Improved Kalman Filter Algorithm of GPS
基于无迹卡尔曼滤波和小波分析的IMU传感器去噪技术研究

现代电子技术Modern Electronics Technique2024年3月1日第47卷第5期Mar. 2024Vol. 47 No. 50 引 言中国疾控中心的数据显示,跌倒已经成为中国65岁及以上老年人受伤致死的首要原因[1] 。
跌倒的医疗结果很大程度上取决于发现是否及时,现有的商用跌倒检测系统主要分为三类,即视频式跌倒检测系统、基于环境传感器的跌倒检测系统、穿戴式跌倒检测系统[2⁃6]。
视频式跌倒检测系统是在人体活动区域内安装摄像头来获取图像,然后在PC 端对图像进行处理分析,以此来判断人体运动状态。
这种方法虽然检测精度较高,但是由于成本限制,无法对老人进行24 h 的看护。
环境传感器检测系统通常将红外传感器、压力传感器、毫米波雷达等传感器安装在室内对老人进行运动检测,文献[7]利用雷达感知技术,通过检测人体高度来判断人体运动状态。
然而这种方法的成本过于昂贵,很难普及到群众。
基于无迹卡尔曼滤波和小波分析的IMU传感器去噪技术研究阳兆哲, 李跃忠, 吴光文(东华理工大学 机械与电子工程学院, 江西 南昌 330032)摘 要: 获得精确的姿态信息是跌倒检测的关键。
文中在姿态角解算问题中提出一种基于无迹卡尔曼滤波和小波滤波的改进方法,通过Savitzky⁃Golay 滤波器和小波滤波融合算法对加速度计以及陀螺仪数据进行降噪处理,利用降噪后的加速度数据对陀螺仪数据进行PI 积分补偿,将补偿后的陀螺仪数据进行Mahony 解算,其结果作为无迹卡尔曼滤波的状态信息;其次通过加速度值解算,将其结果作为无迹卡尔曼滤波的量测信息实现姿态解算。
实验表明,在静态条件下,相对于常见的扩展卡尔曼滤波融合切比雪夫滤波算法,该方法使IMU 传感器原始加速度计精度提高了83.3%,姿态角标准差平均减少了0.001 93,能够有效地减少随机噪声。
零点漂移、高斯噪声对IMU 传感器姿态角信号的影响,使跌倒检测系统在复杂的环境条件下具有较高的精度以及稳定性。
经典的卡尔曼滤波算法doc资料

经典的卡尔曼滤波算法自适应卡尔曼滤波卡尔曼滤波发散的原因如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。
但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。
引起滤波器发散的主要原因有两点:(1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。
这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。
(2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。
如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。
这种由于计算舍入误差所引起的发散称为计算发散。
针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。
这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。
自适应滤波在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。
如果所建立的模型与实际模型不符可能回引起滤波发散。
自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。
在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。
自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。
在这里只讨论系统模型参数已知,而噪声统计参数Q 和R 未知情况下的自适应滤波。
由于Q 和R 等参数最终是通过增益矩阵K 影响滤波值的,因此进行自适应滤波时,也可以不去估计Q 和R 等参数而直接根据量测数据调整K 就可以了。
无迹卡尔曼滤波算法

无迹卡尔曼滤波算法随着近年来信息科学技术的发展,实时测量和估计技术已成为科研工作者关注的焦点,同时也是众多研究方向的重要组成部分。
卡尔曼滤波(Kalman Filter,KF)作为一种重要的信息滤波算法,已经被广泛地应用于许多领域。
虽然卡尔曼滤波是一种有效的算法,但是它的应用仍受到一些限制,决定其表现的主要原因之一是滤波时的参数是事先设定的,而这些参数经常是不完全正确的,而且随着系统状态变化而发生变化。
为了解决这个问题,研究人员提出了一种名为“无迹卡尔曼滤波(Unscented Kalman Filter,UKF)”的算法,它可以提高滤波的准确性,而且不受参数的设置影响。
本文将介绍无迹卡尔曼滤波算法在现实应用中的重要性,以及它与传统卡尔曼滤波相比的优点,并且介绍无迹卡尔曼滤波算法的基本原理,以及如何在实际应用中使用。
一、无迹卡尔曼滤波算法的重要性无迹卡尔曼滤波(Unscented Kalman Filter,UKF)是一种相对于传统卡尔曼滤波(Kalman Filter,KF)算法研发出来的新算法,它是一种改进型的线性滤波技术,具有更高的准确性和更大的鲁棒性。
UKF的重要性在于它可以用来估计,并实时跟踪nonlinear 系统,这是KF在nonlinear系统上发挥作用时所不能完成的任务。
由于UKF可以更准确的估计nonlinear系统的状态,它被广泛应用于各种领域,例如机器人定位、导航、卫星跟踪等。
二、无迹卡尔曼滤波算法与传统卡尔曼滤波算法相比的优点1、优质的估计性能。
KF和UKF在估计nonlinear系统状态时,根据其测量数据,UKF可以更加精确地求出状态变量,从而获得更准确的估计。
2、不受参数设置影响。
KF在估计nonlinear系统时,其参数受外部因素,如测量噪声、运动误差等影响较大,这些参数的设置会对滤波的效果有重要影响,而UKF不受这些外部参数的影响,在估计系统状态时,其结果更加精确。
自适应平方根球型无迹卡尔曼滤波算法

自适应平方根球型无迹卡尔曼滤波算法
自适应平方根球型无迹卡尔曼滤波算法(Adaptive Square-Root Cubature Kalman Filtering Algorithm)在近年来受到了互联网行业的广泛关注。
这种算法归结为:一种利用滤波理论从一系列混合系统动态中估计和提取信息的空间序列分析技术。
它有效解决了复杂系统动态状态参数估计问题,可以有效应用在大数据环境中,进而提升了信息提取和处理的准确性以及效率。
算法的优势体现在数据处理的准确性、可靠性与时效性的发挥上。
由于算法的
自适应特性,估计目标状态参数的准确性得到了很大提升,可以更有效的发挥数据的价值,从而更好的满足用户的需求。
此外,无迹的特性也使得整体数据处理过程具备更强的鲁棒性,对于复杂系统可以获得更为稳定的参数估计,能够很好地抵抗外部噪声干扰。
此外,算法的弹性也得到了极大加强,它可以很好地应对复杂系统动态的变化,而且具有更强的自适应性,能够有效的去除虚假的数据,并根据新的条件快速调节状态参数,从而大幅提高数据处理的速度与准确度。
通过上述分析,自适应平方根球型无迹卡尔曼滤波算法在互联网行业中有非常
重要的应用价值。
在大数据环境下,借助该算法,能够更加快速且准确地处理复杂系统动态状态参数变化,从而有效地促进了信息提取与处理的发展,有助于提高用户体验,实现互联网行业的健康发展。
基于高斯和的二阶扩展卡尔曼滤波算法

文章编号=1009 -2552 (2017) 12 -0076 -06 D O I:10. 13274/ki.hdzj.2017. 12. 017基于高斯和的二阶扩展卡尔曼滤波算法张帆,施化吉,周从华,李雷(江苏大学计算机科学与通信工程学院,江苏镇江212013)摘要:传统的扩展卡尔曼滤波算法在传感器的信号监测和处理中,存在着动态环境校准困难和信号突变收敛速度慢的问题。
针对该问题,结合二阶泰勒展开式和高斯和,提出了基于高斯和的二阶扩展卡尔曼滤波算法。
该算法首先将初始状态、过程和量测噪声一起近似为高斯和,接着利用二阶扩展卡尔曼滤波算法中的状态预测和状态更新方程对每个高斯项进行预测和更新。
为了避免高斯项的过度冗余,采用了剪枝的思想。
文中通过仿真实验证明了算法的有效性,实验表明,该算法不但能提高信号突变的收敛速度0. 1呷,而且能在动态环境中提高滤波估计的准确度和可靠性。
关键词:高斯和;信号突变;动态环境;扩展卡尔曼滤波;剪枝;准确度中图分类号:T P301.6文献标识码:ATwo-order extended Kalman filter algorithm based on Gaussian sum ZHANG Fan,SHI Hua-ji,ZHOU Cong-hua,LI Lei(School of Computer Science and Telecommunication Engineering,Jiangsu University,Zhenjiang212013, Jiangsu Province,China)Abstract :In the signal monitoring a n d processing ol the sensors,the traditional extended K a l m a n filter algorithm has the problems ol the convergence speed slow in the signal mutation a n d calibration difficultyin the d y n a m i c environment. C o m b i n i n g with the second order taylor expansion a n d Gaussian s u m,a n dtwo-order extended K a l m a n filter algorithm b ased o n Gaussian s u m is proposed in the regard of the problem. In this algorithm,the initial state,process noise a n d m e a s u r e m e n t noise are approximated asG a u s s s u m,a n d then i t uses the state prediction equations a n d state updating equations of two-orderK a l m a n filter algorithm proposed to predict a n d update eac h G a u s s term. In order to avoid overr e d u n d a n c y of G a u s s i t e m s,i t uses the idea of pruning. T h e simulation results s h o w that the algorithm is effective a n d not only c a n improve the convergence speed in the signal mutation for 0. 1^s,but also ca n improve the accuracy a n d reliability of the filter estimation in the d y n a m i c environment.Key words:Gaussian s u m;signal m u t ation;d y n a m i c e n v i r o n m e n t;extended k a l m a n filter; p r u n i n g;accuracy,信息疼术2017年第12期随着科学技术的不断发展,非线性滤波技术已 被广泛应用于卫星定姿、机动目标跟踪等技术领域,因此对非线性信号数据进行滤波具有十分重要的理 论意义。
卡尔曼滤波算法英文

卡尔曼滤波算法英文Kalman Filter AlgorithmThe Kalman filter is a powerful algorithm used for estimating the state of a dynamic system from a series of measurements. It is widely used in various applicationssuch as navigation, control systems, signal processing, and data fusion. The Kalman filter is an optimal estimator, meaning it provides the best estimate of the system's state given the available measurements and the system's dynamics.The Kalman filter algorithm consists of two main steps: the prediction step and the update step. In the prediction step, the algorithm uses the system's dynamics to estimate the current state of the system based on the previous state. In the update step, the algorithm incorporates the new measurement to refine the estimate and reduce the uncertainty.The Kalman filter algorithm can be summarized as follows:1. Prediction Step:- State Prediction: The algorithm uses the system's dynamics to predict the current state of the system based on the previous state.- Covariance Prediction: The algorithm also predicts the covariance of the estimated state, which represents the uncertainty in the estimate.2. Update Step:- Kalman Gain Calculation: The algorithm calculates the Kalman gain, which determines the weight given to the new measurement in the update step.- State Update: The algorithm updates the estimated state by combining the predicted state and the new measurement, using the Kalman gain.- Covariance Update: The algorithm updates the covariance of the estimated state, reflecting the reduced uncertainty after incorporating the new measurement.The Kalman filter algorithm is recursive, meaning it can be implemented in an efficient and computationally-feasible manner. The algorithm only requires the current state and measurement, and it does not need to store or process allthe previous data. This makes the Kalman filterparticularly useful for real-time applications where computational resources are limited.The Kalman filter algorithm has several key properties that make it widely applicable:1. Optimality: The Kalman filter provides the optimal estimate of the system's state, given the available measurements and the system's dynamics.2. Robustness: The Kalman filter is robust to noise and uncertainties in the measurements and the system's dynamics.3. Versatility: The Kalman filter can be applied to a wide range of linear systems, including those with multiple inputs and outputs.4. Computational Efficiency: The Kalman filter algorithm can be implemented efficiently, making it suitable forreal-time applications.The Kalman filter algorithm has been extensively studied and applied in various fields, including:- Navigation: Kalman filters are used in GPS, inertial navigation systems, and autonomous vehicles to estimate the position, velocity, and orientation of the system.- Control Systems: Kalman filters are used to estimatethe state of a system and provide feedback for control algorithms, improving the system's performance andstability.- Signal Processing: Kalman filters are used to filter and smooth signals, removing noise and improving thesignal-to-noise ratio.- Data Fusion: Kalman filters are used to combinemultiple sources of information, such as sensors, toprovide a more accurate and reliable estimate of thesystem's state.Overall, the Kalman filter algorithm is a powerful and widely-used tool for estimating the state of dynamic systems. Its optimality, robustness, and computational efficiency make it a valuable asset in various applications.卡尔曼滤波算法卡尔曼滤波是一种用于估计动态系统状态的强大算法。
动力型锂电池SOC与SOH协同估计

Cooperative estimation of SOC and SOH for power lithium-ion batteries
. All Rights Reserved.
LIU Xia,b,LI Lin , a,b LIU Hailong*a,b
(a.Key Laboratory of Shaanxi Province for Gas and Oil Well Logging Technology;
不准确情况下,运行算法可ቤተ መጻሕፍቲ ባይዱ速收敛至真值附近,算法估算结果的准确性与模型参数的微调无
关,鲁棒性较好。
关键词:动力锂电池;SOC 估算;SOH 估算;改进扩展卡尔曼滤波;等效电路模型
中图分类号:TN607;TM912
文献标志码:A
d o i: 1 0. 11 8 0 5 /T K Y D A2 0 1 9 1 8 1
Keywords : power lithium-ion battery ; SOC estimation ; SOH estimation ; improved extended Kalman filter;equivalent circuit model
在电池状态参数的监视中,荷电状态(SOC)参数最为重要,由于 SOC 估计精确度直接决定电池管理系统 (BMS)的优劣,因此对该参数的精确估计是 BMS 技术的核心。SOC 是对电池剩余电量的反映,与电流、电压等 参数不同的是该参数不能直接通过测量得到,必须在采集某些物理量的基础上,建立和使用相应的数学模型及 算法才能获得[1]。目前,该参数常定义为在标准放电倍率条件下电池剩余电量和同条件下额定容量的比[2]。文
一种能在线协同估算电池荷电状态和健康状态的改进扩展卡尔曼滤波算法。通过分阶段脉冲放电
组合导航系统新息自适应卡尔曼滤波算法_卞鸿巍

1 自适应卡尔曼滤波算法
1. 1 IAE 自适应卡尔曼滤波算法
对于离散线性系统模型 , 其状态方程和量测方
程如下 :
Xk =Υk, k- 1 Xk- 1 +Γk-1 Wk- 1
Zk =Hk Xk +Vk 其中 :Υk, k -1 为一步转移阵 ;Γk - 1 为系统噪声驱动阵 ;
Hk 为量测阵 ;Vk 为量测噪声序列 ;Wk 为系统激励 噪声序列 , 且 Wk 和 Vk 互不相关 并满足 :E[ Wk ] =
将惯性导航系统(INS)和全球定位系统(GP S)
结合起来构成更高精度的组合导航系统备受人们关 注. 在以往的文献中 , 绝大部分采取 GP S 的位置或 速度信息作为 IN S 的外部修正信息[ 1] . 本文采取可
以提供位置 、速度 、航向和纵摇姿态的高精度 G PS 姿态测量系统与 INS 进行组合 , 以期获得更加优越 的舰船组合导航性能. 标准卡尔曼滤波器(SKF)需 精确了解外部测量噪声的统计规律 , 但在实际中 , 由
C-v
1 k
vk]
(11)
若要求式(11)取最大值 , 对 k 时刻之前 k - j 0 +1 组
数据进行累加并忽略常数项 , 则式(11)需满足
k
k
∑ ∑ ln |Cvj |+
vTj
C
-1 vj
vj
=min
j =j0
j =j0
(12)
根据极大似然估计准则 , 即满足 : p / r =0 , 对式
2. 1 组合系统
目前进行的船用 INS 与 GPS 姿态测量系统组 合导航研究中 , 采用 T rim ble MS860 DGPS 系统和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:图和表格在论文的最后。
查了下词典under/in the circumstances 都可以。
Improved Kalman Filter Algorithm of GPS/INSIntegrated Navigation without GPS SignalZHU Lixin1, MENG Yan2(1.Electronic Engineering Institute of PLA, Anhui 230037,China)(2.No.72671 Unit of PLA, Jinan 250022,China)Abstract: To solve the problems that the navigation accuracy of GPS/INS(Global Positioning System/Inertial Navigation System) tightly integrated navigation system is lower under GPS signal invalidation circumstances, and model errors and calculation errors exist in the application of CKF(Cubature Kalman Filter), a strong tracking SRCKF(Square-Root CKF) is proposed. By stressing the function of new data artificially, the algorithm improves the robustness when the model is uncertain, and the square-root strategy ensures the positive definiteness and symmetry of covariance matrix. Simulation results show that the improved algorithm can improve the navigation accuracy and the ability of adapting to the complex environment, and have better efficiency under GPS signal invalidation circumstances.Key words: GPS/INS tightly integrated navigation; CKF; strong tracking filter; square-root strategy; navigation accuracy1. IntroductionThe navigation accuracy of GPS/INS integrated navigation system overcoming the respective defects is higher than the accuracy of two systems working separately[1]. When the receiver is under the great angle motion and the complex circumstances of the city and the valley, satellite signals are disturbed and shielded easily[2]. On the situation, observations provided by GPS/INS tightly integration utilizing less than 4 satellites in the measurement of the pseudorange and the pseudorange rate leads to integrated model working well[3].Considering the nonlinear characteristic of GPS/INS tightly integrated navigation model, a hybrid linear/nonlinear model based on linear state equation and nonlinear measurement equation was proposed[4]. EKF(Extend Kalman filter) and UKF(Unscented Kalman filter) are classical nonlinear filters. EKF expanding the nonlinear equation by the Taylor series up to the first order approximates the original equation. To some extent, although EKF can solve the problem of nonlinear state estimation, it has some disadvantages obviously. First, owing to the lack of high order terms, it can induce truncation error,which has a bad influence on the estimation accuracy. Second, it’s difficult to compute the Jacobian matrix when the nonlinear degree is high. The computation of UKF is similar to EKF’s and the property of UKF is better than that of EKF. Additionally, UKF don’t need to compute the Jacobian matrix. so, it’s expanded continuously in the field of application. However, in the process of recursive filtering, UKF needs to do the matrix decomposition and the inverse matrix, which is difficult to ensure the positive definiteness of covariance matrix.From the above problems, This paper proposes the CKF algorithm based on the s trong tracking filter theory and the square-root strategy under GPS/INS tightly integrated navigation signal invalidation circumstances.2. GPS/INS tightly integrated modelUnder normal circumstances, the characteristic of tightly integration integrated indepth is that the GPS receiver and the inertial navigation system work together. We calculate the pseudorange 1ρ and the pseudorange rate1ρby utilizing the data of satellite ephemeris given by the GPS receiver and the position and velocity given by the inertial navigation system.Compared 1ρand 1ρwith G ρand G ρ given by the GPS receiver, the results are observations.Two systems are adjusted by the error of the GPS receiver and the inertial navigation system estimated by the integrated Kalman filter. Work diagram is shown as Fig.1[5]. 2.1 State equationThe error state variable of GPS is 2-dimensional )(t G X . The error of INS )(t X I consisting of platform error angles(3D), velocity errors(3D), position errors(3D), INS component errors(9D) is 18 dimension. The state equation of GPS/INS integrated navigation system can be written as⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡)()()(00)()()()(00)()()(t t t t t t t t t t G I G I G I G I G I W W G G X X F F X X (1)i.e.)()()()()(t t t t t W G X F X+= (2) whereT ru u rz ry rx bz by bx U N E U N E t t z y x h L v v v t 120],,,,,,,,,,,,,,,,,,,[)(⨯∆∆∆∆∆∆∆∆∆∆∆=εεεεεελϕϕϕX (3) are attitude errors, velocity errors, positionerrors, gyro drift errors(constant offset and random offset ), accelerometer errors, GPS clock correction equivalent distance and equivalent distance rates respectively.W G F ,,are the state transition matrix, the noisecoefficient matrix and the noise vectorrespectively. Specifically, it ’s shown in literature [6].2.2 Measurement equationWe assume that the position given by INS in the geodetic coordinate system denote longitude I λ, latitude I L and altitude I h , thentheactualpositionofcarrierare λλλ∆-=I ,L L L I ∆-=,h h h I ∆-=,which are transformed into ECEF(earth-centeredearth-fixed) coordinate system as follows:⎪⎩⎪⎨⎧∆-∆-+-=∆-∆-∆-+=∆-∆-∆-+=)sin(])1([)sin()cos()()cos()cos()(2L L h h f R z L L h h R y L L h h R x I I N I I I N I I I N λλλλ (4) Thus, the actual distance )4,3,2,1(=j j ρ between the satellite and the carrier is222)()()(z z y y x x j s j s j s j -+-+-=ρ (5)The pseudorange of between the GPS receiver and the satellite j isρρρv t u j jG +∆+= (6)i.e.ρρv t z z y y x x u j s j s j s j G +∆+-+-+-=222)()()( (7)Substituting x,y,z into the above equation yields{}ρλλλλρv t L L h h f R z L L h h R y L L h h R x u I I N j sI I I N j s I I I N j s j G +∆+∆-∆-+--+∆-∆-∆-+-+∆-∆-∆-+-=212222)]sin(])1([[)]sin()cos()([)]cos()cos()([(8)Similarly, the pseudorange isρρρv t ru j j G +∆+= (9) Substituting j ρinto (9) yieldsρρv t z z y y x x z z z z y y y y x xx x ru j s j s j s j s j s j s j s j s j s j G+∆+-+-+---+--+--=222)()()())(())(())(( (10)Substituting x,y,z into the above equation yields the measurement equation of the pseudorange rate, and the pseudorange rate of the receiver as the measurement observation denotesTG G G G G G G G G t Z ][)(43214321ρρρρρρρρ = (11) where 4321,,,G G G G ρρρρ are the pseudoranges, 4321,,,G G G G ρρρρ are the pseudorange rates. From the above equation, )(t G Z is a nonlinear measurement equation.3. CKF algorithm based on strong tracking filter theory and square-root strategy CKF based on the nonlinear filter of deterministic sampling was proposed by the Canadian academic Ienkaran Arasaratnam[7]. By utilizing the numerical integration for the approximation of a target state posterior probability and determining a series of integral points and weights to calculate the posterior probability density, we can reach the compromise of the computation and accuracy. Research show that when the dimension of the nonlinear system is higher than 3-dimension, the optimal filter is CKF because of the filter accuracy of CKF higher than that of UKF[8]. As previously stated, the state dimension of integrated navigation system is higher than 3-dimension, so we select CKF.CKF applied to GPS/INS integrated navigation has two problems. First, the revising function of the present observations for one step prediction is restrained by the past observations, so the filter value don ’t track the change of the true value[9]. Second, owing to the algebraic operation error caused by truncation effect, the positive definiteness and symmetry ofcovariance matrix are lost. The decompositionand inversion of the matrix in the CKF filter process make it worse, which causes the filtering unstability.From the above two problems, the improved algorithm based on the s trong tracking filter theory and the square-root strategy is applied to GPS/INS tightly integrated navigation under GPS signal invalidation circumstances, to validate its efficiency.3.1 Strong tracking filter theoryAssume that the system model and measurement model of the state-space are),(1k k k k f w x x =+ (12)),(1111++++=k k k k h v x z (13)where k x is the system state vector at time k,k z is the measurement variable.k w and 1+k vare the system noise and measurement noise respectively,and),(~k k N Q 0w ,),(~k k N R 0v . f is the state transition function. h is the measurement function.Considering the first problem of CKF applied to integrated navigation, utilizing the fading memory filter can refrain filter divergence caused by model errors, i.e. stressing the function of new data artificially and weakening the function of old data. Based on the theory, the extended Kalman filter with a sub-optimal fading factor was proposed, called STK(strong tracking filter)[10-11].STK induces the fading factor 1+k λ into the state predicted covariance matrix k k |1+P andadjusts the gain matrix 1+k K in real time, which meets the two conditions as follows:min ])ˆ)(ˆ[(=--T k k k k x x xx E (14) ,...1,0,...;1,0,0][===+j k e e E Tk j k (15)When the model matches the actual systemperfectly, two equations are true. Otherwise, the uncertain model causes that the filter state estimation deviates from the system state. At the moment, adjusting the gain matrix online makes the equation (15) true, which forces the strong tracking filter to keep tracking the system state. The equation of the strong tracking filter is:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=+=-+==+==++++-++++++++++++++++++++kk k k k k T k k k k Tk k k k k k k k kk k k k k k k k T k k k k k k kk k k k z z x x x h zx f x|1111111|111|11|111|11|11|1,1,11|1|1)()()ˆ(ˆˆ)ˆ(ˆ)ˆ(ˆP H K I P R H P H H P K K QΦP ΦP λ (16) where 1+k λ is a sub-optimal fading factor, which is computed by the sub-optimal algorithm to improve the real-time performanceof the algorithm. Assume that k k k k z z e |111ˆ+++-= is the output residual sequence, then⎪⎪⎪⎩⎪⎪⎪⎨⎧=--==⎩⎨⎧≤>=+++++++++++++++++Tk T k k k k k k k k T k k k k k k k k k k k k M tr N tr C C C C 1,1,111111111111111][][1,11,H ΦP ΦH M RH Q H V N λ (17) where tr(.) is the matrix trace, 1+k V is the covariance matrix of the output residualsequence. However, it ’s unknown in the actual calculation. It can be estimated by the following equation:⎪⎩⎪⎨⎧≥++==+++1,10,11111k k T k k k Tk ρρe e V e e V (18) where 10≤<ρ is the forgetting factor, and95.0=ρ generally.If the state predicted covariance matrixk k |1+P , the estimation of the autocorrelation covariance matrix k k zz |1,+P and the estimation of the cross-correlation covariance matrixk k xz |1,+P are known, then 1+k N and 1+k M are equivalent to1|1,1|11|1|1,11][])[(][++-+-++++-⨯-=k k k xz k k k T k k T k k xz k k R P P Q P P V N (19) 11|1,1++++-+=k k k k zz k V N P M (20)3.2 Square-root filter strategyConsidering the second problem of CKF applied to integrated navigation,the square-root strategy has a great effect on weakening matrix pathological influence. In the update steps of SRCKF, the square-root factor of the prediction and posterior error covariance matrix takes part in iteration instead of the covariance matrix. Moreover, we compute the gain by utilizing the least square, which avoids the operation of the inverse matrix. The triangle decomposition factor of the covariance matrix is obtained by utilizing triangle or QR decomposition instead of the square-root factor. They all enhance the stability of filters.Generally, QR decomposition algorithm denotes that )(A S Tria =, where S is a lower triangular matrix, the relationship between matrix A and S is that if R obtained by QR decomposition of T A is a upper triangularmatrix, then T R S =. 3.3 Strong tracking SRCKFCombining the strong tracking filter theory and the square-root strategy with the CKF algorithm, we present a strong tracking SRCKF. Algorithm steps are as follows:3.3.1 Time update and evaluate the fading factor1)Assume at time k that the posterior density function ),ˆ()(||k k k k k N p p xx = is known.FactorizeT k k k k k k |||S S P = (21)2)Evaluate the cubature points i ξi i n]1[22=α, i ]1[ denotes the i th of the set of [1]. Here, 2]1[R ∈ can be expressed as⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=10011001]1[3)Evaluate the propagated cubature points),...,2,1(ˆ,m i k k k k i =+=xS αξ (22) ),(*|1,k f i k k i ξξ=+ (23)4)Evaluate the predicted state at time k+1∑=++=m i k k i k k m 1*|1,|11ˆξx(24) 5)Evaluate the predicted state covariance at time k+1T kk k k kk |1|1*|1+++=SS P(25)where k k |1+S is the square-root factor of covariance.])([,*|1|1k Q k k k k Tria S X S ++= (26)where k Q ,S denotes a square-root factor of k Q , and the weighted, centered matrix is]ˆ...ˆ,ˆ[1|1*|1,|1*|1,2|1*|1,1*|1k k k k m k k kk k k k k k k x x x m+++++++---=ξξξX (27) Evaluate the fading factor 1+k λ:6)Evaluate the propagated cubature points),...,2,1(ˆ|1|1|1,m i k k i k k k k i =+=+++xS αξ(28) )(|1,1|1,k k i k k k i h +++=ξχ (29)7)Evaluate the estimation of measurement attime k+1∑=++=m i k k i k k m 1*|1,|11ˆχz(30) 8)Evaluate the estimation of the autocorrelation covariance matrix k k zz |1,+P at time k+1T k k zz k k zz k k zz |1,|1,|1,+++=S S P (31)where k k zz |1,+S is the square-root factor of covariance.])([1,|1|1,+++=k R k k k k zz Tria S Z S (32)where 1,+k R S denotes a square-root factor of1+k R , and the weighted, centered matrix is]ˆ...ˆ,ˆ[1|1|1,|1|1,2|1|1,1|1k k k k m k k k k k k k k k k m+++++++---=z χz χz χZ (33) 9)Evaluate the estimation of thecross-correlation covariance matrixT k k k k k k xz |1|1|1,+++=Z X P (34)where]ˆ...ˆ,ˆ[1|1|1,|1|1,2|1|1,1|1k k k k m k k k k k k k k k k x x xm+++++++---=ξξξX (35) According to the algorithm of section 3.1, we can evaluate the fading factor 1+k λ and the predicted state covariance of the fading factork *|11|1)(Q Q P P +-=+++k k k k k k λ (36)3.3.2 Measurement update1)Factorize the predicted state covarianceT k k k k k k |1|1|1+++=S S P (37)2)According to the step 6),8),9) of section 3.3.1, one evaluates the estimation of measurement, the cross-correlation covariance matrix and the autocorrelation covariance matrix. 3)Evaluate the filter gain matrix1|1,|1,1-+++=k k zz k k xz k P P W (38)4)State update)ˆ(ˆˆ|111|11k k k k k k k +++++-+=z z W x x(39) 5)Evaluate the correlation covariance matrixand the square-root factorT k k T k k k zz k k k k k 111|1,1|11|1++++++++=-=S S W P W P P (40) ])([1,1|11|11++++++-=k R k k k k k k k Tria S W Z W X S (41) 4. Simulation verification and result analysis To validate the efficiency of the improved algorithm, we make simulation experiments on the accuracy of GPS/INS integrated navigation under GPS signal invalidation circumstances.The simulation time of the flying process consisting of constant speed, acceleration, deceleration, wheel, climb, dive, level flight, etc. is 500s. The specific flight path is shown in Fig.2.Simulation parameters are as follows: the random drift of SINS gyro is 0.01(°)/h; therandom noise of the first-order markov processgyro is 0.01(°)/h; the drift error of accelerometer is 10-4g; the random pseudorange error and the random pseudorange rate measurement error of GPS are 10m and 0.05m/s respectively; the sampling period of the simulated aircraft is 0.01s, the update frequency of the strap-down inertial navigation is 50Hz, the update frequency of both the GPS receiver filter data fusion is 1Hz. According to the simulation of the traces and parameters, at the period of 200-400s, it has the large-angle maneuver of acceleration, wheel, dive and so on, inducing GPS signal invalidation easily. In the simulation, we set 3 satellites to validate the efficiency of the improved algorithm under the normal and abnormal situation. Due to space reasons, the accuracy comparison of the strong tracking SRCKF and UKF under normal circumstances is shown in Fig.3 and Fig.4.It can be seen from the above simulation that in the integrated navigation, due to the same question of the algorithm, we make some improvement on CKF and UKF. As a result, the filter accuracy of CKF is higher than that of UKF, validating the conclusion of literature [8].under GPS signal invalidation circumstances, the error of simulation results is shown in Fig.5-Fig.10. The comparison of the navigation information square-root errors in different cases is shown in Tab.1 and Tab.2.From the simulation results of Fig.5-Fig.10 and Tab.1- Tab.2, GPS/INS tightly integrated navigation system can provide an accurate range of the navigation information under GPS signal invalidation circumstances.From the strong tracking filter theory and the square-root strategy, the improved algorithm of CKF improving the function of the present observations effectively reduces the navigation errors induced by the uncertainty of model and computational problems in the filtering process. Under normal circumstances, compared withCKF, the strong tracking SRCKF provides higher accurate navigation information and improves the navigation accuracy of 20%-30%. Under signal invalidation circumstances, the improved CKF provides higher accurate navigation information and improves the navigation accuracy of 30%-40%, and develops its advantages.The integrated navigation has a high require for the real-time performance of the filtering algorithm. Compared with the single filter iteration time of two algorithms in Fig.11, the single filter iteration time of the strong tracking SRCKF is a little higher than that of CKF. Because it needs to compute the fading factor1+kλat update time, which leads to increase thecomputation, but it still can meet the requirements of the real-time performance. Thus, the strong tracking improves the filtering accuracy at the cost of the computation.5. ConclusionThis paper has proposed the CKF algorithm based on the s trong tracking filter theory and square-root strategy. By stressing the function of new data, this algorithm improves the robustness when the model is uncertain, and the square-root strategy ensures the positive definiteness and symmetry of covariance matrix. The simulation results show that, compared with the algorithm of CKF, the strong tracking SRCKF can provide the higher accurate navigation information and develop its advantages under GPS signal invalidation circumstances. Although the single filter iteration time increases 40%, because of utilizing the nonlinear filter algorithm of the strong tracking strategy, the real-time performance of the algorithm still meets the requirements .References[1] Quan W.Inertia/Astronomy/Satellite integratednavigation technology[M]. Beijing:National Defense Industry Press, 2011. (in Chinese) [2] Grewal M S, Weill L R, Andrews A P. GlobalPositioning Systems, Inertial Navigation and Integration[M]. New York: Wiley Interscience, 2007.[3] Xu G, Huang G R, Peng X Z, et al. Performancecomparison of SINS/GPS different combinations Under signal invalidation circumstances[J].Application Research of Computers, 2012(10): 3888-3896.(in Chinese)[4] Yin J J, Zhang J Q, Lin Q. Unscented Kalmanfilter-Kalman filter algorithm[J]. System Engineering and Electronics. 2008, 30(4): 617-620.(in Chinese)[5] Liu J Y, Zeng Q H, Zhao W, et al. Theory andapplication of navigation system[M]. Xi’an: Northwestern Polytechnical University Press, 2010.(in Chinese)[6] Wang H N. Theory and application of GPSnavigation[M]. Beijing: Science Press, 2003.(in Chinese)[7] Ienkaran Arasaratnam, Simon Haykin. CubatureKalman filters[J]. IEEE Trans on Automatic Control, 2009, 54(6):1254-1269.[8] Sun F, Lang L J. Estimation precision comparisonof Cubature Kalman filter and Unscented Kalman filter[J]. Control and Decision, 2013, 28(2): 303-308. (in Chinese)[9] Li L. Fading memory extended Kalman filteralgorithm for target tracking application[J].Electronic Measurement Technology, 2011, 34(2): 36-38, 65.(in Chinese)[10] Zhou D H, Xi Y G, Zhang Z J. A suboptimalmultiple fading extended Kalman filter[J]. Acta Automatica Sinica, 1991, 17(6):689-695.(in Chinese)[11] Jin T, Wang Y B, Cong L, et al. Adaptive strongtracking UKF algorithm based on f uzzy logic[J].High Technology Letters, 2012, 22(4): 348-354.(in Chinese)。