北京市西城区九年级数学下册 学习 探究 诊断 )第二十六章 二次函数同步测试
华东师大版九年级数学下册第26章:二次函数(26.2.2~26.2.3) 同步测试题(含答案)

华东师大版九年级数学下册第26章二次函数(26.2.2~26.2.3)同步测试题(时间:100分钟 满分:100分)一、选择题(每小题4分,共32分)1.二次函数y =-x 2+2x +4的最大值为(C)A.3B.4C.5D.62.抛物线y =x 2+4x +3的对称轴是(C)A.直线x =1B.直线x =-1C.直线x =-2D.直线x =23.对于二次函数y =-13x 2+2,当x 为x 1和x 2时,对应的函数值分别为y 1和y 2.若x 1>x 2>0,则y 1和y 2的大小关系是(B)A.y 1>y 2B.y 1<y 2C.y 1=y 2D.无法比较4.二次函数y =2x 2+3的图象经过(A)A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限5.抛物线y =x 2-2x +m 2+2(m 是常数)的顶点在(A)A.第一象限B.第二象限C.第三象限D.第四象限6.如果抛物线y =ax 2+2x +c 全部在x 轴的上方,那么下列判断中正确的是(C)A.a >0,对称轴在y 轴右侧B.a <0,对称轴在y 轴左侧C.a>0,对称轴在y轴左侧D.a<0,对称轴在y轴右侧7.已知抛物线y=ax2+bx和直线y=ax+b在同一平面直角坐标系内的图象如图,其中正确的是(D)A B C D8.如图,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y=a1x2+b1x+c1,则下列结论:①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.其中正确的是(D)A.①③B.②③C.②④D.③④二、填空题(每小题4分,共20分)9.把二次函数y=x2-12x化为形如y=a(x-h)2+k的形式:y=(x-6)2-36.10.若一条抛物线的顶点是(-2,3),并且经过点(0,-1),则它的表达式为y=-(x+2)2+3.11.如图是二次函数y=ax2+bx+c的图象,已知点(2,y1),(3,y2)是函数图象上的两个点,则y1,y2的大小关系是y1>y2.12.如图,抛物线y=ax2+1与y轴交于点A,过点A与x轴平行的直线交抛物线y=4x2于点B,C,则线段BC的长为1.13.李大伯第一次种植大棚菜,在塑料大棚内密植了100棵黄瓜秧,收获时,每棵黄瓜秧平均只收获2千克黄瓜,听说邻居每棵黄瓜秧可收获近5千克黄瓜,他便向县农业技术员请教,农业技术员查看了情况后说:种植太密,不通风,并告诉他如何改进.已知每少栽一棵秧苗,一棵黄瓜秧平均可多收0.1千克黄瓜,那么请你帮李伯伯计算:减少40棵黄瓜秧收获最多,最多收获360千克.三、解答题(共48分)14.(10分)如图,直线y=-x+c与x轴交于点B(3,0),与y轴交于点C,抛物线y=x2+bx+c经过点A,B,C.求点A的坐标和抛物线的表达式.解:把B(3,0)代入y=-x+c,得-3+c=0,解得c=3,∴直线表达式为y=-x+3.当x=0时,y=-x+3=3,则C(0,3).把B(3,0),C(0,3)代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧9+3b +c =0,c =3.解得⎩⎪⎨⎪⎧b =-4,c =3. ∴抛物线表达式为y =x 2-4x +3.当y =0时,x 2-4x +3=0,解得x 1=1,x 2=3,∴A(1,0).15.(12分)如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上,C 点在斜边上,设矩形的一边AB =x m ,矩形的面积为y m 2,求矩形面积的最大值.解:由题意可得,DC∥AF,∴△EDC∽△EAF.∴ED EA =DC AF, 即30-AD 30=x 40.解得AD =120-3x 4. ∴y=AD·AB=120-3x 4·x =-34x 2+30x=-34(x -20)2+300. ∵a=-34<0,∴当x =20时,y 最大=300. 答:矩形面积的最大值为300 m 2.16.(12分)设函数y =(x -1)[(k -1)x +(k -3)](k 是常数).(1)当k 取1和2时的函数y 1和y 2的图象如图所示,请你在同一平面直角坐标系中画出当k 取0时的函数的图象;(2)根据图象,写出一条你发现的结论;(3)将函数y 2的图象向左平移4个单位长度,再向下平移2个单位长度,得到函数y 3的图象,求函数y 3的最小值.解:(1)当k =0时,y =-(x -1)(x +3),所画函数图象如图所示.(2)答案不唯一,如:①图象都经过点(1,0)和(-1,4);②图象与x 轴的交点都包含(1,0);③k 取0和2时的函数图象关于点(0,2)中心对称.(3)∵平移后的函数y 3的表达式为y 3=(x +3)2-2,∴当x =-3时,函数y 3的最小值是-2.17.(14分)如图,已知抛物线y =-x 2+mx +3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0).(1)求m 的值及抛物线的顶点坐标;(2)点P 是抛物线对称轴l 上的一个动点,当PA +PC 的值最小时,求点P 的坐标.解:(1)把点B(3,0)代入抛物线y =-x 2+mx +3,得0=-32+3m +3,解得m =2.∴y=-x 2+2x +3=-(x -1)2+4.∴顶点坐标为(1,4).(2)连结BC 交抛物线对称轴l 于点P ,连结AP ,则此时PA +PC 的值最小.设直线BC 的表达式为y =kx +b ,∵点C(0,3),点B(3,0),∴⎩⎪⎨⎪⎧0=3k +b ,3=b ,解得⎩⎪⎨⎪⎧k =-1,b =3. ∴直线BC 的表达式为y =-x +3.则当x =1时,y =-1+3=2.∴当PA+PC的值最小时,点P的坐标为(1,2).。
华师大九年级下《第26章二次函数》检测题含答案

二次函数单元练习题一、选择题1.下列函数中是二次函数的是( B )A .y =3x -1B .y =3x 2-1 C.y =(x +1)2-x 2 D .y =x 3+2x -32.将抛物线y =3x 2向右平移两个单位,再向下平移4个单位,所得抛物线是( )(A)y =3(x +2)2+4 (B) y =3(x -2)2+4 (C) y =3(x -2)2-4 (D)y =3(x +2)2-43.二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论中正确的是( B )A .a >0B .当-1<x <3时,y >0C .c <0D .当x ≥1时,y 随x 的增大而增大4.二次函数y =x 2-8x +c 的最小值是0,那么c 的值等于( )(A)4 (B)8 (C)-4 (D)165.抛物线y =-2x 2+4x +3的顶点坐标是( )(A)(-1,-5) (B)(1,-5) (C)(-1,-4) (D) (-2,-7)6. 若二次函数=ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( )(A)a +c (B)a -c (C)-c (D)c7.如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE =BF =CG =DH , 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )(A) (B) (C) (D)8.抛物线y =ax 2+bx +c 的顶点为D(-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b 2-4ac <0;②a +b +c <0;③c -a =2;④方程ax 2+bx +c -2=0有两个相等的实数根.其中正确的结论的个数为( C )A .1个B .2个C .3个D .4个二、填空题9.已知函数y =ax 2+bx +c ,当x =3时,函数的最大值为4,当x =0时,y =-14,则函数关系式____.10.若二次函数y =-x 2+4x +k 的最大值等于3,则k 的值等于____. .11.函数42-=x y 的图象与y 轴的交点坐标是________. 12.已知抛物线的顶点是(0,1),对称轴是y 轴,且经过(-3,2),则此抛物线的函数关系式为_________,当x >0时,y 随x 的增大而____.13.已知抛物线y =ax 2+bx +c(a≠0)与x 轴的两个交点的坐标是(5,0),(-2,0),则方程ax 2+bx+c=0(a≠0)的解是_______.14.抛物线y=(m-4)x2-2mx-m-6的顶点在x轴上,则m=______.15.若函数y=a(x-h)2+k的图象经过原点,最大值为8,且形状与抛物线y=-2x2-2x+3相同,则此函数关系式______.16.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图所示,则使y1>y2成立的x的取值范围是______ __三、解答题17.(8分)已知抛物线y=a(x-h)2-4经过点(1,-3),且与抛物线y=x2的开口方向相同,形状也相同.(1)求a,h的值;(2)求它与x轴的交点,并画出这个二次函数图象的草图;(3)若点A(m,y1),B(n,y2)(m<n<0)都在该抛物线上,试比较y1与y2的大小.y x mx m.18、已知抛物线22(1)求证此抛物线与x轴有两个不同的交点;y x mx m与x轴交于整数点,求m的值;(2)若m是整数,抛物线22(3)在(2)的条件下,设抛物线顶点为A,抛物线与x轴的两个交点中右侧交点为B.若M为坐标轴上一点,且MA=MB,求点M的坐标.19.(8分)如图,已知二次函数y=-x2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,顶点D.(1)求这个二次函数的关系式;(2)求四边形ABDC的面积.20.(12分)(2011·聊城)如图,已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0)、C(0,-3)两点,与x 轴交于另一点B.(1)求这条抛物线所对应的函数解析式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90°的点P 的坐标.参考答案:一、1-5 BCBDB 6-8 DBC .二、9.y =-2(x -3)2+4; 10.-1 ;11.(0.-4) ; 12.y =19x 2+1 ;增大. 13.向上,x =41,(825,41-);14.略. 15.y =-2x 2+8x 或y =-2x 2-8x ; 16.x <-2或x >8; 三、17.解:(1)a =1,h =2 (2)它与x 轴的交点坐标为(0,0),(4,0),图象略 (3)y 1>y 218.由已知,得30423c a b c a b c =-⎧⎪-+=⎨⎪++=-⎩,,解得a =1,b =-2,c =-3.所以y =x 2-2x -3.(2)开口向上,对称轴x =1,顶点(1,-4).19、解:(1)y =-x 2+2x +3 (2)连结OD ,可求得C (0,3),D (1,4),则S 四边形ABDC =S △AOC+S △COD +S △BOD =12×1×3+12×3×1+12×3×4=920、解:(1)根据题意,y =ax 2+bx +c 的对称轴为x =1,且过A(-1,0),C(0,-3),可得⎩⎪⎨⎪⎧ -b 2a =1a -b +c =0,c =-3解得⎩⎨⎧ a =1,b =-2,c =-3.∴抛物线所对应的函数解析式为y =x 2-2x -3.(2)由y =x 2-2x -3可得,抛物线与x 轴的另一交点B(3,0)如图①,连结BC ,交对称轴x =1于点M.因为点M 在对称轴上,MA =MB.所以直线BC 与对称轴x =1的交点即为所求的M 点.设直线BC 的函数关系式为y =kx +b ,由B(3,0),C(0,-3),解得y =x -3,由x =1,解得y =-2.故当点M 的坐标为(1,-2)时,点M 到点A 的距离与到点C 的距离之和最小.(3)如图②,设此时点P 的坐标为(1,m),抛物线的对称轴交x 轴于点F(1,0).连结PC 、PB ,作PD 垂直y 轴于点D ,则D(0,m).。
2022-2023学年华东师大版九年级下册数学《第26章 二次函数》单元测试卷(有答案)

2022-2023学年华东师大版九年级下册数学《第26章二次函数》单元测试卷一.选择题(共10小题,满分30分)1.下列是二次函数的是()A.y=2﹣x2B.y=x﹣22C.D.y=2x﹣12.一次函数y=ax+b与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.3.抛物线y=﹣x2﹣2x一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.从地面竖直向上抛出一小球,小球的高度h(米)与运动时间t(秒)之间的解析式是h =﹣5t2+30t(0≤t≤6),则小球到达最高高度时,运动的时间是()A.1秒B.2秒C.3秒D.4秒5.如图是二次函数y=ax2+bx+c(a≠0)的图像,则下列结论正确的有()①abc>0;②2a+b=0;③b2<4ac;④4a+2b+c>0;⑤a+b≥am2+bm(m为任意实数)A.2个B.3个C.4个D.5个6.把函数y=(x﹣2)2+3的图象所在坐标系的坐标轴向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣3)2+3D.y=(x﹣1)2+3 7.小英在用“描点法”探究二次函数性质时,画出了以下表格,不幸的是,部分数据已经遗忘(如表所示),小英只记得遗忘的三个数中(如M,R,A所示),有两个数相同.根据以上信息,小英探究的二次函数解析式可能是()x…﹣10123…y…M R﹣4﹣3A…A.y=x2﹣3x﹣2B.C.y=2x2﹣5x﹣1D.8.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.若关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根的积是()A.0B.﹣8C.﹣15D.﹣249.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,有下列4个结论:①abc>0;②b2﹣4ac>0;③关于x的方程ax2+bx+c=0的两个根是x1=﹣2,x2=3;④关于x的不等式ax2+bx+c>0的解集是x>﹣2.其中正确的结论有()个.A.1B.2C.3D.410.对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y =﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或1<n≤B.﹣3<n<﹣1或1≤n≤C.n≤﹣1或1<n≤D.﹣3<n<﹣1或n≥1二.填空题(共10小题,满分30分)11.根据下表判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是x0.40.50.60.7ax2+bx+c﹣0.64﹣0.250.160.5912.如果函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,那么m的值为.13.在一块底边长为20厘米的等腰直角三角形铁皮上截一块矩形铁皮,如果矩形的一边与等腰三角形的底边重合且长度为x厘米,矩形另两个顶点分别在等腰直角三角形的两腰上,设矩形面积为y平方厘米,那么y关于x的函数解析式是.(不必写定义域)14.二次函数y=﹣x2+4x+a图象上的最高点的横坐标为.15.若点A(3,y1),B(﹣5,y2),C(7,y3)为二次函数y=(x+2)2﹣9的图象上的三点,则y1,y2,y3的大小关系是.16.将二次函数y=x2﹣2x+3化成顶点式为.17.一辆宽为2m的货车要通过跨度为8m,拱高为4m的截面为抛物线的单行隧道(从正中间通过),抛物线满足关系式.为保证安全,车顶离隧道至少要有0.5m的距离,则货车的限高应为m.18.如图所示的抛物线y=x2﹣bx+b2﹣9的图象,那么b的值是.19.二次函数的顶点坐标是.20.已知抛物线y=ax2+bx+3的图象与x轴相交于点A和点B(1,0),与y轴交于点C,连接AC,有一动点D在线段AC上运动,过点D作x轴的垂线,交抛物线于点E,交x 轴于点F,AB=4,设点D的横坐标为m.(1)连接AE,CE则△ACE的最大面积为;(2)当m=﹣2时,在平面内存在点Q,使以B,C,E,Q为顶点的四边形为平行四边形,请写出点Q的坐标.三.解答题(共7小题,满分60分)21.已知函数y=(m﹣1)+4x﹣5是二次函数.求m的值.22.已知二次函数y=x2﹣4x+3.(1)求二次函数y=x2﹣4x+3图象的顶点坐标;(2)在平面直角坐标系xOy中,画出二次函数y=x2﹣4x+3的图象.23.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.24.在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A (﹣5,﹣4),B(1,﹣1)均在直线l上.(1)求出直线l的解析式;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣9,求m的值;(3)若抛物线C与线段AB有两个不同的交点,求a的取值范围.25.某商场经调研得出某种商品每天的利润y(元)与销售单价x(元)之间满足关系:y =ax2+bx﹣75,其图象如图所示.(1)求a与b的值;(2)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(3)销售单价定在多少时,该种商品每天的销售利润为21元?结合图象,直接写出销售单价定在什么范围时,该种商品每天的销售利润不低于21元?26.已知:由函数y=x2﹣2x﹣2的图象知道,当x=0时,y<0,当x=﹣1时,y>0,所以方程x2﹣2x﹣2=0有一个根在﹣1和0之间.(1)参考上面的方法,求方程x2﹣2x﹣2=0的另一个根在哪两个连续整数之间;(2)若方程x2﹣2x+c=0有一个根在0和1之间,求c的取值范围.27.记函数y=x2﹣2x(x≤2)的图象为G1,函数的图象记为G2,图象G1和G2记为图象G.(1)若点(3,m)在图象G上,求m的值.(2)已知直线l与x轴平行,且与图象G有三个交点,从左至右依次为点A,点B,点C,若AB=1,求点C坐标.(3)若当﹣1≤x≤n时,﹣1≤y≤3,求n的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:A、y=2﹣x2是二次函数,故此选项符合题意;B、y=x﹣22是一次函数,故此选项不符合题意;C、不是二次函数,故此选项不符合题意;D、y=2x﹣1是一次函数,故此选项不符合题意;故选:A.2.解:A、由一次函数的图象可知,a<0,由二次函数的图象可知,a>0,两结论矛盾,不符合题意;B、由一次函数的图象可知,a<0,b<0,由二次函数的图象可知,a<0,b>0,两结论矛盾,不符合题意;C、由一次函数的图象可知,a<0,b>0,由二次函数的图象可知,a<0,b<0,两结论矛盾,不符合题意;D、由一次函数的图象可知,a>0,b<0,由二次函数的图象可知,a>0,b<0,两结论一致,符合题意.故选:D.3.解:∵a=﹣1,抛物线开口向下,对称轴为x=,与y轴交于(0,),∴抛物线经过一、三、四象限,不经过第二象限.故选:B.4.解:h=30t﹣5t2=﹣5(t﹣3)2+45,∵﹣5<0,0≤t≤6,∴当t=3时,h有最大值,最大值为45,∴小球运动3秒时,小球达到最高高度,故选:C.5.解:由图象可知,抛物线开口向下,∴a<0,∵对称轴为,∴2a=﹣b,∴b>0且2a+b=0,②正确;∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,③错误;∵2a+b=0,∴4a+2b+c=2(2a+b)+c=c>0,④正确;∵当x=1时,函数取最大值,为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥am2+bm(m为任意实数),⑤正确;综上所述,正确的有3个,故选:B.6.解:二次函数y=(x﹣2)2+3的图象的顶点坐标为(2,3),∴向右平移1个单位长度后的函数图象的顶点坐标为(3,3),∴所得的图象解析式为y=(x﹣3)2+3.故选:C.7.解:A、y=x2﹣3x﹣2的对称轴为直线,B、的对称轴为直线,C、y=2x2﹣5x﹣1的对称轴为直线,D、的对称轴为直线,若M与R相同,则抛物线的对称轴为直线,只有B选项符合,将点(1,﹣4),(2,﹣3)代入解析式,均符合;若M与A相同,则抛物线的对称轴为直线x=1,没有选项符合;若R与A相同,则抛物线的对称轴为直线,选项A、D符合,但将点(1,﹣4),(2,﹣3)代入解析式,却不符合;∴M与R相同,B选项符合,故选:B.8.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3,∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴抛物线y=ax2+bx+c与直线y=﹣n的交点的横坐标在﹣5与﹣3之间和1与3之间,∴关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是﹣4和2,∴两个整数根的积是﹣4×2=﹣8.故选:B.9.解:∵抛物线开口向下,交y轴的正半轴,∴a<0,c>0,∵﹣=,∴b=﹣a>0,∴abc<0,所以①错误;∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,所以②正确;∵抛物线y=ax2+bx+c经过点(﹣2,0),而抛物线的对称轴为直线x=,∴点(﹣2,0)关于直线x=的对称点(3,0)在抛物线上,∴关于x的一元二次方程ax2+bx+c=0的两根是x1=﹣2,x2=3,所以③正确.由图象可知当﹣2<x<3时,y>0,∴不等式ax2+bx+c>0的解集是﹣2<x<3,所以④错误;故选:B.10.解:如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2﹣4x﹣n与y轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n≤﹣1时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=﹣x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2﹣4x﹣n经过点M(﹣,1),∴+2﹣n=1,解得:n=.∴1<n≤时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是﹣3<n≤﹣1或1<n≤,故选:A.二.填空题(共10小题,满分30分)11.解:∵函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根,x轴上的点的纵坐标为0,由表中数据可知:y=0在y=﹣0.25与y=0.16之间,∴对应的x的值在0.5与0.6之间即0.5<x<0.6.故答案为0.5<x<0.6.12.解:∵函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,∴|m﹣1|=2,且m﹣3≠0,解得:m=﹣1.故答案为:﹣1.13.解:∵△ABC是等腰直角三角形,四边形EFGD是矩形,∴△AFE和△DGB都是等腰直角三角形,∴ED=GF=x厘米,AF=BG=(20﹣x)厘米,∴EF=(20﹣x)厘米,∴矩形EFGD的面积y=x•(20﹣x)=﹣x2+10x,∴y关于x的函数关系式是y=﹣x2+10x.故答案为:y=﹣x2+10x.14.解:∵二次函数y=﹣x2+4x+a=﹣(x﹣2)2+4+a,∴二次函数图象上的最高点的横坐标为:﹣2.故答案为:﹣2.15.解:∵y=(x+2)2﹣9,∴图象的开口向上,对称轴是直线x=﹣2,∴B(﹣5,y2)关于直线x=﹣2的对称点是(1,y2),∵1<3<7,∴y2<y1<y3,故答案为:y2<y1<y3.16.解:y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2.故答案为:y=(x﹣1)2+2.17.解:∵车的宽度为2米,车从正中通过,∴x=1时,y=﹣×12+4=,∴货车安全行驶装货的最大高度为﹣0.5=3.25(米),即货车的限高为:3.25;18.解:由图可知,抛物线经过原点(0,0),所以,02﹣b×0+b2﹣9=0,解得b=±3,∵抛物线的对称轴在y轴的右边,∴﹣>0,∴b>0,∴b=3.故答案为:3.19.解:二次函数y =﹣(x ﹣1)2+2的顶点坐标是(1,2),故答案为:(1,2).20.解:(1)∵点B (1,0),AB =4,则点A (﹣3,0),由题意得:,解得:,即抛物线的表达式为:y =﹣x 2﹣2x +3;设直线AC 的表达式为:y =mx +n ,则,解得:,故直线AC 的表达式为:y =x +3;设点D (m ,m +3),则点E (m ,﹣m 2﹣2m +3),则△ACE 的面积=S △EDA +S △EDC =DE ×AO =3×(﹣m 2﹣2m +3﹣m ﹣3)=﹣(m 2+3m )=﹣(m +)2+≤, ∴△ACE 的最大面积为, 故答案为:;(2)当m =﹣2时,﹣m 2﹣2m +3=3,即点E (﹣2,3),设点Q (s ,t ),当BC 是对角线时,由中点坐标公式得:,解得:, 当BE 是对角线时,由中点坐标公式得:,解得:, 当BQ 是对角线时,由中点坐标公式得:,解得:, 即点Q 的坐标为(﹣3,0)或(﹣1,0)或)(﹣3,6),故答案为:(﹣3,0)或(﹣1,0)或)(﹣3,6).三.解答题(共7小题,满分60分)21.解:由题意:,解得m =﹣1,∴m=﹣1时,函数y=(m﹣1)+4x﹣5是二次函数.22.解:(1)y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点为:(2,1);(2)解:该函数过点(0,3),(1,0),(2,﹣1),(3,0),(4,3)这五个点,用五点作图画出图象如下:23.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.24.解:(1)把点A(﹣5,﹣4),B(1,﹣1)代入y=kx+b中,得,解得,∴直线l的解析式为y=x﹣;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣9,∴当y=﹣9时,有﹣x2+2x﹣1=﹣9,∴x=﹣2或x=4,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣2时,y有最大值﹣4,∴m=﹣4;②在对称轴x=1右侧,y随x最大而减小,∴x=m=4时,y有最大值﹣9;综上所述:m=﹣4或m=4;(3))①a<0时,x=1时,y≤﹣1,即a+1≤﹣1,∴a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即9a﹣7≥﹣3,∴a≥,直线AB的解析式为y=x﹣;抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,Δ=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2.25.解:(1)y=ax2+bx﹣75图象过点(5,0)、(7,16),∴,解得:;(2)∵y=﹣x2+20x﹣75=﹣(x﹣10)2+25,=25.∴当x=10时,y最大答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元;(3)根据题意,当y=21时,得:﹣x2+20x﹣75=21,解得:x1=8,x2=12,∴x=8或x=12,即销售单价定在8元或12元时,该种商品每天的销售利润为21元;故销售单价在8≤x≤12时,销售利润不低于21元.26.解:(1)利用函数y=x2﹣2x﹣2的图象可知,当x=2时,y<0,当x=3时,y>0,所以方程的另一个根在2和3之间;(2)函数y=x2﹣2x+c的图象的对称轴为直线x=1,由题意,得,解得0<c<1.27.解:(1)∵点(3,m)在图象G上,函数y=x2﹣2x(x≤2)的图象为G1,函数y=﹣x2+2(x>0)的图象记为G2,图象G1和G2记为图象G.∴点(3,m)在图象G2上,将点(3,m)代入y=﹣x2+2得,m=﹣×32+2=﹣,∴m的值﹣;(2)如图,∵直线l与x轴平行且与图象G有三个交点,从左至右依次为点A,点B,点C,由图象得﹣1≤y≤0,设A(a,a2﹣2a),∵y=x2﹣2x的对称轴为直线x=1,顶点为(1,﹣1),∴点B(2﹣a,a2﹣2a),∵AB=1,∴2﹣a﹣a=1,解得a=,∴点C的纵坐标为a2﹣2a=﹣,将y=﹣代入y=﹣x2+2得﹣=﹣x2+2,解得x=±(负值不合题意,舍去),∴点C坐标为(,﹣);(3)∵y=x2﹣2x(x≤2)的对称轴为直线x=1,顶点为(1,﹣1),函数y=﹣x2+2(x>0)的顶点为(0,2),∴当y=3时,3=x2﹣2x,解得x=﹣1或3(舍去),当y=﹣1时,﹣1=﹣x2+2,解得x=或﹣(舍去),∵当﹣1≤x≤n时,﹣1≤y≤3,结合图象得1≤n≤.。
2020年春北师大版九年级下册第26章《二次函数》单元测试卷(含答案)精选试题及答案

《二次函数》单元测试卷一.选择题1.下列各式中,y是x的二次函数的是()A.y=3x B.y=ax2+bx+c C.y=(x﹣1)2D.y=22.二次函数y=(x+1)2﹣2的图象大致是()A.B.C.D.3.在平面直角坐标系中,二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a>0 B.b>0 C.a﹣b+c>0 D.a+b+c<0 4.把抛物线y=2x2+1先向右平移3个单位长度,再向下平移5个单位长度后,所得函数的表达式为()A.y=(2x﹣3)2﹣5 B.y=2(x﹣3)2﹣4C.y=2(x﹣3)2+6 D.y=2(x+3)2﹣45.已知二次函数y=ax2+bx+c(a<0)的图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0 B.有最小值﹣3、最大值6C.有最小值0、最大值6 D.有最小值2、最大值66.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣2)2+4 C.y=(x﹣2)2+2 D.y=(x﹣1)2+3 7.如表格中是二次函数y=ax2+bx+c(a≠0)的自变量x与函数y的一些对应值,可以判断方程ax2+bx+c=﹣3(a≠0)的一个近似根是()x﹣1.1 ﹣1.2 ﹣1.3 ﹣1.4y=ax2+bx+c﹣2.75 ﹣2.86 ﹣3.13 ﹣3.28A.﹣1.1 B.﹣1.2 C.﹣1.3 D.﹣1.48.二次函数y=ax2+bx+c(a≠0)的图象如图所示,A(﹣1,3)是抛物线的顶点,则以下结论中正确的是()A.a<0,b>0,c>0B.2a+b=0C.当x<0时,y随x的增大而减小D.ax2+bx+c﹣3≤0二.填空题9.当m=时,y=(m+2)x m2﹣2是二次函数.10.抛物线y=﹣2x2+4x+1的顶点坐标是.11.点A(2,y1)、B(3,y2)在二次函数y=﹣x2﹣2x+c的图象上,则y1与y2的大小关系为y1y2(填“>”“<”或“=”).12.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为.13.如图,某大桥有一段抛物线型的拱梁,抛物线的表达式是y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶8秒时和28秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.14.二次函数y=x2﹣6x﹣7与x轴的交点坐标是,与y轴的交点坐标是三.解答题15.已知抛物线y=ax2经过点A(﹣2,﹣8).(1)求此抛物线的函数解析式;(2)判断点B(1,4)是否在此抛物线上;(3)求出抛物线上纵坐标为﹣6的点的坐标.16.抛物线y=﹣x2+(m﹣1)x+m与y轴交点坐标是(0,3).(1)求出m的值;(2)求抛物线与x轴的交点;(3)当x取什么值时,y<0?17.已知二次函数y=x2+mx+m﹣2.(1)求证:无论m为任何实数,此函数图象与x轴总有两个交点;(2)若此函数图象与x轴的一个交点为(﹣3,0),求此函数图象与x轴的另一个交点坐标.18.某公司试销一种成本单价为50元/件的新产品,规定试销时销售单价不低于成本单价,又不高于80元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数y=kx+b的关系(如图所示)(I)根据图象,求一次函数y=kx+b的解析式,并写出自变量x的取值范围;(Ⅱ)该公司要想每天获得最大的利润,应把销售单价定为多少?最大利润值为多少?19.如图,在直角坐标系中,抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C.(1)写出抛物线顶点D的坐标;(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F,求线段EF的最大值.参考答案一.选择题1.解:y=3x是一次函数,故A错误;当a=0时y=ax2+bx+c不是二次函数,故B错误;y=(x﹣1)2是二次函数,故C正确;y=2是常数函数,故D错误.故选:C.2.解:在y=(x+1)2﹣2中由a=1>0知抛物线的开口向上,故A错误;其对称轴为直线x=﹣1,在y轴的左侧,故B错误;由y=(x+1)2﹣2=x2+2x﹣1知抛物线与y轴的交点为(0,﹣1),在y轴的负半轴,故D 错误;故选:C.3.解:∵抛物线开口向下,∴a<0,∵对称轴在y轴的右侧,∴﹣>0,∴b>0,∵x=﹣1时,y<0,∴a﹣b+c<0,∵x=1时,y>0,∴a+b+c>0,∴B正确,A,C,D错误,故选:B.4.解:抛物线y=2x2+1的顶点坐标为(0,1),点(0,1)先向右平移3个单位长度,再向下平移5个单位长度后所得对应点坐标为(3,﹣4),所以所得函数的表达式为y=2(x﹣3)2﹣4.故选:B.5.解:由二次函数的图象可知,∵﹣5≤x≤0,∴当x=﹣2时函数有最大值,y最大=6;当x=﹣5时函数值最小,y最小=﹣3.故选:B.6.解:y=x2﹣2x+4=(x2﹣2x+1)+3,=(x﹣1)2+3,所以,y=(x﹣1)2+3.故选:D.7.解:由题意,得y=ax2+x+c+3对应的值x=﹣1.1,y=0.25;x=﹣1.2,y=0.14;x=﹣1.3,y=﹣0.13;x=﹣1.4,y=﹣0.28,由此可得x=﹣1.3时,y值更接近0,ax2+bx+c=﹣3(a≠0)的一个近似根是x=﹣1.3,故选:C.8.解:A、抛物线开口向下,则a<0,抛物线的对称轴为直线x=﹣=﹣1,则b=2a <0,抛物线与y轴的交点在x轴上方,则c>0,所以A选项错误;B、抛物线的对称轴为直线x=﹣=﹣1,则2a﹣b=0,所以B选项错误;C、当x>﹣1时,y随x的增大而减小,所以C选项错误;D、二次函数的最大值为﹣3,则y≤3,即ax2+bx+c﹣3≤0,所以D选项正确.故选:D.二.填空题(共6小题)9.解:由题意得:m2﹣2=2,且m+2≠0,解得:m=2,故答案为:2.10.解:∵a=﹣2,b=4,c=1,∴﹣=﹣=1,==3,∴顶点坐标(1,3),故答案为(1,3).11.解:当x=2时,y1=﹣x2﹣2x+c=﹣4﹣4+c=﹣8+c,当x=3时,y2=﹣x2﹣2x+c=﹣9﹣6+c=﹣15+c,所以y1>y2.故答案为>.12.解:由题意可得,y=(60﹣x)(300+20x),故答案为:y=(60﹣x)(300+20x).13.解:∵当小强骑自行车行驶8秒时和28秒时拱梁的高度相同,∴其抛物线的对称轴为直线x=(8+28)÷2=18,故CO=36,则小强骑自行车通过拱梁部分的桥面OC共需36秒.故答案为:36.14.解:令y=0时,0=x2﹣6x﹣7解得:x1=7,x2=﹣1∴二次函数y=x2﹣6x﹣7与x轴的交点坐标是(7,0),(﹣1,0)令x=0时,y=﹣7∴二次函数y=x2﹣6x﹣7与y轴的交点坐标是(0,﹣7)故答案为:(7,0),(﹣1,0);(0,﹣7)三.解答题(共5小题)15.解:(1)把A(﹣2,﹣8)代入y=ax2得4a=﹣8,解得a=﹣2,所以此抛物线的函数解析式为y=﹣2x2;(2)当x=1时,y=﹣2x2=﹣2,所以点B(1,4)不在此抛物线上;(3)当y=﹣6时,﹣2x2=﹣6,解得x=±,所以抛物线上纵坐标为﹣6的点的坐标为(﹣,﹣6),(,﹣6).16.解:(1)把(0,3)代入y=﹣x2+(m﹣1)x+m得m=3,即m的值为3;(2)抛物线解析式为y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,所以抛物线与x轴的交点坐标为(﹣1,0),(3,0);(3)当x<﹣1或x>3时,y<0.17.(1)证明:△=m2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∵(m﹣2)2,≥0,∴△>0,,∴无论m为任何非零实数,此函数图象与x轴总有两个交点;(2)解:∵二次函数的图象与x轴的一个交点为(﹣3,0),∴(﹣3)2﹣3m+m﹣2=0,解得m=,∵二次函数的解析式为:y=x2+x+;当y=0时,x2+x+=0,解得:x1=﹣3,x2=﹣,∴抛物线与x轴的另一个交点坐标为(﹣,0),18.解:(Ⅰ)由函数的图象得:,解得:,∴所以y=﹣x+100(50≤x≤80);(Ⅱ)设每天获得的利润为W元,由(Ⅰ)得:W=(x﹣50)y=(x﹣50)(﹣x+100)=﹣x2+150x﹣5000=﹣(x﹣75)2+625,∵﹣1<0,∴当x=75时,W最大=625即该公司要想第天获得最大利润,应把销售单价为75元/件,最大利润为625元.19.解:(1)∵y=﹣(x+1)2+4,∴抛物线顶点D的坐标是(﹣1,4).故答案为(﹣1,4);(2)点D1在直线AC上,理由如下:∵抛物线y=﹣(x+1)2+4与x轴交于点A、B,与y轴交于点C,∴当y=0时,﹣(x+1)2+4=0,解得x=1或﹣3,A(﹣3,0),B(1,0),当x=0时,y=﹣1+4=3,C(0,3).设直线AC的解析式为y=kx+b,由题意得,解得,∴直线AC的解析式为y=x+3.∵点D1是点D关于y轴的对称点,D(﹣1,4).∴D1(1,4),∵x=1时,y=1+3=4,∴点D1在直线AC上;(3)设点E(x,﹣x2﹣2x+3),则F(x,x+3),∵EF=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+1.5)2+2.25,∴线段EF的最大值是2.25.。
华东师大版九年级数学下册26.2.1:二次函数y=ax2的图象与性质 同步测试题(含答案)

华东师大版九年级数学下册第26章二次函数26.2 二次函数的图象与性质26.2.1 二次函数y=ax2的图象与性质同步测试题一、选择题1.二次函数y=x2的图象是(C)A.线段B.直线C.抛物线D.双曲线2.如图,函数y=-2x2的图象是(C)A.①B.②C.③D.④3.对于函数y=4x2,下列说法正确的是(B)A.当x>0时,y随x的增大而减小B.当x<0时,y随x的增大而减小C.y随x的增大而减小D.y随x的增大而增大4.已知原点是抛物线y=(m-2)x2的最低点,则m的取值范围是(A)A.m>2B.m>-2C.m<2D.m<05.已知抛物线y=-x2过A(-2,y1),B(-1,y2)两点,则下列关系式一定正确的是(C)A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<06.抛物线y=2x2,y=-2x2,y=12x2共有的性质是(B)A.开口向下B.图象对称轴是y轴C.都有最低点D.y随x的增大而减小7.已知点A(-1,m),B(1,m),C(2,m-n)(n>0)在同一个函数的图象上,这个函数可能是(D)A.y=xB.y=-2xC.y=x2D.y=-x28.如图,A,B为抛物线y=x2上两点,且线段AB⊥y轴.若AB=6,则点A的坐标为(D)A.(3,3)B.(3,9)C.(-3,3)D.(-3,9)9.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是(D)A. B. C. D.二、填空题10.抛物线y=-x2的开口向下,顶点坐标是(0,0),对称轴是y轴.11.二次函数y=(k+2)x2的图象如图所示,则k的取值范围是k>-2.12.下列各点:(-1,2),(-1,-2),(-2,-4),(-2,4),其中在二次函数y=-2x2的图象上的是(-1,-2).13.已知二次函数y=x2,当x>0时,y随x的增大而增大(填“增大”或“减小”).14.二次函数y=ax2(a>0)的图象经过点(1,y1),(2,y2),则y1<y2(填“>”或“<”).15.当-1≤x≤2时,二次函数y=x2的最大值是4,最小值是0.16.已知二次函数y=mxm2-1,在其图象对称轴的左侧y随x的增大而增大,则m17.下列四个二次函数:①y=x2;②y=-2x2;③y=12x2;④y=3x2,其中抛物线开口从大到小的排列顺序是③①②④.18.如图,各抛物线所对应的函数表达式分别为:①y=ax2;②y=bx2;③y=cx2;④y=dx2.比较a,b,c,d的大小,用“>”连接为a>b>d>c.19.如图,边长为2的正方形ABCD的中心在直角坐标系的原点O处,AD∥x轴,以O为顶点且过A,D两点的抛物线与以O为顶点且过B,C两点的抛物线将正方形分割成几部分,则图中阴影部分的面积是2.三、解答题20.在同一平面直角坐标系中,画出下列函数的图象.(1)y=2x2;(2)y=12x2.解:列表:描点、连线可得图象如图.21.已知抛物线y=ax2经过点(1,3).(1)求a的值;(2)当x=3时,求y的值;(3)说出此二次函数的三条性质.解:(1)∵抛物线y=ax2经过点(1,3),∴a=3.(2)把x=3代入抛物线y=3x2,得y=3×32=27.(3)答案不唯一,如:抛物线的开口向上;坐标原点是抛物线的顶点;当x>0时,y随着x的增大而增大;抛物线有最低点;当x=0时,y有最小值,最小值是0等.22.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大;(2)函数y=(2m-1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=-12x2的形状相同.解:(1)∵函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y 随x的增大而增大,∴m+3<0.∴m<-3.(2)∵函数y=(2m-1)x2有最小值,∴2m-1>0.∴m>1 2 .(3)∵抛物线y=(m+2)x2与抛物线y=-12x2的形状相同,∴m+2=±1 2 .解得m=-52或-32.23.已知二次函数y=ax2与一次函数y=mx+4的图象相交于点A(-2,2)和B(n,8)两点.(1)求二次函数y=ax2与一次函数y=mx+4的表达式;(2)试判断△AOB的形状,并说明理由.解:(1)∵二次函数y=ax2的图象经过点A(-2,2).∴2=4a,a=1 2 .∴二次函数的表达式为y=12x2.∵一次函数y=mx+4的图象经过点A(-2,2),∴2=-2m+4,m=1.∴一次函数的表达式是y=x+4.(2)△AOB是直角三角形.理由如下:∵点B(n,8)在一次函数y=x+4的图象上,∴8=n+4,n=4.∴B(4,8).∵A(-2,2),∴OA2=22+22=8,OB2=42+82=80,AB2=(4+2)2+(8-2)2=72. ∴OA2+AB2=OB2.∴△AOB为直角三角形,且∠OAB=90°.。
九数下册第26章二次函数26.2二次函数的图象与性质同步练习(附答案华东师大版)

九数下册第26章二次函数26.2二次函数的图象与性质同步练习(附答案华东师大版)九年级数学下册第26章二次函数26.2二次函数的图象与性质同步练习(附答案华东师大版)下载文档九年级数学下册第26章二次函数26.2二次函数的图象与性质同步练习(附答案华东师大版)26.2.1 二次函数y= 的图象与性质一.选择题1.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A. B. C.D.2.函数y=ax2+1与y= (a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.3.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A. B.C. D.4.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图,则一次函数y=mx+n 与反比例函数y= 的图象可能是()C. D.二.填空题5.下列函数,当x>0时,y随x的增大而减小的是.(填序号)(1)y=﹣x+1,(2)y=2x,(3),(4)y=﹣x2.6.如图,抛物线与两坐标轴的交点坐标分别为(﹣1,0),(2,0),(0,2),则抛物线的对称轴是;若y>2,则自变量x的取值范围是.7.如图,边长为2的正方形ABCD的中心在直角坐标系的原点O,AD∥x轴,以O为顶点且过A、D两点的抛物线与以O为顶点且过B、C两点的抛物线将正方形三.解答题8.抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).(1)求出m的值并画出这条抛物线.(2)求它与x轴的交点和抛物线顶点的坐标.(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?9.分别在同一直角坐标系内,描点画出y= x2+3与y= x2的二次函数的图象,并写出它们的对称轴与顶点坐标.参考答案一.1.C 2.B 3.D 4.C二.5.(1)(4)6.x= 0<x<1 7.2三.8.解:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3),得m=3.∴抛物线为y=﹣x2+2x+3=﹣(x﹣1)2+4.列表得:x ﹣1 0 1 2 3y 0 3 4 3 0图象如右图.(2)由﹣x2+2x+3=0,得x1=﹣1,x2=3.∴抛物线与x轴的交点为(﹣1,0),(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线的顶点坐标为(1,4).(3)由图象可知:当﹣1<x<3时,抛物线在x轴上方.(4)由图象可知:当x>1时,y的值随x值的增大而减小.9.解:抛物线y= x2+3的开口方向向上,顶点坐标是(0,3),对称轴是y轴,且经过点(3,6)和(﹣3,6).抛物线y= x2的开口方向向上,顶点坐标是(0,0),对称轴是y轴,且经过点(3,3)和(﹣3,3),26.2.2 二次函数y=ax2+k的图象与性质1.如图,将抛物线y=13x2向________平移________个单位得到抛物线y=13x2+2;将抛物线y=13x2向________平移________个单位得到抛物线y=13x2-2.2.将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的关系式为( )A.y=x2-1 B.y=x2+1C.y=(x-1)2 D.y=(x+1)23.不画出图象,回答下列问题:(1)函数y=4x2+2的图象可以看成是由函数y=4x2的图象通过怎样的平移得到的?(2)说出函数y=4x2+2的图象的开口方向、对称轴和顶点坐标;(3)如果要将函数y=4x2的图象经过适当的平移,得到函数y=4x2-5的图象,应怎样平移?4.抛物线y=-12x2-6的开口向________,顶点坐标是________,对称轴是________;当x________时,y有最________值,其值为________;当x________0时,y 随x的增大而增大,当x________0时,y随x的增大而减小.①y=-x+1,②y=2x,③y=-2x,④y=-x2.6.已知点(-1,y1),-12,y2都在函数y=12x2-2的图象上,则y1______y2.(填“>”“ ”或“=”)7.二次函数y=2x2+1,y=-2x2-1,y=12x2-2的图象的共同特征是( )A.对称轴都为y轴B.顶点坐标相同C.开口方向相同D.都有最高点8.二次函数y=-x2+1的图象大致是( )9.二次函数y=2x2-3的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1D.抛物线的顶点坐标是(0,-3)10.已知二次函数y=ax2+c有最大值,其中a和c分别是方程x2-2x-24=0的两个根,试求该二次函数的关系式.11.在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是( )12.从y=2x2-3的图象上可以看出,当-1≤x≤2时,y的取值范围是( ) A.-1≤y≤5B.-5≤y≤5C.-3≤y≤5D.-2≤y≤113.已知函数y=x2+1(x≥-1),2x(x -1),则下列函数图象正确的是( )14.已知二次函数y=ax2+k的图象上有A(-3,y1),B(1,y2)两点,且y2 A.a>0 B.aC.a≥0D.a≤015.小华同学想用“描点法”画二次函数y=ax2+c的图象,取自变量x的5个值,分别计算出对应的y值,如下表:x …-2 -1 0 1 2 …y … 11 2 -1 2 5 …由于粗心,小华算错了其中的一个y值,请你指出这个算错的y值所对应的x=________.16.如图,在平面直角坐标系中,抛物线y=ax2+4与y轴交于点A,过点A且与x轴平行的直线交抛物线y=14x2于点B,C,则BC的长为________.17.能否适当地上下平移函数y=12x2的图象,使得到的新图象过点(4,-2)?18.已知抛物线y=12x2,把它向下平移,得到的抛物线与x轴交于A,B两点,与y轴交于点C.若△ABC是直角三角形,则原抛物线应向下平移几个单位?19.已知直线y=kx+b与抛物线y=ax2-4的一个交点坐标为(3,5).(1)求抛物线所对应的函数关系式;(2)求抛物线与x轴的交点坐标;(3)如果直线y=kx+b经过抛物线y=ax2-4与x轴的交点,试求该直线所对应的函数关系式.参考答案1.上 2 下 22.A3.解:(1)函数y=4x2+2的图象可以看成是由函数y=4x2的图象向上平移2个单位得到的.(2)函数y=4x2+2的图象开口向上,对称轴为y轴,顶点坐标为(0,2).(3)将函数y=4x2的图象向下平移5个单位得到函数y=4x2-5的图象.4.下(0,-6) y轴(或直线x=0) =0 大-6 >x的增大而增大,不符合题意;③y=-2x,在每一个象限,y随x的增大而增大,不符合题意;④y=-x2,在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y 随x的增大而减小,符合题意.故答案为①④.6.> [解析] 抛物线y=12x2-2,当x7.A 8.B 9.D10.解:解方程x2-2x-24=0,得x1=-4,x2=6.因为函数y=ax2+c有最大值,所以a<0.而a和c分别是方程x2-2x-24=0的两个根,所以a=-4,c=6,所以该二次函数的关系式是y=-4x2+6.11.D [解析] A项,由n2≥0,可知直线与y轴的交点在原点或y轴的正半轴上,错误.B项,由二次函数y=x2+m的二次项系数为1,可知二次函数图象的开口向上,错误.C项,由抛物线与y轴的交点在y轴的负半轴上,可知m<0,由直线可知,-可知,-m>0,即m12. C [解析] 如图,根据y=2x2-3的图象,分析可得,当x=0时,y取得最小值,且最小值为-3;当x=2时,y取得最大值,且最大值为2×22-3=5.故选C.13.C [解析] y=x2+1,图象开口向上,对称轴是y轴,顶点坐标是(0,1),当x≥-1时,B,C,D正确;y=2x,图象在第一、三象限,当x<-1时,C正确.故选C.14.A [解析] ∵二次函数y=ax2+k的图象关于y轴对称,∴点A(-3,y1)的对称点(3,y1)在二次函数图象上.∵当横坐标115.2 [解析] 根据表格给出的各点坐标可得出,该函数图象的对称轴为直线x =0,进而可得函数关系式为y=3x2-1,则当x=2与x=-2时取值相同,为11.故这个算错的y值所对应的x=2.16.8 [解析] ∵抛物线y=ax2+4与y轴交于点A,∴点A的坐标为(0,4).当y=4时,14x2=4,解得x=±4,∴点B的坐标为(-4,4),点C的坐标为(4,4),∴BC =4-(-4)=8.17.解:能.设将函数y=12x2的图象向上平移c个单位后,所得新图象过点(4,-2),所得新图象为抛物线y=12x2+c.将(4,-2)代入y=12x2+c,得-2=12×16+c,c=-10,∴将函数y=12x2的图象向下平移10个单位后,所得新图象过点(4,-2).18.解:设将抛物线y=12x2向下平移b(b>0)个单位,得到的抛物线的关系式为y=12x2-b.不妨设点A在点B的左侧,由题意可得A(-2b,0),B(2b,0),C(0,-b).∵△ABC是直角三角形,∴OB=OC=OA,即2b=b,解得b=0(舍去)或b=2,∴若△ABC是直角三角形,则原抛物线应向下平移2个单位.19.解:(1)将交点坐标(3,5)代入y=ax2-4,得9a-4=5,解得a=1.故抛物线所对应的函数关系式为y=x2-4.(2)在y=x2-4中,令y=0可得x2-4=0,解得x1=-2,x2=2.故抛物线与x轴的交点坐标为(-2,0)和(2,0).(3)需分两种情况进行讨论:①当直线y=kx+b经过点(-2,0)时,由题意可知-2k+b=0,3k+b=5,解得k=1,b=2,故该直线所对应的函数关系式为y=x+2;②当直线y=kx+b经过点(2,0)时,由题意可知2k+b=0,3k+b=5,解得k =5,b=-10,故该直线所对应的函数关系式为y=5x-10.26.2.3二次函数y=a(x-h)2的图象与性质1.将抛物线y=x2向________平移________个单位得到抛物线y=(x+5)2;将抛物线y=x2向________平移________个单位得到抛物线y=(x-5)2.2.下列方法可以得到抛物线y=25(x-2)2的是( )A.把抛物线y=25x2向右平移2个单位B.把抛物线y=25x2向左平移2个单位C.把抛物线y=25x2向上平移2个单位D.把抛物线y=25x2向下平移3.顶点是(-2,0),开口方向、形状与抛物线y=12x2相同的抛物线是( )A.y=12(x-2)2 B.y=12(x+2)2C.y=-12(x-2)2 D.y=-12(x+2)2知识点2 二次函数y=a(x-h)2的图象与性质4.抛物线y=12(x+3)2的开口向______;对称轴是直线________;当x=______时,y有最______值,这个值为________;当x________时,y随x的增大而减小.5.对于任意实数h,抛物线y=(x-h)2与抛物线y=x2( )A.开口方向相同B.对称轴相同C.顶点相同D.都有最高点6.关于二次函数y=-2(x+3)2,下列说法中正确的是( )A.其图象开口向上B.其图象的对称轴是直线x=3C.其图象的顶点坐标是(0,3)D.当x>-3时,y随x的增大而减小7.在平面直角坐标系中,函数y=-x+1与y=-32(x-1)2的图象大致是( )8.已知函数y=-(x-1)2的图象上的两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1______y2.(填“ ”“>”或“=”)9.在平面直角坐标系中画出函数y=-12(x-3)2的图象.(1)指出该函数图象的开口方向、对称轴和顶点坐标;(2)说明该函数图象与二次函数y=-12x2的图象的关系;(3)根据图象说明,何时y随x的增大而减小.10.如图是二次函数y=a(x-h)2的图象,则直线y=ax+h不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限11.已知二次函数y=-(x-h)2,当x<-3时,y随x的增大而增大;当x>-3时,y随x的增大而减小.当x=0时,y的值为( )A.-1 B.-9 C.1 D.912.将抛物线y=ax2-1平移后与抛物线y=a(x-1)2重合,抛物线y=ax2-1上的点A(2,3)同时平移到点A′的位置,那么点A′的坐标为( )A.(3,4) B.(1,2) C.(3,2) D.(1,4)13.已知抛物线y=a(x-h)2的形状及开口方向与抛物线y=-2x2相同,且顶点坐标为(-2,0),则a+h=________.14.二次函数y=a(x-h)2的图象如图所示,若点A(-2,y1),B(-4,y2)是该图象上的两点,则y1________y2.(填“>”“<”或“=”)15.若点A-134,y1,B-54,y2,C14,y3为二次函数y=(x-2)2图象上的三点,则y1,y2,y3的大小关系为____________.16.已知直线y=kx+b经过抛物线y=-12x2+3的顶点A和抛物线y=3(x-2)2的顶点B,求该直线的函数关系式.17.已知二次函数y=(x-3)2.(1)写出该二次函数图象的开口方向、对称轴、顶点坐标和该函数的最值.(2)若点A(x1,y1),B(x2,y2)位于对称轴右侧的抛物线上,且x1(3)抛物线y=(x+7)2可以由抛物线y=(x-3)2平移得到吗?如果可以,请写出平移的方法;如果不可以,请说明理由.18.一条抛物线的形状与抛物线y=2x2的形状相同,对称轴与抛物线y=12(x +2)2的对称轴相同,且顶点在x轴上,求这条抛物线所对应的函数关系式.19.已知抛物线y=13x2如图所示.(1)抛物线向右平移m(m>0)个单位后,经过点A(0,3),试求m的值;(2)画出(1)中平移后的图象;物线的对称轴上找出一点P,使BP+CP的值最小,并求出点P的坐标.参考答案1.左 5 右 52.A [解析] 根据平移规律“左加右减”,得抛物线y=25(x-2)2可以由抛物线y=25x2向右平移2个单位得到.3.B [解析] ∵开口方向、形状与抛物线y=12x2相同,∴a=12.∵抛物线的顶点是(-2,0),4.上x=-3 -3 小0 -35.A [解析] 抛物线y=(x-h)2与抛物线y=x2,A.a=1>0,都开口向上,此说法正确;B.抛物线y=(x-h)2的对称轴为直线x=h,抛物线y=x2的对称轴为直线x=0,说法错误;C.抛物线y=(x-h)2的顶点是(h,0),抛物线y=x2的顶点是(0,0),说法错误;D.a>0,都有最低点,说法错误.故选A.6.D [解析] 由a=-2<0,可知图象开口向下,故A错误;y=-2(x+3)2=因为图象开口向下,对称轴为直线x=-3,所以当x>-3时,y随x的增大而减小,故D正确.故选D.7.D [解析] 抛物线y=-32(x-1)2的对称轴是直线x=1,可排除选项B和C;直线y=-x+1交y轴于点(0,1),排除选项A.选项D满足题意.故选D.8.> [解析] 因为二次项系数为-1,小于0,所以在对称轴直线x=1的左侧,y随x的增大而增大;在对称轴直线x=1的右侧,y随x的增大而减小.因为a>2>1,所以y1>y2.故答案为“>”.9.解:图略.(1)该函数图象的开口向下,对称轴为直线x=3,顶点坐标为(3,0).(2)二次函数y=-12(x-3)2的图象是由二次函数y=-12x2的图象向右平移3个单位得到的.(3)当x>3时,y随x的增大而减小.10.B [解析] 由图象可知a>0,h11.B [解析] 由题意知二次函数y=-(x-h)2的图象的对称轴为直线x=-3,故h=-3.把h=-3代入二次函数y=-(x-h)2可得y=-(x+3)2,当x=0时,y =-9.故选B.12.A [解析] ∵抛物线y=ax2-1的顶点坐标是(0,-1),抛物线y=a(x-1)2的顶点坐标是(1,0),∴将抛物线y=ax2-1向右平移1个单位,再向上平移1个单位得到抛物线y=a(x-1)2,∴将点A(2,3)向右平移1个单位,再向上平移1个单位得到点A′的坐标为(3,4).故选A.13.-414.=[解析] 由图象可知抛物线的对称轴为直线x=-3,所以点A和点B关于对称轴对称,所以y1=y2.15.y1>y2>y3 [解析] ∵二次函数y=(x-2)2的图象开口向上,对称轴为直线x=2,∴当x<2时,y随x的增大而减小,又∵-134<-54<14<2,∴y1>y2>y3.16.解:抛物线y=-12x2+3的顶点A的坐标为(0,3),抛物线y=3(x-2)2的顶点B的坐标为(2,0).∵直线y=kx+b经过点A,B,∴b=3,2k+b=0,解得k=-32,b=3,∴该直线的函数关系式为y=-32x+3.17.解:(1)因为a=1>0,所以该二次函数的图象开口向上,对称轴为直线x=3,顶点坐标为(3,0);当x=3时,y最小值=0,没有最大值.(2)因为当x>3时,y随x的增大而增大.又因为3(3)可以.将抛物线y=(x-3)2向左平移10个单位可以得到抛物线y=(x+7)2.18.解:根据题意设这条抛物线所对应的函数关系式为y=a(x-k)2.∵这条抛物线的形状与抛物线y=2x2的形状相同,∴|a|=2,即a=±2.又∵这条抛物线的对称轴与抛物线y=12(x+2)2的对称轴相同,∴k=-2,∴这条抛物线所对应的函数关系式为y=2(x+2)2或y=-2(x+2)2.19.解:(1)平移后得到的抛物线对应的函数关系式为y=13(x-m)2,把(0,3)代入,得3=13(0-m)2,解得m1=3,m2=-3.因为m>0,所以m=3.(2)如图所示.32,34,点C的坐标为(6,3),点P为直线BC与抛物线y=13(x-3)2的对称轴(直线x=3)的交点.设直线BC所对应的函数关系式为y=kx+b,则32k+b=34,6k +b=3,解得k=12,b=0,即直线BC所对应的函数关系式为y=12x,当x=3时,y=32,因此点P的坐标为3,32.26.2.4二次函数y=a(x-h)2+k的图象与性质1.二次函数y=-3x-42+2的图象是由抛物线y=-3x2先向________(填“左”或“右”)平移________个单位,再向________(填“上”或“下”)平移________个单位得到的.2.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的A.y=2(x-3)2-5 B.y=2(x+3)2+5C.y=2(x-3)2+5 D.y=2(x+3)2-53.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向上平移3个单位D.先向右平移2个单位,再向下平移3个单位4.在同一平面直角坐标系内,将抛物线y=(x-2)2+5先向左平移2个单位,再向下平移1个单位后,所得抛物线的顶点坐标为( )A.(4,4) B.(4,6)C.(0,6) D.(0,4)5.抛物线y=3(x-2)2+3的开口________,顶点坐标为________,对称轴是________;当x>2时,y随x的增大而________,当x6.如图所示为二次函数y=a(x-h)2+k的图象,则a________0,h________0,k________0.(填“>”“<”或“=”)7.二次函数y=(x-2)2-1的图象不经过的象限为( )C.第三象限D.第四象限8.设二次函数y=(x-3)2-4的图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是( )A.(1,0) B.(3,0)C.(-3,0) D.(0,-4)9.已知二次函数y=-(x+1)2+2,则下列说法正确的是( )A.其图象开口向上B.其图象与y轴的交点坐标为(-1,2)C.当x<1时,y随x的增大而减小D.其图象的顶点坐标是(-1,2)10.二次函数y=-(x-b)2+k的图象如图所示.(1)求b,k的值;(2)二次函数y=-(x-b)2+k的图象经过怎样的平移可以得到二次函数y=-x2的图象?11.已知二次函数y=34(x-1)2-3.(1)画出该函数的图象,并写出图象的开口方向、对称轴、顶点坐标及y随x的变(2)函数y有最大值还是最小值?并写出这个最大(小)值;(3)设函数图象与y轴的交点为P,求点P的坐标.12.若抛物线y=(x-1)2+2不动,将平面直角坐标系xOy先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线的关系式变为( )A.y=(x-2)2+3 B.y=(x-2)2+5C.y=x2-1 D.y=x2+413.如图,将函数y=12(x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′,B′.若曲线段AB扫过的面A.y=12(x-2)2-2 B.y=12(x-2)2+7C.y=12(x-2)2-5 D.y=12(x-2)2+414.已知二次函数y=a(x-1)2-c的图象如图所示,则一次函数y=ax+c的大致图象可能是图26-2-21中的( )15.已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数y的最大值为-1,则h的值为( )A.3或6 B.1或6C.1或3 D.4或616.已知二次函数y=-(x+k)2+h,当x>-2时,y随x的增大而减小,则k 的取值范围是________.17.已知抛物线y=x+m-12+m+2的顶点在第二象限,试求m的取值范围.18.如图,抛物线y=-(x-1)2+4与y轴交于点C,顶点为D.(1)求顶点D的坐标;(2)求△OCD的面积.(1)求出该抛物线与y轴的交点C的坐标;(2)求出该抛物线与x轴的交点A,B的坐标;(3)如果抛物线的顶点为D,试求四边形ABCD的面积.参考答案1.右 4 上 2再向下平移5个单位所得对应点的坐标为(3,-5),所以平移后得到的抛物线的表达式为y=2(x-3)2-5.故选A.3.B [解析] 由抛物线平移的规律“左加右减,上加下减”可以得出,应先向左平移2个单位,再向下平移3个单位.所以选B.4.D5.向上(2,3) 直线x=2 增大减小 2 小 36.> >7.C [解析] 根据题意可得该函数图象的顶点坐标为(2,-1),与y轴交于(0,3),且开口向上,故抛物线不经过第三象限,故选C.8.B [解析] 由题意可知二次函数的图象的对称轴为直线x=3,所以点M的横坐标为3,对照选项可知选B.9.D [解析] ∵y=-(x+1)2+2,∴二次函数的图象开口向下,顶点坐标为(-1,2),对称轴为x=-1,故A错误,D正确;当x<-1时,y随x的增大而增大,当x >-1时,y随x的增大而减小,故C错误;在y=-(x+1)2+2中,令x=0可得y =1,∴图象与y轴的交点坐标为(0,1),故B错误.故选D.10.解:(1)由图象可得二次函数y=-(x-b)2+k的图象的顶点坐标为(1,3).因为二次函数y=-(x-b)2+k的图象的顶点坐标为(b,k),所以b=1,k=3.(2)把二次函数y=-(x-b)2+k的图象向左平移1个单位,再向下平移3个单位可得到二次函数y=-x2的图象(其他平移方法合理也可).11.解:(1)画函数图象略.∵a=34>0,∴图象的开口向上,对称轴为直线x=1,顶点坐标为(1,-3).当x1时,y随x的增大而增大.(2)∵a=34>0,∴函数y有最小值,最小值为-3.(3)令x=0,则y=34×(0-1)2-3=-94,所以点P的坐标为0,-94.12.C [解析] ∵y=(x-1)2+2,∴原抛物线的关系式变为y=(x-1+1)2+2-3=x2-1.故选C.13.D [解析] 连结AB,A′B′,则S阴影=S四边形ABB′A′.由平移可知,AA′=BB′,AA′∥BB′,所以四边形ABB′A′是平行四边形.分别延长A′A,B′B交x轴于点M,N.因为A(1,m),B(4,n),所以MN=4-1=3.因为S▱ABB′A′=AA′·MN,所以9=3AA′,解得AA′=3,即函数y=12(x-2)2+1的图象沿y轴向上平移了3个单位,所以新图象的函数表达式为y=12(x-2)2+4.14.A [解析] 由二次函数的图象开口向上得a>0.因为-c是二次函数图象顶点的纵坐标,所以c>0.所以一次函数y=ax+c的大致图象经过第一、二、三象限.15.B [解析] 如图,当h<2时,有-(2-h)2=-1,解得h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得h3=4(舍去),h4=6.综上所述,h的值为1或6.故选B.16.k≥2[解析] 抛物线的对称轴为直线x=-k,因为a=-1<0,所以抛物线开口向下,所以当x>-k时,y随x的增大而减小.又因为当x>-2时,y随x的增大而减小,所以-k≤-2,所以k≥2.17.解:因为y=x+m-12+m+2=[x-(-m+1)]2+(m+2),所以抛物线的顶点坐标为(-m+1,m+2).因为抛物线的顶点在第二象限,所以-m+10,即m>1,m>-2,所以m>1.18.解:(1)顶点D的坐标为(1,4).(2)把x=0代入y=-(x-1)2+4,得y=3,所以△OCD的面积为12×3×1=32.19.解:(1)当x=0时,y=-9,所以点C的坐标为(0,-9).(2)当y=0时,3x+12-12=0,解得x1=-3,x2=1,所以点A的坐标为(-3,0),点B的坐标为(1,0).(3)由抛物线所对应的函数关系式可知点D的坐标为(-1,-12),设对称轴与x 轴交于点E,则点E的坐标为(-1,0),所以S四边形ABCD=S△ADE+S梯形OCDE +S△BOC=12×2×12+12×1×(9+12)+12×1×9=27.26.2.5二次函数y=a +bx+c的图象与性质1.已知二次函数y=ax2﹣2x+2(a>0),那么它的图象一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.抛物线y=2x2,y=﹣2x2,y= x2共有的性质是()A.开口向下 B.对称轴是y轴 C.都有最低点 D.y的值随x的增大而减小3.抛物线y=2x2+1的顶点坐标是()A.(2,1) B.(0,1) C.(1,0) D.(1,2)4.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1 C.顶点坐标是(1,2) D.与x轴有两个交点5.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值 B.对称轴是直线x= C.当x<,y随x的增大而减小 D.当﹣1<x<2时,y>0二.填空题6.抛物线y=2x2﹣1在y轴右侧的部分是(填“上升”或“下降”).7.二次函数y=x2﹣4x﹣5图象的对称轴是直线.。
二次函数的图象和性质练习题(含参考答案)

新华师大版九年级下册数学第26章 二次函数的图象和性质部分练习题姓名____________ 时间: 90分钟 满分:120分 总分____________一、选择题(每小题10分,共30分)1. 将抛物线2x y =向右平移2个单位,再向上平移1个单位,所得新抛物线对应的函数表达式为 【 】 (A )()122++=x y (B )()122-+=x y(C )()122+-=x y (D )()122--=x y2. 将抛物线()312+-=x y 向左平移1个单位,得到的抛物线与y 轴的交点坐标是 【 】(A )(0 , 2) (B )(0 , 3) (C )(0 , 4) (D )(0 , 7)3. 抛物线321532-⎪⎭⎫⎝⎛+-=x y 的顶点坐标是 【 】(A )⎪⎭⎫ ⎝⎛-3,21 (B )⎪⎭⎫ ⎝⎛--3,21 (C )⎪⎭⎫ ⎝⎛3,21 (D )⎪⎭⎫⎝⎛-3,214. 抛物线322++=x x y 的对称轴是 【 】 (A )直线1=x (B )直线1-=x (C )直线2-=x (D )直线2=x5. 在平面直角坐标系中,将抛物线221x y -=先向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式为 【 】(A )23212---=x x y (B )21212-+-=x x y (C )23212-+-=x x y (D )21212---=x x y6. 关于抛物线()212--=x y ,下列说法错误的是 【 】(A )顶点坐标为()2,1- (B )对称轴是直线1=x(C )开口向上 (D )当1>x 时,y 随x 的增大而减小7. 如图所示,把抛物线2x y =沿直线x y =向右平移2个单位后,其顶点在直线上的A 处,平移后的抛物线解析式是 【 】(A )()112-+=x y (B )()112++=x y(C )()112+-=x y (D )()112--=x y第 7 题图8. 关于二次函数1422-+=x x y ,下列说法正确的是 【 】 (A )图象与y 轴的交点坐标为(0 , 1) (B )图象的对称轴在y 轴的右侧 (C )当0<x 时,y 的值随x 值的增大而减小 (D )y 的最小值为3-9. 抛物线1822-+-=x x y 的顶点坐标为 【 】 (A )(7,2-) (B )(2 , 7) (C )(2 ,25-) (D )(2 ,9-)10. 已知二次函数()12+-=h x y ,在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为 【 】 (A )1或5- (B )1-或5 (C )1或3- (D )1或3 二、填空题(每小题3分,共30分)11. 抛物线()5232+-=x y 的顶点坐标为_________.12. 将抛物线2x y =向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为________________.13. 用配方法将二次函数982--=x x y 化为()k h x a y +-=2的形式为________________.14. 抛物线132+-=x x y 的顶点坐标为_________. 15. 抛物线x x y 92+-=的最大值为_________.16. 将抛物线()2432+-=x y 向右平移1个单位,再向下平移3个单位,平移后抛物线的解析式是________________. 17. 已知点()1,4y A ,()2,2y B,()3,2y C -都在二次函数()122--=x y 的图象上,则321,,y y y 的大小关系是__________.18. 抛物线m x x y +-=22与x 轴只有一个交点,则m 的值为_________.19. 已知点()11,y x A ,()22,y x B 为函数()3122+--=x y 图象上的两点,若121>>x x ,则21,y y 的大小关系是__________.20. 如图,把抛物线221x y =平移得到抛物线m ,抛物线m 经过点()0,8-A 和原点O (0 , 0),它的顶点为P ,它的对称轴与抛物线221x y =交于点Q ,则图中阴影部分的面积为_________.三、解答题(共60分) 21.(10分)已知抛物线()31432--=x y . (1)写出抛物线的开口方向、对称轴;(2)函数y 有最大值还是最小值?并求出这个最值;(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数表达式.22.(10分)已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B . (1)求该函数的关系式;(2)求该函数的图象与坐标轴的交点坐标.23.(10分)已知抛物线c bx ax y ++=2的顶点坐标为()1,4-,与y 轴交于点(0 , 3),求这条抛物线的函数表达式.24.(10分)如图,在平面直角坐标系中,把抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线()k h x y +-=2.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,顶点为D . (1)求k h ,的值; (2)判断△ACD 的形状.yxDC BA O25.(10分)已知抛物线22212-+-=x x y . (1)写出此抛物线的开口方向、对称轴和顶点坐标; (2)求出抛物线与x 轴、y 轴的交点坐标;(3)在(2)中,设抛物线与y 轴交于点A ,与x 轴交于点B ,若以点A 为顶点的抛物线经过点B ,请你求出这条抛物线的解析式,并指出其开口方向和函数的最值.26.(10分)已知二次函数m x x y ++=22的图象1C 与x 轴有且只有一个公共点. (1)求1C 的顶点坐标;(2)将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()0,3-A ,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标;(3)若()1,y n P ,()2,2y Q 是1C 上的两点,且21y y >,求实数n 的取值范围.新华师大版九年级下册数学第26章 二次函数的图象和性质练习题参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11. (2 , 5) 12. ()522-+=x y 13. ()2542--=x y 14. ⎪⎭⎫⎝⎛-45,2315.481 16. ()1532--=x y 17. 312y y y << 18. 1 19. 21y y < 20. 32三、解答题(共60分) 21.(10分)已知抛物线()31432--=x y . (1)写出抛物线的开口方向、对称轴; (2)函数y 有最大值还是最小值?并求出这个最值;(3)设抛物线与y 轴的交点为P ,与x 轴的交点为Q ,求直线PQ 的函数表达式. 解:(1)开口向上,对称轴为直线1=x ; ……………………………………………2分 (2)函数y 有最小值,最小值为3-=y ; ……………………………………………4分 (3)令0=x ,则()49310432-=--⨯=y ∴⎪⎭⎫ ⎝⎛-49,0P ……………………………5分令0=y ,则()031432=--x 解之得:3,121=-=x x∴()0,1-Q 或Q (3 , 0)……………………………………………6分 设直线PQ 的函数表达式为b kx y +=当⎪⎭⎫ ⎝⎛-49,0P ,()0,1-Q 时⎪⎩⎪⎨⎧=+--=049b k b 解之得:⎪⎪⎩⎪⎪⎨⎧-=-=4949b k∴直线PQ 的函数表达式为4949--=x y ; ……………………………………………8分当⎪⎭⎫ ⎝⎛-49,0P , Q (3 , 0)时⎪⎩⎪⎨⎧=+-=0349b k b 解之得:⎪⎪⎩⎪⎪⎨⎧-==4943b k∴直线PQ 的函数表达式为4943-=x y …………………………………………10分 综上所述,直线PQ 的函数表达式为4949--=x y 或4943-=x y . 22.(10分)已知二次函数的图象以()4,1-A 为顶点,且过点()5,2-B . (1)求该函数的关系式;(2)求该函数的图象与坐标轴的交点坐标. 解:(1)由题意可设该函数的关系式为()k h x a y +-=2∵其顶点为()4,1-A ∴4,1-==k h……………………………………………2分 ∴()412--=x a y把()5,2-B 代入()412--=x a y 得:()54122-=--⨯a解之得:1-=a……………………………………………4分 ∴该函数的关系式为()412---=x y ;(2)令0=x ,则()54102-=---=y∴该函数的图象与y 轴的交点为()5,0-;……………………………………………7分 令0=y ,则()0412=---x∴()412-=-x∴方程无实数解∴该函数的图象与x 轴无交点.…………………………………………10分 23.(10分)已知抛物线c bx ax y ++=2的顶点坐标为()1,4-,与y 轴交于点(0 , 3),求这条抛物线的函数表达式.解:由题意可设该抛物线为()k h x a y +-=2∵其顶点坐标为()1,4- ∴1,4-==k h……………………………………………4分 ∴()142--=x a y把(0 , 3)代入()142--=x a y 得:()31402=--⨯a……………………………………………6分 解之得:41=a …………………………………………10分 ∴这条抛物线的函数表达式为()14412--=x y . 24.(10分)如图,在平面直角坐标系中,把抛物线2x y =向左平移1个单位,再向下平移4个单位,得到抛物线()k h x y +-=2.所得抛物线与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D . (1)求k h ,的值; (2)判断△ACD 的形状.解:(1)平移后,抛物线的解析式为()412-+=x y……………………………………………3分 ∴4,1-=-=k h ;……………………………………………5分 (2)令0=y ,则()0412=-+x解之得:1,321=-=x x ∵点A 在点B 的左边 ∴()0,3-A ,B (1 , 0)……………………………………………6分 ∴3=OA令0=x ,则()34102-=-+=y∴()3,0-C……………………………………………7分 ∴3=OC∴OC OA =∴△AOC 为等腰直角三角形∴︒=∠45ACO∵点D 为抛物线()412-+=x y 的顶点∴()4,1--D……………………………………………8分 过点D 作y DE ⊥轴 ∴4,1==OE DE∴134=-=-=OC OE CE ∴CE DE =∴△DCE 为等腰直角三角形∴︒=∠45DCE∴︒=︒-︒-︒=∠904545180ACD ∴△ACD 为直角三角形.…………………………………………10分 25.(10分)已知抛物线22212-+-=x x y . (1)写出此抛物线的开口方向、对称轴和顶点坐标;(2)求出抛物线与x 轴、y 轴的交点坐标; (3)在(2)中,设抛物线与y 轴交于点A ,与x 轴交于点B ,若以点A 为顶点的抛物线经过点B ,请你求出这条抛物线的解析式,并指出其开口方向和函数的最值. 解:(1)()222212221--=-+-=x x x y ……………………………………………1分 开口向下,对称轴为直线2=x ,顶点坐标为(2 , 0);……………………………………………4分 (2)令0=y ,则()02212=--x 解之得:2=x∴抛物线与x 轴的交点为(2 , 0)……………………………………………5分 令0=x ,则()220212-=-⨯-=y ∴抛物线与y 轴的交点为()2,0-;……………………………………………6分 (3)由题意可设抛物线的解析式为k ax y +=2∵其顶点为A ()2,0- ∴2-=k……………………………………………7分 ∴22-=ax y把B (2 , 0)代入22-=ax y 得:024=-a 解之得:21=a……………………………………………8分∴2212-=x y开口向上,函数的最小值为2-.…………………………………………10分 26.(10分)已知二次函数m x x y ++=22的图象1C 与x 轴有且只有一个公共点. (1)求1C 的顶点坐标;(2)将1C 向下平移若干个单位后,得抛物线2C ,如果2C 与x 轴的一个交点为()0,3-A ,求2C 的函数关系式,并求2C 与x 轴的另一个交点坐标;(3)若()1,y n P ,()2,2y Q 是1C 上的两点,且21y y >,求实数n 的取值范围.解:(1)()11222-++=++=m x m x x y∵其图象1C 与x 轴有且只有一个公共点 ∴01=-m ∴1=m……………………………………………3分∴()21+=x y∴1C 的顶点坐标为()0,1-;……………………………………………4分(2)设2C 的函数关系式为()k x y ++=21把()0,3-A 代入()k x y ++=21得:()0132=++-k解之得:4-=k∴2C 的函数关系式为()412-+=x y……………………………………………7分 令0=y ,则()0412=-+x解之得:1,321=-=x x∴2C 与x 轴的另一个交点坐标为(1 , 0); ……………………………………………8分 (3)2>n 或4-<n .…………………………………………10分。
华东师大版九年级数学下册 第26章 二次函数 单元测试题(有答案)

第26章二次函数单元测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列函数是二次函数的是( )A. B. C. D.2. 已知正方形,设,则正方形的面积与之间的函数关系式为()A. B. C. D.3. 与的图象的不同之处是()A.对称轴B.开口方向C.顶点D.形状4. 对抛物线:而言,下列结论正确的是()A.与轴有两个交点B.开口向上C.与轴的交点坐标是D.顶点坐标是5. 抛物线的顶点坐标一定位于( )A.轴的负半轴上B.第二象限C.第三象限D.第二象限或第三象限6. 二次函数的顶点坐标是A. B. C. D.7. 对于二次函数,下列说法错误的是A.对称轴为直线B.其图象一定经过点C.当时,随的增大而增大D.当时,将抛物线先向上平移个单位,再向左平移个单位,得到抛物线.8. 已知二次函数,当时,随的增大而增大,当时,随的增大而减小,当时,的值为( )A. B. C. D.9. 在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是,设金色纸边的宽度为,那么关于的函数是()A. B.C. D.10. 如图所示的抛物线=的对称轴为直线=,则下列结论中错误的是()A. B. C.= D.=二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 若抛物线经过原点,则________.12. 抛物线=开口向上,对称轴是直线=,,,在该抛物线上,则,,大小的关系是________.13. 将二次函数的图象绕着它与轴的交点旋转所得到新抛物线表达式为________.14. 将抛物线向下平移,若平移后的抛物线经过点,则平移后的抛物线的解析式为________.15. 抛物线的对称轴是直线,那么抛物线的解析式是________.16. 已知抛物线的顶点坐标为,且过点,则该抛物线的表达式为________.17. 已知,点,,都在函数的图象上,则,,的大小关系是________.18. 把二次函数化成的形式是________.19. 有一种产品的质量要求从低到高分为,,,共四种不同的档次.若工时不变,车间每天可生产最低档次(即第一档次)的产品件,生产每件产品的利润为元;如果每提高一个档次,每件产品利润可增加元,但每天少生产件产品.现在车间计划只生产一种档次的产品.要使利润最大,车间应生产第________种档次的产品.20. 已知二次函数的图象如图所示,则这个二次函数的表达式是________.三、解答题(本题共计6 小题,共计60分,)21. 已知二次函数和函数.(1)你能用图象法求出方程的解吗?试试看;(2)请通过解方程的方法验证(1)问的解.22. 抛物线与轴交于,,与轴交于,且(1)求,的坐标;(2)到,,距离相等,在抛物线上求点,使,,,为顶点的四边形为平行四边形.23. 如图,二次函数的图象与轴相交于、两点,与轴相交于点.、是二次函数图象上的一对对称点,一次函数的图象过点、.(1)求二次函数的表达式;(2)根据图象写出使一次函数值大于二次函数值的的取值范围.24. 某商场购进一批换季衣服,进价为每件元.市场调研发现,以单价元出售,平均月销售量为件.在此基础上,若单价每降低元,则平均月销售量增加件.(1)商场想要这种衣服平均月销售量至少件,那么单价至多为多少元?(2)当单价定为多少元时,商场卖这批衣服的月销售利润达到最大?最大月销售利润为多少元?25. 某商场要经营一种新上市的文具,进价为元/件,试营销阶段发现;当销售单价元/件时,每天的销售量是件,销售单价每上涨元,每天的销售量就减少件.(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?26. 如图,在平面直角坐标系中,抛物线与轴的交点为点和点,与轴的交点为,对称轴是,对称轴与轴交于点.(1)求抛物线的函数表达式;(2)点为对称轴上一个动点,当的值最小时,求点的坐标;(3)在第一象限内的抛物线上是否存在点,使得?若存在,直接写出点的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】解:,是二次函数;,,是一次函数;,,不是含自变量的整式,不是二次函数;,,二次项系数不能确定是否为,不是二次函数.故选.2.【答案】B【解答】解:由正方形面积公式得:.故选.3.【答案】C【解答】解:函数的对称轴是轴,开口向上,顶点;函数的对称轴是轴,开口向上,顶点;这两个函数的二次项系数都是,则它们的形状相同.故选.4.【答案】D【解答】解:,∵,抛物线与轴无交点,本选项错误;,∵二次项系数,抛物线开口向下,本选项错误;,当时,,抛物线与轴交点坐标为,本选项错误;,∵,∴抛物线顶点坐标为,本选项正确.故选.5.【答案】B【解答】此题暂无解答6.【答案】C【解答】解:∵∴抛物线顶点坐标为,故选.7.【答案】C【解答】解:、对称轴为直线,正确;、当时,,正确;、当时,,将抛物线先向上平移个单位,再向左平移个单位,得到抛物线,正确. 故选.8.【答案】B【解答】解:由题意得:二次函数的对称轴为,故,把代入二次函数可得,当时,.故选.9.【答案】A【解答】解:长是:,宽是:,由矩形的面积公式得则.故选.10.【答案】【解答】解:、由抛物线可知,.故正确;、…二次函数的图象与轴有两个交点,∴即…故正确;、由对称轴可知,∴,故错误;、关于的对称点为…当时,,故正确;故选:.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:把代入得,解得.故答案为.12.【答案】=【解答】∵抛物线=开口向上,对称轴是直线=,∴抛物线上的点离对称轴越远,对应的函数值就越大,∵取时所对应的点离对称轴最远,取与时所对应的点离对称轴一样近,∴=.13.【答案】【解答】解:因为二次函数的图象绕它与轴的交点旋转后,其对称轴不变,只是图象开口向下,因此二次函数新抛物线表达式为故答案为:.14.【答案】【解答】解:设平移后抛物线的表达式为,把代入,得,解得.所以平移后的抛物线的解析式是.故答案为:.15.【答案】【解答】解:∵抛物线的对称轴是直线,∴,解得:,∴,故答案为:.16.【答案】.【解答】解:设函数的解析式是.把代入函数解析式得,解得:,则抛物线的解析式是.17.【答案】【解答】解:∵当时,,而抛物线的对称轴为直线,开口向上,∴三点都在对称轴的左边,随的增大而减小,∴.故本题答案为:.18.【答案】【解答】解:.故答案为.19.【答案】【解答】解:设生产档的产品.利润,∴时,利润最大为,故答案为.20.【答案】【解答】解:根据图象可知顶点坐标,设函数解析式是:,把点代入解析式,得:,即,∴解析式为,即.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)如图在平面直角坐标系内画出和函数的图象,图象交点的横坐标是,的解是,;(2)化简得,因式分解,得.解得,.【解答】解:(1)如图在平面直角坐标系内画出和函数的图象,图象交点的横坐标是,的解是,;(2)化简得,因式分解,得.解得,.22.【答案】解:(1)∵抛物线与轴交于,,与轴交于,且,∴,∴的坐标,,代入得,解得,,∴抛物线为,令,则,解得,,,∴的坐标为.(2)如图,∵到,,距离相等,∴是直线和的交点,∴,∵使,,,为顶点的四边形为平行四边形,,,∴,,.∴当的坐标为或或时,使,,,为顶点的四边形为平行四边形.【解答】解:(1)∵抛物线与轴交于,,与轴交于,且,∴,∴的坐标,,代入得,解得,,∴抛物线为,令,则,解得,,,∴的坐标为.(2)如图,∵到,,距离相等,∴是直线和的交点,∴,∵使,,,为顶点的四边形为平行四边形,,,∴,,.∴当的坐标为或或时,使,,,为顶点的四边形为平行四边形.23.【答案】解:(1)设抛物线的解析式为,由函数图象,得,解得:,,.∴二次函数的表达式为:;(2)设直线的解析式为,由直线经过和,得,解得:,一次函数的解析式为:.,解得:,故抛物线与轴的加点坐标为:或.由函数图象得:当或时,一次函数值大于二次函数值.【解答】解:(1)设抛物线的解析式为,由函数图象,得,解得:,,.∴二次函数的表达式为:;(2)设直线的解析式为,由直线经过和,得,解得:,一次函数的解析式为:.,解得:,故抛物线与轴的加点坐标为:或.由函数图象得:当或时,一次函数值大于二次函数值.24.【答案】解;(1)设单价定为元,,解得,即单价至少为元;(2)设单价定为元,销售利润为元,,∴时,取得最大值,此时,即当单价定为元时,商场卖这批衣服的月销售利润达到最大,最大月销售利润为元.【解答】解;(1)设单价定为元,,解得,即单价至少为元;(2)设单价定为元,销售利润为元,,∴时,取得最大值,此时,即当单价定为元时,商场卖这批衣服的月销售利润达到最大,最大月销售利润为元.25.【答案】解:(1)由题意可得:;(2)∵,∴当时,取到最大值,即销售单价为元时,每天销售利润最大,最大利润为元.【解答】解:(1)由题意可得:;(2)∵,∴当时,取到最大值,即销售单价为元时,每天销售利润最大,最大利润为元.26.【答案】解:(1)∵抛物线交轴于,∴,∵对称轴是,∴,即,两关于、的方程联立解得,,∴抛物线为.(2)由得到:,如图,点关于对称轴对称的点的坐标为:.连接交于点,此时的值最小.设直线方程为:,则,解得.故直线的方程为:.当时,,所以;(3)∵,,∴.如果,那么,∵在轴上,∴为或.①当为时,连接,过作直线平分交于,交抛物线于,,连接、,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得,或,则,.②当为时,连接,过作直线平分交于,交抛物线于,,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得或,则,.综上所述,点的坐标为或或或.【解答】解:(1)∵抛物线交轴于,∴,∵对称轴是,∴,即,两关于、的方程联立解得,,∴抛物线为.(2)由得到:,如图,点关于对称轴对称的点的坐标为:.连接交于点,此时的值最小.设直线方程为:,则,解得.故直线的方程为:.当时,,所以;(3)∵,,∴.如果,那么,∵在轴上,∴为或.①当为时,连接,过作直线平分交于,交抛物线于,,连接、,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得,或,则,.②当为时,连接,过作直线平分交于,交抛物线于,,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得或,则,.综上所述,点的坐标为或或或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十六章 二次函数测试1 二次函数y =ax 2及其图象学习要求1.熟练掌握二次函数的有关概念.2.熟练掌握二次函数y =ax 2的性质和图象.课堂学习检测一、填空题1.形如____________的函数叫做二次函数,其中______是目变量,a ,b ,c 是______且______≠0.2.函数y =x 2的图象叫做______,对称轴是______,顶点是______.3.抛物线y =ax 2的顶点是______,对称轴是______.当a >0时,抛物线的开口向______;当a <0时,抛物线的开口向______.4.当a >0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______.5.当a <0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______. 6.写出下列二次函数的a ,b ,c .(1)23x x y -= a =______,b =______,c =______. (2)y =x 2a =______,b =______,c =______.(3)105212-+=x x ya =______,b =______,c =______.(4)2316x y --= a =______,b =______,c =______.7.抛物线y =ax 2,|a |越大则抛物线的开口就______,|a |越小则抛物线的开口就______.8.二次函数y =ax 2的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)y =2x 2如图( );(2)221x y =如图( ); (3)y =-x 2如图( ); (4)231x y -=如图( );(5)291x y =如图( );(6)291x y -=如图( ).9.已知函数,232x y -=不画图象,回答下列各题.(1)开口方向______; (2)对称轴______; (3)顶点坐标______;(4)当x ≥0时,y 随x 的增大而______; (5)当x ______时,y =0;(6)当x ______时,函数y 的最______值是______.10.画出y =-2x 2的图象,并回答出抛物线的顶点坐标、对称轴、增减性和最值.综合、运用、诊断一、填空题11.在下列函数中①y =-2x 2;②y =-2x +1;③y =x ;④y =x 2,回答:(1)______的图象是直线,______的图象是抛物线. (2)函数______y 随着x 的增大而增大. 函数______y 随着x 的增大而减小. (3)函数______的图象关于y 轴对称. 函数______的图象关于原点对称. (4)函数______有最大值为______. 函数______有最小值为______.12.已知函数y =ax 2+bx +c (a ,b ,c 是常数).(1)若它是二次函数,则系数应满足条件______. (2)若它是一次函数,则系数应满足条件______. (3)若它是正比例函数,则系数应满足条件______.13.已知函数y =(m 2-3m )122--m mx的图象是抛物线,则函数的解析式为______,抛物线的顶点坐标为______,对称轴方程为______,开口______. 14.已知函数y =m 222+-m m x+(m -2)x .(1)若它是二次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. (2)若它是一次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. 15.已知函数y =m mm x+2,则当m =______时它的图象是抛物线;当m =______时,抛物线的开口向上;当m =______时抛物线的开口向下.二、选择题16.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( )A .y =x (x +1)B .xy =1C .y =2x 2-2(x +1)2D .132+=x y17.在二次函数①y =3x 2;②2234;32x y x y ==③中,图象在同一水平线上的开口大小顺序用题号表示应该为( )A .①>②>③B .①>③>②C .②>③>①D .②>①>③18.对于抛物线y =ax 2,下列说法中正确的是( )A .a 越大,抛物线开口越大B .a 越小,抛物线开口越大C .|a |越大,抛物线开口越大D .|a |越小,抛物线开口越大 19.下列说法中错误的是( )A .在函数y =-x 2中,当x =0时y 有最大值0B .在函数y =2x 2中,当x >0时y 随x 的增大而增大C .抛物线y =2x 2,y =-x 2,221x y -=中,抛物线y =2x 2的开口最小,抛物线y=-x 2的开口最大D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点三、解答题20.函数y =(m -3)232--m mx 为二次函数.(1)若其图象开口向上,求函数关系式;(2)若当x >0时,y 随x 的增大而减小,求函数的关系式,并画出函数的图象.拓展、探究、思考21.抛物线y =ax 2与直线y =2x -3交于点A (1,b ).(1)求a ,b 的值;(2)求抛物线y =ax 2与直线y =-2的两个交点B ,C 的坐标(B 点在C 点右侧); (3)求△OBC 的面积.22.已知抛物线y =ax 2经过点A (2,1).(1)求这个函数的解析式;(2)写出抛物线上点A 关于y 轴的对称点B 的坐标; (3)求△OAB 的面积;(4)抛物线上是否存在点C ,使△ABC 的面积等于△OAB 面积的一半,若存在,求出C 点的坐标;若不存在,请说明理由.测试2 二次函数y =a (x -h )2+k 及其图象学习要求掌握并灵活应用二次函数y =ax 2+k ,y =a (x -h )2,y =a (x -h )2+k 的性质及图象.课堂学习检测一、填空题1.已知a ≠0,(1)抛物线y =ax 2的顶点坐标为______,对称轴为______.(2)抛物线y =ax 2+c 的顶点坐标为______,对称轴为______.(3)抛物线y =a (x -m )2的顶点坐标为______,对称轴为______.2.若函数122)21(++-=m m xm y 是二次函数,则m =______.3.抛物线y =2x 2的顶点,坐标为______,对称轴是______.当x ______时,y 随x 增大而减小;当x ______时,y 随x 增大而增大;当x =______时,y 有最______值是______.4.抛物线y =-2x 2的开口方向是______,它的形状与y =2x 2的形状______,它的顶点坐标是______,对称轴是______.5.抛物线y =2x 2+3的顶点坐标为______,对称轴为______.当x ______时,y 随x 的增大而减小;当x =______时,y 有最______值是______,它可以由抛物线y =2x 2向______平移______个单位得到.6.抛物线y =3(x -2)2的开口方向是______,顶点坐标为______,对称轴是______.当x ______时,y 随x 的增大而增大;当x =______时,y 有最______值是______,它可以由抛物线y =3x 2向______平移______个单位得到.二、选择题7.要得到抛物线2)4(31-=x y ,可将抛物线231x y =( )A .向上平移4个单位B .向下平移4个单位C .向右平移4个单位D .向左平移4个单位8.下列各组抛物线中能够互相平移而彼此得到对方的是( ) A .y =2x 2与y =3x 2B .2212+=x y 与2122+=x yC .y =2x 2与y =x 2+2D .y =x 2与y =x 2-29.顶点为(-5,0),且开口方向、形状与函数231x y -=的图象相同的抛物线是( )A .2)5(31-=x yB .5312--=x yC .2)5(31+-=x yD .2)5(31+=x y三、解答题10.在同一坐标系中画出函数=+=221,321y x y 3212-x 和2321x y =的图象,并说明y 1,y 2的图象与函数221x y =的图象的关系.11.在同一坐标系中,画出函数y 1=2x 2,y 2=2(x -2)2与y 3=2(x +2)2的图象,并说明y 2,y 3的图象与y 1=2x 2的图象的关系.综合、运用、诊断一、填空题12.二次函数y =a (x -h )2+k (a ≠0)的顶点坐标是______,对称轴是______,当x=______时,y 有最值______;当a >0时,若x ______时,y 随x 增大而减小. 13.填表.14.抛物线1)3(212-+-=x y 有最______点,其坐标是______.当x =______时,y 的最______值是______;当x ______时,y 随x 增大而增大.15.将抛物线231x y =向右平移3个单位,再向上平移2个单位,所得的抛物线的解析式为______.二、选择题16.一抛物线和抛物线y =-2x 2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为( )A .y =-2(x -1)2+3B .y =-2(x +1)2+3C .y =-(2x +1)2+3D .y =-(2x -1)2+317.要得到y =-2(x +2)2-3的图象,需将抛物线y =-2x 2作如下平移( )A .向右平移2个单位,再向上平移3个单位B .向右平移2个单位,再向下平移3个单位C .向左平移2个单位,再向上平移3个单位D .向左平移2个单位,再向下平移3个单位三、解答题18.将下列函数配成y =a (x -h )2+k 的形式,并求顶点坐标、对称轴及最值.(1)y =x 2+6x +10 (2)y =-2x 2-5x +7(3)y =3x 2+2x (4)y =-3x 2+6x -2(5)y =100-5x 2(6)y =(x -2)(2x +1)拓展、探究、思考 19.把二次函数y =a (x -h )2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数1)1(212-+=x y 的图象.(1)试确定a ,h ,k 的值;(2)指出二次函数y =a (x -h )2+k 的开口方向、对称轴和顶点坐标.测试3 二次函数y =ax 2+bx +c 及其图象学习要求掌握并灵活应用二次函数y =ax 2+bx +c 的性质及其图象.课堂学习检测一、填空题1.把二次函数y =ax 2+bx +c (a ≠0)配方成y =a (x -h )2+k 形式为______,顶点坐标是______,对称轴是直线______.当x =______时,y 最值=______;当a <0时,x ______时,y 随x 增大而减小;x ______时,y 随x 增大而增大.2.抛物线y =2x 2-3x -5的顶点坐标为______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大.3.抛物线y =3-2x -x 2的顶点坐标是______,它与x 轴的交点坐标是______,与y 轴的交点坐标是______.4.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______.5.已知二次函数y =x 2+4x -3,当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0.6.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______.7.抛物线y =2x 2先向______平移______个单位就得到抛物线y =2(x -3)2,再向______平移______个单位就得到抛物线y =2(x -3)2+4.二、选择题8.下列函数中①y =3x +1;②y =4x 2-3x ;;422x xy +=③④y =5-2x 2,是二次函数的有( ) A .② B .②③④ C .②③ D .②④9.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( )A .向下,(0,4)B .向下,(0,-4)C .向上,(0,4)D .向上,(0,-4) 10.抛物线x x y --=221的顶点坐标是( ) A .)21,1(- B .)21,1(- C .)1,21(-D .(1,0)11.二次函数y =ax 2+x +1的图象必过点( )A .(0,a )B .(-1,-a )C .(-1,a )D .(0,-a )三、解答题12.已知二次函数y =2x 2+4x -6.(1)将其化成y =a (x -h )2+k 的形式;(2)写出开口方向,对称轴方程,顶点坐标; (3)求图象与两坐标轴的交点坐标; (4)画出函数图象;(5)说明其图象与抛物线y =x 2的关系; (6)当x 取何值时,y 随x 增大而减小; (7)当x 取何值时,y >0,y =0,y <0;(8)当x 取何值时,函数y 有最值?其最值是多少? (9)当y 取何值时,-4<x <0;(10)求函数图象与两坐标轴交点所围成的三角形面积.综合、运用、诊断一、填空题13.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线的顶点是原点,则____________;(2)若抛物线经过原点,则____________;(3)若抛物线的顶点在y轴上,则____________;(4)若抛物线的顶点在x轴上,则____________.14.抛物线y=ax2+bx必过______点.15.若二次函数y=mx2-3x+2m-m2的图象经过原点,则m=______,这个函数的解析式是______.16.若抛物线y=x2-4x+c的顶点在x轴上,则c的值是______.17.若二次函数y=ax2+4x+a的最大值是3,则a=______.18.函数y=x2-4x+3的图象的顶点及它和x轴的两个交点为顶点所构成的三角形面积为______平方单位.19.抛物线y=ax2+bx(a>0,b>0)的图象经过第______象限.二、选择题20.函数y=x2+mx-2(m<0)的图象是( )21.抛物线y=ax2+bx+c(a≠0)的图象如下图所示,那么( )A.a<0,b>0,c>0B.a<0,b<0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<022.已知二次函数y=ax2+bx+c的图象如右图所示,则( )A.a>0,c>0,b2-4ac<0B.a>0,c<0,b2-4ac>0C.a<0,c>0,b2-4ac<0D.a<0,c<0,b2-4ac>023.已知二次函数y =ax 2+bx +c 的图象如下图所示,则( )A .b >0,c >0,=0B .b <0,c >0,=0C .b <0,c <0,=0D .b >0,c >0,>024.二次函数y =mx 2+2mx -(3-m )的图象如下图所示,那么m 的取值范围是( )A .m >0B .m >3C .m <0D .0<m <325.在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )26.函数xaby b ax y =+=221,(ab <0)的图象在下列四个示意图中,可能正确的是( )三、解答题27.已知抛物线y =x 2-3kx +2k +4.(1)k 为何值时,抛物线关于y 轴对称; (2)k 为何值时,抛物线经过原点.28.画出23212++-=x x y 的图象,并求:(1)顶点坐标与对称轴方程;(2)x 取何值时,y 随x 增大而减小? x 取何值时,y 随x 增大而增大?(3)当x 为何值时,函数有最大值或最小值,其值是多少? (4)x 取何值时,y >0,y <0,y =0? (5)当y 取何值时,-2≤x ≤2?拓展、探究、思考29.已知函数y 1=ax 2+bx +c (a ≠0)和y 2=mx +n 的图象交于(-2,-5)点和(1,4)点,并且y 1=ax 2+bx +c 的图象与y 轴交于点(0,3).(1)求函数y 1和y 2的解析式,并画出函数示意图; (2)x 为何值时,①y 1>y 2;②y 1=y 2;③y 1<y 2.30.如图是二次函数y =ax 2+bx +c 的图象的一部分;图象过点A (-3,0),对称轴为x =-1,给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确的是________________.(填序号)测试4 二次函数y =ax 2+bx +c 解析式的确定学习要求能根据条件运用适当的方法确定二次函数解析式. 一、填空题1.二次函数解析式通常有三种形式:①一般式________________;②顶点式__________________;③双根式__________________________(b 2-4ac ≥0).2.若二次函数y =x 2-2x +a 2-1的图象经过点(1,0),则a 的值为______.3.已知抛物线的对称轴为直线x =2,与x 轴的一个交点为),0,23( 则它与x 轴的另一个交点为______.二、解答题4.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,求:(1)对称轴方程____________; (2)函数解析式____________;(3)当x ______时,y 随x 增大而减小; (4)由图象回答:当y >0时,x 的取值范围______; 当y =0时,x =______;当y <0时,x 的取值范围______.5.抛物线y =ax 2+bx +c 过(0,4),(1,3),(-1,4)三点,求抛物线的解析式.6.抛物线y =ax 2+bx +c 过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式.7.抛物线y=ax2+bx+c的顶点为(2,4),且过(1,2)点,求抛物线的解析式.8.二次函数y=x2+bx+c的图象过点A(-2,5),且当x=2时,y=-3,求这个二次函数的解析式,并判断点B(0,3)是否在这个函数的图象上.9.抛物线y=ax2+bx+c经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.10.抛物线过(-1,-1)点,它的对称轴是直线x+2=0,且在x轴上截得线段的长度2求抛物线的解析式.为,2综合、运用、诊断11.抛物线y=ax2+bx+c的顶点坐标为(2,4),且过原点,求抛物线的解析式.12.把抛物线y=(x-1)2沿y轴向上或向下平移后所得抛物线经过点Q(3,0),求平移后的抛物线的解析式.13.二次函数y=ax2+bx+c的最大值等于-3a,且它的图象经过(-1,-2),(1,6)两点,求二次函数的解析式.14.已知函数y1=ax2+bx+c,它的顶点坐标为(-3,-2),y1与y2=2x+m交于点(1,6),求y1,y2的函数解析式.拓展、探究、思考15.如图,抛物线y=ax2+bx+c与x轴的交点为A,B(B在A左侧),与y轴的交点为C,OA=OC.下列关系式中,正确的是( )A .ac +1=bB .ab +1=cC .bc +1=aD .c ba=+1 16.如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD的顶点上,且它们的各边与正方形ABCD 各边平行或垂直,若小正方形边长为x ,且0<x ≤10,阴影部分的面积为y ,则能反映y 与x 之间的函数关系的大致图象是( )17.如图,在直角坐标系中,Rt △AOB 的顶点坐标分别为A (0,2),O (0,0),B (4,0),把△AOB 绕O 点按逆时针方向旋转90°得到△COD .(1)求C ,D 两点的坐标;(2)求经过C ,D ,B 三点的抛物线的解析式;(3)设(2)中抛物线的顶点为P ,AB 的中点为M (2,1),试判断△PMB 是钝角三角形,直角三角形还是锐角三角形,并说明理由.测试5 用函数观点看一元二次方程学习要求1.理解二次函数与一元二次方程的关系,掌握抛物线与x 轴的交点与一元二次方程两根之间的联系,灵活运用相关概念解题.2.掌握并运用二次函数y =a (x -x 1)(x -x 2)解题.课堂学习检测一、填空题1.二次函数y=ax2+bx+c(a≠0)与x轴有交点,则b2-4ac______0;若一元二次方程ax2+bx+c=0两根为x1,x2,则二次函数可表示为y=_________ ____________.2.若二次函数y=x2-3x+m的图象与x轴只有一个交点,则m=______.3.若二次函数y=mx2-(2m+2)x-1+m的图象与x轴有两个交点,则m的取值范围是______.4.若二次函数y=ax2+bx+c的图象经过P(1,0)点,则a+b+c=______.5.若抛物线y=ax2+bx+c的系数a,b,c满足a-b+c=0,则这条抛物线必经过点______.6.关于x的方程x2-x-n=0没有实数根,则抛物线y=x2-x-n的顶点在第______象限.二、选择题7.已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0( )A.没有实根B.只有一个实根C.有两个实根,且一根为正,一根为负D.有两个实根,且一根小于1,一根大于28.一次函数y=2x+1与二次函数y=x2-4x+3的图象交点( )A.只有一个B.恰好有两个C.可以有一个,也可以有两个D.无交点9.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是( )A.有两个不相等的实数根B.有两个异号实数根C.有两个相等的实数根D.无实数根10.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是( ) A.a>0,>0 B.a>0,<0C.a<0,>0 D.a<0,<0三、解答题11.已知抛物线y=ax2+bx+c与x轴的两个交点的横坐标是方程x2+x-2=0的两个根,且抛物线过点(2,8),求二次函数的解析式.12.对称轴平行于y 轴的抛物线过A (2,8),B (0,-4),且在x 轴上截得的线段长为3,求此函数的解析式.综合、运用、诊断一、填空题13.已知直线y =5x +k 与抛物线y =x 2+3x +5交点的横坐标为1,则k =______,交点坐标为______.14.当m =______时,函数y =2x 2+3mx +2m 的最小值为⋅98二、选择题15.直线y =4x +1与抛物线y =x 2+2x +k 有唯一交点,则k 是( )A .0B .1C .2D .-116.二次函数y =ax 2+bx +c ,若ac <0,则其图象与x 轴( )A .有两个交点B .有一个交点C .没有交点D .可能有一个交点 17.y =x 2+kx +1与y =x 2-x -k 的图象相交,若有一个交点在x 轴上,则k 值为( )A .0B .-1C .2D .4118.已知二次函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c +2=0的根的情况是( )A .无实根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根19.已知二次函数的图象与y 轴交点坐标为(0,a ),与x 轴交点坐标为(b ,0)和(-b ,0),若a >0,则函数解析式为( )A .a x bay +=2 B .a x b a y +-=22C .a x ba y --=22D .a x b a y -=22 20.若m ,n (m <n )是关于x 的方程1-(x -a )(x -b )=0的两个根,且a <b ,则a ,b ,m ,n 的大小关系是( )A .m <a <b <nB .a <m <n <bC .a <m <b <nD .m <a <n <b三、解答题21.二次函数y =ax 2+bx +c (a ≠0,a ,b ,c 是常数)中,自变量x 与函数y 的对应值(1)(2)一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 是常数)的两个根x 1,x 2的取值范围是下列选项中的哪一个______.①223,02121<<<<-x x ②252,21121<<-<<-x x③252,02121<<<<-x x④223,21121<<-<<-x x 22.m 为何值时,抛物线y =(m -1)x 2+2mx +m -1与x 轴没有交点?23.当m 取何值时,抛物线y =x 2与直线y =x +m(1)有公共点;(2)没有公共点.拓展、探究、思考24.已知抛物线y =-x 2-(m -4)x +3(m -1)与x 轴交于A ,B 两点,与y 轴交于C 点.(1)求m 的取值范围.(2)若m <0,直线y =kx -1经过点A 并与y 轴交于点D ,且25=⋅BD AD ,求抛物线的解析式.测试6 实际问题与二次函数学习要求灵活地应用二次函数的概念解决实际问题.课堂学习检测1.矩形窗户的周长是6m ,写出窗户的面积y (m 2)与窗户的宽x (m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x 的取值范围,并画出函数的图象.2.如图,有一座抛物线型拱桥,已知桥下在正常水位AB 时,水面宽8m ,水位上升3m , 就达到警戒水位CD ,这时水面宽4m ,若洪水到来时,水位以每小时0.2m 的速度上升,求水过警戒水位后几小时淹到桥拱顶.3.如图,足球场上守门员在O 处开出一高球,球从离地面1m 的A 处飞出(A 在y 轴上),运动员乙在距O 点6m 的B 处发现球在自己头的正上方达到最高点M ,距地面约4m 高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取734=,562=)综合、运用、诊断4.如图,有长为24m 的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a =10m).(1)如果所围成的花圃的面积为45m2,试求宽AB的长;(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.5.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m=162-3x.(1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少?6.某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?7.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;3)求第8个月公司所获利润为多少万元?拓展、探究、思考8.已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA.(1)求这个二次函数的解析式;(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与△ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由.测试7 综合测试一、填空题1.若函数y=x2-mx+m-2的图象经过(3,6)点,则m=______.2.函数y=2x-x2的图象开口向______,对称轴方程是______.3.抛物线y=x2-4x-5的顶点坐标是______.4.函数y=2x2-8x+1,当x=______时,y的最______值等于______.5.抛物线y=-x2+3x-2在y轴上的截距是______,与x轴的交点坐标是____________.6.把y=2x2-6x+4配方成y=a(x-h)2+k的形式是_______________.7.已知二次函数y=ax2+bx+c的图象如图所示.(1)对称轴方程为____________;(2)函数解析式为____________;(3)当x______时,y随x的增大而减小;(4)当y>0时,x的取值范围是______.8.已知二次函数y=x2-(m-4)x+2m-3.(1)当m=______时,图象顶点在x轴上;(2)当m=______时,图象顶点在y轴上;(3)当m=______时,图象过原点.二、选择题9.将抛物线y=x2+1绕原点O旋转180°,则旋转后抛物线的解析式为( ) A.y=-x2B.y=-x2+1 C.y=x2-1 D.y=-x2-1 10.抛物线y=x2-mx+m-2与x轴交点的情况是( )A.无交点B.一个交点C.两个交点D.无法确定11.函数y=x2+2x-3(-2≤x≤2)的最大值和最小值分别为( )A.4和-3 B.5和-3 C.5和-4 D.-1和412.已知函数y =a (x +2)和y =a (x 2+1),那么它们在同一坐标系内图象的示意图是( )13.y =ax 2+bx +c (a ≠0)的图象如下图所示,那么下面六个代数式:abc ,b 2-4ac ,a-b +c ,a +b +c ,2a -b ,9a -4b 中,值小于0的有( )A .1个B .2个C .3个D .4个14.若b >0时,二次函数y =ax 2+bx +a 2-1的图象如下列四图之一所示,根据图象分析,则a 的值等于( )A .251+- B .-1 C .251-- D .1三、解答题15.已知函数y 1=ax 2+bx +c ,其中a <0,b >0,c >0,问:(1)抛物线的开口方向?(2)抛物线与y 轴的交点在x 轴上方还是下方? (3)抛物线的对称轴在y 轴的左侧还是右侧?(4)抛物线与x 轴是否有交点?如果有,写出交点坐标; (5)画出示意图.16.已知二次函数y =ax 2+bx +c 的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.(试用两种不同方法)17.已知二次函数y =ax 2+bx +c ,当x =-1时有最小值-4,且图象在x 轴上截得线段长为4,求函数解析式.18.二次函数y =x 2-mx +m -2的图象的顶点到x 轴的距离为,1625求二次函数解析式.19.如图,从O 点射出炮弹落地点为D ,弹道轨迹是抛物线,若击中目标C 点,在A 测C 的仰角∠BAC =45°,在B 测C 的仰角∠ABC =30°,AB 相距,km )31( ,OA =2km ,AD =2km .(1)求抛物线解析式;(2)求抛物线对称轴和炮弹运行时最高点距地面的高度.20.二次函数y 1=ax 2-2bx +c 和y =(a +1)·x 2-2(b +2)x +c +3在同一坐标系中的图象如图所示,若OB =OA ,BC =DC ,且点B ,C 的横坐标分别为1,3,求这两个函数的解析式.答案与提示第二十六章 二次函数测试11.y =ax 2+bx +c (a ≠0),x ,常数,a . 2.抛物线,y 轴,(0,0). 3.(0,0),y 轴,上,下. 4.减小,增大,x =0,小. 5.增大,减小,x =0,大. 6.(1).0,3,1- (2),0,0, (3),10,5,21- (4).6,0,31--7.越小,越大.8.(1)D ,(2)C ,(3)A ,(4)B ,(5)F ,(6)E .9.(1)向下,(2)y 轴.(3)(0,0).(4)减小.(5)=0(6)=0,大,0. 10.略.11.(1)②、③;①、④.(2)③;②.(3)①、④;③.(4)①,0;④,0. 12.(1)a ≠0,(2)a =0且b ≠0,(3)a =c =0且b ≠0.13.y =4x 2;(0,0);x =0;向上.14.(1)2;y =2x 2;抛物线;一、二,(2)0;y =-2x ;直线;二、四. 15.-2或1;1;-2.16.C 、B 、A . 17.C . 18.D . 19.C .20.(1)m =4,y =x 2;(2)m =-1,y =-4x 2.21.(1)a =-1,b =-1;(2));2,2().2,2(---C B(3)S △OBC =22. 22.(1)241x y =; (2)B (-2,1);(3)S △OAB =2; (4)设C 点的坐标为),41,(2m m 则.221|141|4212⨯=-⨯⨯m 则得6±=m 或.2±=m∴C 点的坐标为).21,2(),21,2(),23,6(),23,6(-- 测试21.(1)(0,0),y 轴;(2)(0,c ),y 轴; (3)(m ,0),直线x =m .2.m =-13.(0,0),y 轴,x ≤0,x >0,0,小,0. 4.向下,相同,(0,0),y 轴.5.(0,3),y 轴,x ≤0,0,小,3,上,3.6.向上,(2,0),直线x =2,x ≥2,2,小,0,右,2. 7.C . 8.D . 9.C . 10.图略,y 1,y 2的图象是221x y =的图象分别向上和向下平移3个单位. 11.图略,y 2,y 3的图象是把y 1的图象分别向右和向左平移2个单位.12.(h ,k ),直线x =h ;h ,k ,x ≤h . 1314.高.(-3,-1),-3,大,-1,≤-3.15..52312)3(3122+-=+-=x x x y 16.B . 17.D .18.(1)y =(x +3)2+1,顶点(-3,1),直线x =-3,最小值为1.(2),881)45(22++-=x y 顶点),881,45(-直线,45-=x 最大值为⋅881(3),31)31(32-+=x y 顶点),31,31(--直线,31-=x 最小值为⋅-31(4)y =-3(x -1)2+1,顶点(1,1),直线x =1,最大值为1.(5)y =-5x 2+100,顶点(0,100),直线x =0,最大值为100. (6),825)43(22--=x y 顶点),825,43(-直线,43=x 最小值为⋅-82519.(1);5,1,21-===k h a (2)开口向上,直线x =1,顶点坐标(1,-5).测试31.).44,2(,44)2(222a b ac ab a b ac a b x a y ---++= ⋅-<-≥--=-=abx a b x a b ac a b x a b x 2,2,44,2,222.,43),849,43(-小,⋅>≤---43,43),5,0(),0,1()0,25(,849x x 、3.(-1,4),(-3,0)、(1,0),(0,3).4.y =(x -2)2+1,低,(2,1). 5.-2,-7,x ≥-2,.72±-=x 6.±2. 7.右,3,上,4.8.D . 9.B. 10.B . 11.C .12.(1)y =2(x +1)2-8;(2)开口向上,直线x =-1,顶点(-1,-8);(3)与x 轴交点(-3,0)(1,0),与y 轴交点(0,-6); (4)图略;(5)将抛物线y =x 2向左平移1个单位,向下平移8个单位;得到y =2x 2+4x -6的图象; (6)x ≤-1;(7)当x <-3或x >1时,y >0;当x =-3或x =1时,y =0; 当-3<x <1时,y <0; (8)x =-1时,y 最小值=-8; (9)-8≤y <10; (10)S △=12.13.(1)b =c =0;(2)c =0;(3)b =0;(4)b 2-4ac =0.14.原. 15.2,y =2x 2-3x . 16.4. 17.-1. 18.1. 19.一、二、三.20.C. 21.B . 22.D . 23.B . 24.C . 25.B . 26.C . 27.(1)k =0;(2)k =-2. 28.,2)1(212+--=x y ①顶点(1,2),直线x =1; ②x ≥1,x <1; ③x =1,y 最大=2;④-1<x <3时,y >0;x <-1或x >3时y <0;x =-1或x =3时,y =0;.225≤≤-y ⑤ 29.(1)y 1=-x 2+2x +3,y 2=3x +1.(2)①当-2<x <1时,y 1>y 2. ②当x =-2或x =1时,y 1=y 2. ③当x <-2或x >1时y 1<y 2. 30.①,④.测试41.①y =ax 2+bx +c (a ≠0);②y =a (x -h )2+k (a ≠0); ③y =a (x -x 1)(x -x 2)(a ≠0). 2..2± 3.).0,211(4.(1)x =-1; (2)y =x 2+2x -3;(3)x ≤-1; (4)x <-3或x >1,x =-3或x =1,-3<x <1.5..421212+--=x x y 6..438342+--=x x y7.y =-2(x -2)2+4即y =-2x 2+8x -4.8.y =x 2-2x -3,点B (0,3)不在图象上. 9..1212x x y +-= 10.y =x 2+4x +2. 11.y =-x 2+4x . 12.y =x 2-2x -3. 13.y =-2x 2+4x +4.14..42,25321221+=++=x y x x y15.A . 16.B .17.解:(1)由旋转的性质可知:OC =OA =2,OD =OB =4.∴C 、D 两点的坐标分别是C (-2,0),D (0,4).(2)设所求抛物线的解析式为y =ax 2+bx +c .根据题意,得⎪⎩⎪⎨⎧==+-=++.4,024,0416c c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧==-=.4,1,21c b a∴所求抛物线的解析式为.4212++-=x x y (3)如图,△PMB 是钝角三角形,图中,PH 是抛物线=++-=4212x x y 29)1(212+--x 的对称轴.M 、P 点的坐标分别为).29,1(),1,2(P M∴点M 在PH 的右侧,∵∠PHB =90°,∠1>90°,∠PMB >∠1, ∴∠PMB >90°,则△PMB 为钝角三角形.测试5 1.≥0,y =a (x -x 1)(x -x 2). 2.⋅493.31->m 且m ≠0. 4.0. 5.(-1,0). 6.一.7.D . 8.B . 9.C . 10.D .11.y =2x 2+2x -4.12.45665182-+-=x x y 或y =2x 2+2x -4.13.4,(1,9). 14.⋅9815.C . 16.A . 17.C . 18.D . 19.B . 20.A . 21.(1)开口向下,顶点(1,2),(2)③. 22.⋅<21m 23.由x 2-x -m =0(1)当=1+4m ≥0,即41-≥m 时两线有公共点. (2)当=1+4m <0,即41-<m 时两线无公共点. 24.(1)=(m +2)2>0,∴m ≠-2;(2)m =-1,∴y =-x 2+5x -6. 测试61.y =-x 2+3x (0<x <3)图略. 2.5小时.3.(1).11212++-=x x y (2)17米. 4.(1)设花圃的宽AB =x 米,知BC 应为(24-3x )米,故面积y 与x 的关系式为y =x (24-3x )=-3x 2+24x .当y =45时,-3x 2+24x =45,解出x 1=3,x 2=5. 当x 2=3时,BC =24-3×3>10,不合题意,舍去; 当x 2=5时,BC =24-3×5=9,符合题意. 故AB 长为5米.(2)能围成面积比45m 2更大的矩形花圃.由(1)知,y =-3x 2+24x =-3(x -4)2+48.103240≤-<x ,.8314<≤∴x 由抛物线y =-3(x -4)2+48知,在对称轴x <4的左侧,y 随x 的增大而增大,当x >4时,y 随x 的增大而减小.∴当314=x 时,y =-3(x -4)2+48有最大值,且最大值为),m (3246)4314(34822=--此时,,m 314=AB BC =10m ,即围成长为10米,宽为314米的矩形ABCD 花圃时,其最大面积为.m 324625.(1)y =-3x 2+252x -4860;(2)当x =42时,最大利润为432元. 6.解:(1)由题意得y =(80+x )(384-4x )=-4x 2+64x +30720.(2)∵y =-4x 2+64x +30720=-4(x -8)2+30976, ∴当x =8时,y 有最大值,为30976.即增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.7.解:(1)设s 与t 的函数关系式为x =at 2+bt +c ,图象上三点坐标分别为(1,-1.5),(2,-2),(5,2.5).分别代入,得⎪⎩⎪⎨⎧=++-=++-=++∴.5.2525,224,5.1c b a c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a .2212t t s -=∴(2)把s =30代入,2212t t s -=解得t 1=10,t 2=-6(舍去).即截止到10月末,公司累积利润可达到30万元.(3)把t =7代入,2212t t s -=得7月末的累积利润为s 7=10.5(万元). 把t =8代入,2212t t s -=得8月末的累积利润为s 8=16(万元). ∴s 8-s 7=16-10.5=5.5(万元). 即第8个月公司获利润5.5万元. 8.(1)y =x 2-2x -3; (2)AD ⊥BC ;(3)存在,M 1(1,-2),N 1(4,-3).或M 2(0,-3),N 2(3,-4).测试7 1.⋅=21m 2.向下,x =1. 3.(2,-9). 4.2,小,-7. 5.-2,(1,0)、(2,0). 6.⋅--=21)23(22x y 7.(1);23=x (2)y =x 2-3x -4;(3);23≤x (4)x <-1或x >4. 8.(1)m =14或2; (2)m =4; (3)⋅=23m 9.D . 10.C . 11.C . 12.C . 13.C . 14.D . 15.(1)开口向下; (2)上方; (3)右侧;(4)有,).0,24(),0,24(22aacb b a ac b b ----+- (5)略. 16.⋅+--=3534312x x y 17.y =x 2+2x -3.18.23212--=x x y 或⋅+-=23272x x y 19.作CE ⊥x 轴于E ,设CE =x 千米.∵∠CAB =45°,∴CE =AE =x ,在Rt △BCE 中,,33,30x CE EB CBA ==∴=∠ AB =AE +EB ,即,331x x +=+解得x =1,∴OE =OA +AE =2+1=3. 由C (3,1),D (4,0),O (0,0),设y =a (x -4)(x -0),把(3,1)代入上式:1=a (3-4)(3-0),解得),40)(0)(4(31,31≤≤---=∴-=x x x y a 即2)2(31--=x y34+,抛物线对称轴:x =2,炮弹运行最高点时距地面高度是34千米.20.⋅+-=+-=310432,31312221x x y x y。