数和偶函数:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
通过奇偶函数的性质,我们可以推导出一系列关于函数图像的对称性质,以及某些函数值的简化表示。
函数图像高考知识点总结

函数图像高考知识点总结一、函数的概念函数是数学中的一个重要概念,函数的概念在高中数学中有着很重要的地位。
函数的概念是传递和扩展我们数学知识,从而推广了我们对数学问题的认识,为我们更好地探求数学规律打下了坚实的基础。
函数的概念最早来源于19世纪的数学家勒贝格的研究成果,函数的概念对于我们学习数学中的其他知识将会起到很大的帮助。
下面来详细介绍一下函数的概念。
1、函数的定义函数是一种特殊的关系,他只有一个自变量,并且每个自变量都对应唯一一个因变量。
函数符号y=f(x),其中x为自变量,y为因变量,f(x)为函数。
函数的符号表示是:y=f(x)或y=y(x),这里y表示因变量,x表示自变量,f表示函数名称,称为函数符号。
在函数y=f(x)中,x的取值范围称为定义域,y的所有可能取值构成的s称为值域,定义域与值域构成一个对应关系称为函数的定义域和值域。
定义域和值域的关系对函数的研究非常重要,这是我们学习函数的一个关键点。
只有知道了函数的定义域和值域,我们才能更好的对函数进行研究。
2、函数的图像函数的图像是指函数的自变量和因变量之间的关系所表现出来的几何图形。
函数的图像是我们理解函数的重要手段之一,通过函数的图像我们可以直观地了解函数的性质和特点。
函数的图像在我们学习函数的时候起重要的作用,通过函数图像我们可以更好的理解函数的性质。
二、函数图像的性质函数图像有很多重要的性质,这些性质对于我们理解函数图像具有非常重要的作用。
下面我们来详细介绍一下函数图像的性质。
1、函数的奇偶性函数的奇偶性是指函数的图像关于y轴对称还是关于原点对称。
如果函数的图像关于y轴对称,那么函数是偶函数;如果函数的图像关于原点对称,那么函数是奇函数。
通过函数的奇偶性,我们可以更好的理解函数的性质。
2、函数的周期性函数的周期性是指函数的图像在一定范围内具有重复的规律性。
如果函数的图像在一个固定的范围内有重复的特点,那么这个函数就具有周期性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.【2017课标1,理5A B C D【答案】DD.2.【2017课标1,理11】设x、y、zA.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【答案】D3.【2017北京,理5(A)是奇函数,且在R上是增函数(B)是偶函数,且在R上是增函数(C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数【答案】A增函数,−减函数=增函数,可知该函数是增函数,故选A.4.【2017山东,理10(A 23,⎡+∞⎣(B(C 223,⎤⎡+∞⎦⎣(D 【答案】B【解析】单调递减,上单调递增,所以要有且仅有一个交点,需选B.5.【2017天津,理6Ra ,b ,c 的大小关系为(A (B(C(D6.(2016·课标全国乙)函数y =2x 2-e |x |在[-2,2]的图象大致为( )答案 D解析 f (2)=8-e 2>8-2.82>0,排除A ;f (2)=8-e 2<8-2.72<1,排除B ;当x >0时,f (x )=2x 2-e x ,f ′(x )=4x -e x ,当x ∈⎝ ⎛⎭⎪⎫0,14时,f ′(x )<14×4-e 0=0,因此f (x )在⎝ ⎛⎭⎪⎫0,14上单调递减,排除C ,故选D.7.(2016·山东)已知函数f (x )的定义域为R ,当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎪⎫x +12=f ⎝⎛⎭⎪⎫x -12,则f (6)等于( )A .-2B .-1C .0D .2 答案 D解析 当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,即f (x )=f (x +1),∴T =1,∴f (6)=f (1).当x <0时,f (x )=x 3-1,且-1≤x ≤1,f (-x )=-f (x ),∴f (6)=f (1)=-f (-1)=2,故选D.8.(2016·上海)设f (x ),g (x ),h (x )是定义域为R 的三个函数,对于命题:①若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均为增函数,则f (x ),g (x ),h (x )中至少有一个为增函数;②若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是以T 为周期的函数,则f (x ),g (x ),h (x )均是以T 为周期的函数,下列判断正确的是( ) A .①和②均为真命题 B .①和②均为假命题 C .①为真命题,②为假命题 D .①为假命题,②为真命题 答案 D解析 ①不成立,可举反例,f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,-x +3,x >1,g (x )=⎩⎪⎨⎪⎧2x +3, x ≤0,-x +3,0<x <1,2x ,x ≥1,h (x )=⎩⎪⎨⎪⎧-x ,x ≤0,2x ,x >0.②f (x )+g (x )=f (x +T )+g (x +T ),f (x )+h (x )=f (x +T )+h (x +T ),g (x )+h (x )=g (x +T )+h (x +T ),前两式作差,可得g (x )-h (x )=g (x +T )-h (x +T ),结合第三式,可得g (x )=g (x +T ),h (x )=h (x +T ), 也有f (x )=f (x +T ). ∴②正确.故选D.9.(2016·北京)设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .(1)若a =0,则f (x )的最大值为________;(2)若f (x )无最大值,则实数a 的取值范围是________. 答案 (1)2 (2)(-∞,-1)(2)f (x )的两个函数在无限制条件时图象如图.由(1)知,当a ≥-1时,f (x )取得最大值2.当a <-1时,y =-2x 在x >a 时无最大值,且-2a >2.所以a <-1.10.已知函数h (x )(x ≠0)为偶函数,且当x >0时,h (x )=⎩⎪⎨⎪⎧-x 24,0<x ≤4,4-2x ,x >4,若h (t )>h (2),则实数t 的取值范围为________. 答案 (-2,0)∪(0,2)解析 因为x >0时,h (x )=⎩⎪⎨⎪⎧-x 24,0<x ≤4,4-2x ,x >4.易知函数h (x )在(0,+∞)上单调递减,因为函数h (x )(x ≠0)为偶函数,且h (t )>h (2), 所以h (|t |)>h (2), 所以0<|t |<2,所以⎩⎪⎨⎪⎧t ≠0,|t |<2,即⎩⎪⎨⎪⎧t ≠0,-2<t <2,解得-2<t <0或0<t <2.综上,所求实数t 的取值范围为(-2,0)∪(0,2).易错起源1、函数的性质及应用例1、(1)已知函数f (x )为奇函数,且在[0,2]上单调递增,若f (log 2m )<f (log 4(m +2))成立,则实数m 的取值范围是( ) A.14≤m <2 B.14≤m ≤2 C .2<m ≤4D .2≤m ≤4(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________.答案 (1)A (2)-25解析 (1)因为函数f (x )是奇函数,且在[0,2]上单调递增,所以函数f (x )在[-2,2]上单调递增.故由f (log 2m )<f (log 4(m +2)),可得⎩⎪⎨⎪⎧-2≤log 2m ≤2,-2≤log 4m +2≤2,log 2m <log4m +2,m >0,m +2>0,解-2≤log 2m ≤2,得14≤m ≤4;解-2≤log 4(m +2)≤2,得116≤m +2≤16, 即-3116≤m ≤14.由log 2m <log 4(m +2),得log 4m 2<log 4(m +2),故有⎩⎪⎨⎪⎧m 2>0,m +2>0,m 2<m +2,解得-1<m <2,且m ≠0.综上可知,m 的取值范围是14≤m <2,故选A.(2)由已知f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2=f ⎝ ⎛⎭⎪⎫-12=-12+a , f ⎝ ⎛⎭⎪⎫92=f ⎝⎛⎭⎪⎫92-4=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110.又∵f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则-12+a =110,a =35, ∴f (5a )=f (3)=f (3-4)=f (-1)=- 1+35=-25.【变式探究】(1)(2016·四川)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.答案 (1)-2 (2)-10解析 (1)因为f (x )是周期为2的函数, 所以f (x )=f (x +2). 而f (x )是奇函数, 所以f (x )=-f (-x ).所以f (1)=f (-1),f (1)=-f (-1),即f (1)=0,又f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12,故f ⎝ ⎛⎭⎪⎫-52=-2,从而f ⎝ ⎛⎭⎪⎫-52+f (1)=-2.【名师点睛】(1)可以根据函数的奇偶性和周期性,将所求函数值转化为给出解析式的范围内的函数值.(2)利用函数的单调性解不等式的关键是化成f(x1)<f(x2)的形式.【锦囊妙计,战胜自我】1.单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.2.奇偶性(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(填“相同”或“相反”).(2)在公共定义域内:①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数;②两个偶函数的和函数、积函数是偶函数;③一个奇函数、一个偶函数的积函数是奇函数. (3)若f (x )是奇函数且在x =0处有定义,则f (0)=0. (4)若f (x )是偶函数,则f (x )=f (-x )=f (|x |).(5)图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称. 3.周期性定义:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f (a +x )=f (x )(a ≠0),则其一个周期T =|a |. 常见结论:(1)f (x +a )=-f (x )⇒函数f (x )的最小正周期为2|a |.(a ≠0)(2)f (x +a )=1f x⇒函数f (x )的最小正周期为2|a |.(a ≠0)(3)f (a +x )=f (b -x ),则函数f (x )的图象关于x =a +b2对称.易错起源2、函数图象及应用例2、(1)函数y =sin2x 2x +2-x 的图象大致为( )(2)已知函数f (x )=ax 33+ax -x 2+32,g (x )=a 2x 3-2ax 2+x +a (a ∈R).在同一直角坐标系中,函数f ′(x )与g (x )的图象不可能的是( )答案 (1)A (2)B解析 (1)首先根据函数表达式可知y =sin2x2x +2-x 为(-∞,+∞)上的奇函数,且f (0)=0,排除C ,D ;当x =1100时,B ,故选A.(2)因为f (x )=ax 33+ax -x 2+32,所以f ′(x )=ax 2-x +a2,若a =0,则选项D 是正确的,故排除D.若a <0,选项B 中的二次函数的判别式Δ=1-4a ·a 2=1-2a 2<0,所以a 2>12,又a <0,所以a <-22. 二次函数f ′(x )的图象的对称轴为x =12a ;三次函数g (x )=a 2x 3-2ax 2+x +a ,所以g ′(x )=3a 2x 2-4ax +1=3a 2⎝ ⎛⎭⎪⎫x -1a ⎝ ⎛⎭⎪⎫x -13a , 令g ′(x )>0,得x <1a 或x >13a,令g ′(x )<0,得1a <x <13a,所以函数g (x )=a 2x 3-2ax 2+x +a 的极大值点为x =1a ,极小值点为x =13a ;由B 中的图象知13a <12a .但a <-22,所以13a >12a ,所以选项B 的图象是错误的,故选B.【变式探究】(1)函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )(2)已知三次函数f (x )=2ax 3+6ax 2+bx 的导函数为f ′(x ),则函数f (x )与f ′(x )的图象可能是( )答案 (1)D (2)B【名师点睛】(1)根据函数的解析式判断函数的图象,要从定义域、值域、单调性、奇偶性等方面入手,结合给出的函数图象进行全面分析,有时也可结合特殊的函数值进行辅助推断,这是解决函数图象判断此类试题的基本方法.(2)判断复杂函数的图象,常借助导数这一工具,先对原函数进行求导,再利用导数判断函数的单调性、极值或最值,从而对选项进行筛选.要注意函数求导之后,导函数发生了变化,故导函数和原函数定义域会有所不同,我们必须在原函数的定义域内研究函数的极值和最值.【锦囊妙计,战胜自我】1.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.易错起源3、基本初等函数的图象和性质例3、(1)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是( )A.a<b<c B.a<c<bC.b<a<c D.b<c<a(2)f(a)>f(-a),则实数a的取值范围是( )A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)答案(1)C (2)C解析(1)根据指数函数y=0.6x在R上单调递减可得0.61.5<0.60.6<0.60=1,根据指数函数y =1.5x在R上单调递增可得1.50.6>1.50=1,∴b<a<c.(2)方法一由题意作出y=f(x)的图象如图.显然当a>1或-1<a<0时,满足f(a)>f(-a).故选C.方法二对a分类讨论:当a>0a>1.当a<02a<1,∴-1<a<0,故选C.【变式探究】(1)在同一直角坐标系中,函数f(x)=x a(x≥0),g(x)=log a x的图象可能是( )(2)已知函数y=f(x)是定义在R上的函数,其图象关于坐标原点对称,且当x∈(-∞,0)时,不等式f(x)+xf′(x)<0恒成立,若a=20.2f(20.2),b=ln2f(ln2),c=-2f(-2),则a,b,c的大小关系是( )A.a>b>c B.c>b>aC.c>a>b D.a>c>b答案(1)D (2)C解析(1)方法一分a>1,0<a<1两种情形讨论.当a>1时,y=x a与y=log a x均为增函数,但y=x a递增较快,排除C;当0<a<1时,y=x a为增函数,y=log a x为减函数,排除A.由于y=x a递增较慢,所以选D.【名师点睛】(1)指数函数、对数函数、幂函数是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算能力.(2)比较代数式大小问题,往往利用函数图象或者函数的单调性.【锦囊妙计,战胜自我】1.指数函数y =a x(a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质.2.幂函数y =x α的图象和性质,主要掌握α=1,2,3,12,-1五种情况.。