九年级数学下册《二次函数》PPT课件
合集下载
《二次函数》课件

一二
元次
二函
次数
方与
程
抛物线 y=ax2+bx+c(a≠0)与x轴的公共点的横坐
标即一元二次方程ax2+bx+c =0的根
抛物线
与x轴
的公共
点情况
有两个公共点⇔∆> 0
有一个公共点⇔∆= 0
没有公共点⇔∆< 0
利用图象法求一元二次方程的根
抛物线
拓 与直线
展 的公共
点个数
二次函数 y=ax2+bx+c的图象与 x 轴公共点的坐标
羊圈的面积S=x(40-2x)=-2x2+40x
=-2(x-10)2+200(0<x<20).
∴当x=10时,S有最大值,此时S=200.
∵200>187.5,∴张大伯的设计不合理.
应当设计羊圈与墙垂直的两边长为10 m,
与墙平行的一边长为20m.
3.一家电脑公司推出一款新型电脑,投放市场以来3个
2
2
1 2 1
3 2
2
x - (2x-30) = − x +60x-450.
2
2
2
3.如图,在梯形ABCD中,AB∥DC,∠ABC=90°,
∠A=45°,AB=30,BC=x,其中15<x<30.作
DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F
处,DF交BC于点G.
(3) 当x为何值时,S有最大值?并求出这个最大值.
(1) 请你求出矩形羊圈的面积;
解:(1)由题意,得羊圈的长为25 m,
宽为(40-25)÷2=7.5(m).
故羊圈的面积为25×7.5=187.5(m2)
《二次函数》PPT课件 图文

此式表示了两年后的产
即
y 20x2 40x 20
量y与计划增产的倍数x 之间的关系,对于x的 每一个值,y都有唯一 的一个对应值,即y是x
的函数。
式子①②③④有什么共同点?
y=6x2
d
1 2
n2
1 2
n
d
1 2
n
2
3n 2
y 20x2 40x 20
函数都是用自 变量的二次整
式表示的
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的 函数叫做二次函数。其中a为二次项系数,b 为一次项系数,c为常数项。
解答过程
3、若函数y=x2m+n - 2xm-n+3是以x为自变量的二次 函数,求m、n的值。
解:根据题意得
①∵
2m+n=2②∵
2m+n=1
③∵
2m+n=2
④∵
2m+n=2
⑤∵
2m+n=0
m-n=1 m-n=2
m-n=2 m-n=0 m-n=2
∴ m=1
m=1
∴
n=0
n=-1
m=4/3
∴
n=-2/3
(2)现根据小区的规划要求,所修建的绿地面积必 须是18平方米,在满足(1)的条件下,矩形的长 和宽各为多少米?
1、下列函数中,(x是自变量),哪些是二次 函数?为什么?
A y=ax2+bx+c
B y2=x2-4x+1
C y=x2
D y=2+ √x2+1
2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( C ) A m,n是常数,且m≠0 B m,n是常数,且n≠0 C m,n是常数,且m≠n D m,n为任何实数
北师大版九年级数学下册《二次函数——二次函数的图象与性质》教学PPT课件(4篇)

5
这两种呢?有没有其他形式的二次
3
函数?
4Байду номын сангаас
2
1
–4
–3
–2
–1
O
–1
–2
–3
–4
–5
–6
–7
–8
–9
–10
1
2
3
4
x
y =-x2
新知讲解
在画有y
=x2直角坐标系中,画出
=
,y
=2x2的图象.
①列表; ②描点; ③连线.
10
y
y=2x2
9
x
··· -2 -1
y =x2
8
0
1
2
···
7
6
D.抛物线y=-3x2向上平移1个单位得到
新知讲解
在同一坐标系中,画出二次函数 = − ,y=− + ,
y=−
− 的图象,并分别指出它们的开口方向,对称轴和顶
点坐标,指明抛物线y=− + 通过怎样的平移可得到抛物线
=
−
-4
− .
如图所示
关于y轴对称,对称轴方程是直线x=0
顶点坐标是原点(0,0)
当x=0时,y最小值=0
当x=0时,y最大值=0
在对称轴左侧递减
在对称轴右侧递增
在对称轴左侧递增
在对称轴右侧递减
典例精析
已知二次函数y=x2.求:
(1)当x=5时,y的值;
(2)当y=4时,x的值;
(3)当x为何值时,y随x的增大而增大?
中考数学专题《二次函数》复习课件(共18张PPT)

(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
二次函数课件 二次函数PPT

y 2(x 2)2 3
向右平移
向下平移3
2个单位
个单位
y 2x2 向左平移 y 2(x 2)2 向上平移3 y 2(x 2)2 3
2个单位
个单位
(检测学生对该节课的掌握程度,并对该节课的内 容进行巩固。)
函数y=ax²+bx+c的顶点式
一般地,对于二次函数y=ax²+bx+c,我 们可以利用配方法推导出它的对称轴和 顶点坐标.
画图: 步骤:列表,描点,连线(光滑曲线)
y 3x2 y 3(x 1)2
老师指导学生按照步 骤画出图像,然后让 他们互相讨论,再做 总结,让学生在动手 操作中的过程中学到 知识,感受学习带来 的乐趣。
观察两个图形有什么关系?
老师给予适当的提示,引发学生思考,培养学生勤于思考的习惯。
函数 y 3x2 的图像
式是(A)
4
A、y 1 (x 2)2 2
4
B、y
1 4
(x
2)2
2
C、y 1 (x 2)2 2 4
D、y
1 4
(x
2)2
2
3、抛物线y=3x²先向上平移2个单位,后向右平移3个
单位,所得到的抛物线是( D )
A、y=3(x+3)²-2
B、 y=3(x+3)²+2
C、y=3(x-3)²-2
一般地,由y=ax²的图象便可得到二次函数y=a(x-h)²+k的图 象:y=a(x-h)²+k(a≠0) 的图象可以看成y=ax²的图象先沿x轴 整体左(右)平移|h|个单位(当h>0时,向右平移;当h<0时,向左 平移),再沿对称轴整体上(下)平移|k|个单位 (当k>0时向上平 移;当k<0时,向下平移)得到的.
《二次函数》优质PPT课件(共65页ppt)

抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14
棵
y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500
北师大版九年级数学下册2.4《二次函数的应用》课件(共18张PPT)

6050 0
60495
60480
6045 5
6042 0
60600 y/个
60500
60400
60300
60200
60100 60000
0 1 2 3 4 5 6 7 8 9 1011 1213 14 x/棵
议一议
何时橙子总产量最大
1.利用函数表达式描述橙子的总产量与增种橙子 树的棵数之间的关系.
(100+x)棵
这时平均每棵树结多少个橙子?
(600-5x)个
(2)如果果园橙子的总产量为y个, 那么请你写出y与x之间的关系式.
想一想
何时橙子总产量最大
果园共有(100+x)棵树,平均每棵树结(600-5x) 个橙子,因此果园橙子的总产量
y=(100+x)(600-5x)=-5x²+100x+60000. 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量 最多?X/棵 1 2 3 4 5 6 7 8 9 10 11 12 13 14
点重合时,等腰△PQR以1cm/s的速度沿直线l向
左方向开始匀速运动,ts后正方形与等腰三角形
重合部分面积为Scm2,解答下列问题:
(1)当t=3s时,求S的值; (2)当t=3s时,求S的值; A
B
(3)当5s≤t≤8s时,求S 与t的函数关系式,并求
MP
S的最大值。
lD Q
C
R
做一做
何时橙子总产量最大
N
2y
xb
x
3
x
30
3
x2
30x
3 x 202
300.
4
4
4
或用公式 :当x
二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有一次项和常数项,但不能没有二次项.
(4)x的取值范围通常情况是任意实数 .
二次函数的一般形式: y=ax2+bx+c (其中a、b、c是常数,a≠0) a是二次项系数 b是一次项系数 C是常数项
二次函数的特殊形式: 当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
1
y = (60-x-4)(x-2) 1
y
ቤተ መጻሕፍቲ ባይዱ
1
x
3
y =πx2 y = 2(1+x)2 =2x2+4x+2 y= (60-x-4)(x-2) =-x2+58x-112
y是x的函数吗?y是x的一次函数?反比例函数? 上述三个问题中的函数解析式具有哪些共同的特征? 在上面的问题中,函数都是用自变量的二次式表示的,
1、下列函数中,(x是自变量),是二次函数的为( ) ACy=ax2+bx+c B y2=x2-4x+1
C y=x2
D y=2+
x2 1
2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( C) A m,n是常数,且m≠0 B m,n是常数,且n≠0 C m,n是常数,且m≠n D m,n为任何实数
已知二次函数 y 2(x 1)2 4
(1)你能说出此函数的最小值吗? 当x=1时,函数y有最小值为4
(2)你能说出这里自变量能取哪些值呢? x取任意实数
问题:是否任何情况下二次函数中的自变量 的取值范围都是任意实数呢? 例如:圆的面积 y ( cm2 )与圆的半径 x
(cm)的函数关系是 y =πx2
例、下列函数中,哪些是二次函数?若是, 分别指出二次项系数,一次项系数,常数 项.
(1) y=3(x-1)²+1
(2)
y=x+
_1_ x
(3) s=3-2t²
(4) y=(x+3)²-x²
(5) v=10πr²
先化简后判断
二次函数y=(2x-1)2+2的二次项系数是 ________,常数项是______.
当k=_______时,函数y=(k-1)xk2+1+3x 是二次函数
正方形的边长是4,若边长增加x,则面积 增加y, 则y关于x的函数关系式是_____ , 它是二次函数吗?
已知二次函数y= ax2+bx+c, 当x=0时,y= 3;当x= 2 时,y= -1; 当x= -2 时,y= 4.你能求出二次函 数的解析式吗?
经化简后都具有y=ax²+bx+c 的形式.
(a,b,c是常数,a≠0 )
定义:一般地,形如y=ax²+bx+c(a,b, c是常数,a≠ 0)的函数叫做x的二次函数.
注意: (1)等号左边是变量y,右边是关于自变量x 的 整式
(2)a,b,c为常数,且a≠0.
(3 )等式的右边最高次数为 2 ,可以没
二次函数
请用适当的函数解析式表示下列问题情境中的两个 变量 y 与 x 之间的关系:
(1)圆的面积 y ( cm2 )与圆的半径 x ( cm ) y =πx2
(2)某商店1月份的利润是2万元,2、3月份利润逐月 增长,这两个月利润的月平均增长率为x,3月份的 利润为y y = 2(1+x)2
(3)拟建中的一个温室的平面图如图,如果温室外围 是一个矩形,周长为120m , 室内通道的尺寸如图, 设一条边长为 x (m), 种植面积为 y (m2).
其中自变量x能取哪些值呢? x 0
注意:当二次函 数表示某个 实际问题时,还必须根据题 意确定自变量的取值范围.
(4)x的取值范围通常情况是任意实数 .
二次函数的一般形式: y=ax2+bx+c (其中a、b、c是常数,a≠0) a是二次项系数 b是一次项系数 C是常数项
二次函数的特殊形式: 当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
1
y = (60-x-4)(x-2) 1
y
ቤተ መጻሕፍቲ ባይዱ
1
x
3
y =πx2 y = 2(1+x)2 =2x2+4x+2 y= (60-x-4)(x-2) =-x2+58x-112
y是x的函数吗?y是x的一次函数?反比例函数? 上述三个问题中的函数解析式具有哪些共同的特征? 在上面的问题中,函数都是用自变量的二次式表示的,
1、下列函数中,(x是自变量),是二次函数的为( ) ACy=ax2+bx+c B y2=x2-4x+1
C y=x2
D y=2+
x2 1
2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( C) A m,n是常数,且m≠0 B m,n是常数,且n≠0 C m,n是常数,且m≠n D m,n为任何实数
已知二次函数 y 2(x 1)2 4
(1)你能说出此函数的最小值吗? 当x=1时,函数y有最小值为4
(2)你能说出这里自变量能取哪些值呢? x取任意实数
问题:是否任何情况下二次函数中的自变量 的取值范围都是任意实数呢? 例如:圆的面积 y ( cm2 )与圆的半径 x
(cm)的函数关系是 y =πx2
例、下列函数中,哪些是二次函数?若是, 分别指出二次项系数,一次项系数,常数 项.
(1) y=3(x-1)²+1
(2)
y=x+
_1_ x
(3) s=3-2t²
(4) y=(x+3)²-x²
(5) v=10πr²
先化简后判断
二次函数y=(2x-1)2+2的二次项系数是 ________,常数项是______.
当k=_______时,函数y=(k-1)xk2+1+3x 是二次函数
正方形的边长是4,若边长增加x,则面积 增加y, 则y关于x的函数关系式是_____ , 它是二次函数吗?
已知二次函数y= ax2+bx+c, 当x=0时,y= 3;当x= 2 时,y= -1; 当x= -2 时,y= 4.你能求出二次函 数的解析式吗?
经化简后都具有y=ax²+bx+c 的形式.
(a,b,c是常数,a≠0 )
定义:一般地,形如y=ax²+bx+c(a,b, c是常数,a≠ 0)的函数叫做x的二次函数.
注意: (1)等号左边是变量y,右边是关于自变量x 的 整式
(2)a,b,c为常数,且a≠0.
(3 )等式的右边最高次数为 2 ,可以没
二次函数
请用适当的函数解析式表示下列问题情境中的两个 变量 y 与 x 之间的关系:
(1)圆的面积 y ( cm2 )与圆的半径 x ( cm ) y =πx2
(2)某商店1月份的利润是2万元,2、3月份利润逐月 增长,这两个月利润的月平均增长率为x,3月份的 利润为y y = 2(1+x)2
(3)拟建中的一个温室的平面图如图,如果温室外围 是一个矩形,周长为120m , 室内通道的尺寸如图, 设一条边长为 x (m), 种植面积为 y (m2).
其中自变量x能取哪些值呢? x 0
注意:当二次函 数表示某个 实际问题时,还必须根据题 意确定自变量的取值范围.