2001级华东地区农林水院校《高等数学》统考试卷

合集下载

《高等数学1(一)》课程考试试卷A及答案

《高等数学1(一)》课程考试试卷A及答案

--《高等数学1(一)》课程考试试卷(A 卷参考答案)注意:1、本试卷共3页; 2、考试时间:120分钟; 3、姓名、学号必须写在指定地方。

一. 单项选择题,请将答案填入题后的方括号内(每小题2分, 共20分)1.与函数()f x =[ C ]. A.lnx B.21()2ln x C .lnx D.ln x2.若(1)(2)(3)(4)(5)lim (32)x x x x x x x αβ→∞-----=-,则α与β的值为[ D ]. A.11,3αβ== B .15,3αβ== C.511,3αβ== D .515,3αβ==3.设函数()y f x =在点0x 处可导,dy 为()f x 在0x 处的微分,当自变量x 由0x 增加到0x x +∆时, 极限0limx y dyx∆→∆-∆等于[ B ].A .-1 B.0 C .1 D.∞4.若()f x 在x a =的某个邻域内有定义,则()f x 在x a =处可导的一个充分条件是[ D ].A .1lim [()()]h h f a f a h →+∞+-存在 B.0(2)()lim h f a h f a h h→+-+存在C.0()()lim2h f a h f a h h →+--存在 D.0()()lim h f a f a h h→--存在5.已知函数1sin ,0(),0x x f x xax b x ⎧>⎪=⎨⎪+≤⎩在(,)-∞+∞内连续,则a 与b 等于[ C ].A.1,1a b ==B.0,a b R =∈ C .,0a R b ∈= D.,a R b R ∈∈6.若函数32()f x x ax bx =++在1x =处取得极值2-,则下列结论中正确的是[ B ].A.3,0a b =-=,且1x =为函数()f x 的极小值点B.0,3a b ==-,且1x =为函数()f x 的极小值点 C .1,0a b =-=,且1x =为函数()f x 的极大值点D.0,3a b ==-,且1x =为函数()f x 的极大值点7.设1()1f x x =-,其n 阶麦克劳林展开式的拉格朗日型余项()n R x 等于[ C ]. A.11,(01)(1)(1)n n x n x θθ++<<+- B .11(1),(01)(1)(1)n n n x n x θθ++-<<+-C.12,(01)(1)n n x x θθ++<<- D.11(1),(01)(1)n n n x x θθ++-<<-8.若sin 2x 为函数()f x 的一个原函数,则()xf x dx ⎰等于[ D ]. A.sin 2cos2x x x C ++ B .sin 2cos2x x x C -+C.1sin 2cos 22x x x C -+ D.1sin 2cos 22x x x C ++9.若非零向量,,a b c 满足0a b ⋅=与0a c ⨯=,则b c ⋅等于[ A ]. A .0 B .-1 C.1 D.310.直线2020x y z x y z -+=⎧⎨+-=⎩与平面1x y z ++=的位置关系是[ C ].A .直线在平面内B .平行C .垂直 D.相交但不垂直二.填空题(每小题2分,共10分)1.一质点作直线运动,其运动规律为426s t t t =-+,则速度增加的时刻t = 1 . 2.若21arctan (1)2y x x ln x =-+,则dy =arctan xdx . 3.已知21adx x π+∞-∞=+⎰,则a = 1 .4.已知()xf x e =,则()f lnx dx x'=⎰ x C + . 5.设向量,,m n p 满足0m n p ++=,且6m =,8n =,10p =,则m n n p p m ⨯+⨯+⨯= 144 .三.求解下列各题(每小题5分,共10分)1.11lim(1)21n n n +→∞-+解:原式=((21)(1)1)/21lim(1)21n n n -+-+→∞-+ 2 =(21)(1/2)(1/2)11lim(1)lim(1)2121n n n n n -+-→∞→∞-⋅-++ 41/2e -= 52.20(13)lim (sec cos )x ln x x x →+-解:原式=203cos lim (1cos )(1cos )x x xx x →-+ 2=2023cos lim1(1cos )2x x x x x →+ 4=6 5四. 求解下列各题(每小题6分,共12分)1.若方程arctan 1xyy e =+确定了y 是x 的函数,求函数y 的微分dy . 解:原方程两边同时对x 求导,有2()1xyy e y xy y ''=++ 则22(1)1(1)xy xy y y e y x y e +'=-+ 4 则22(1)1(1)xyxyy y e dy dx x y e +=-+ 62.设参数方程21cos x t y t⎧=+⎨=⎩确定了y 是x 的函数,求22d ydx .解:sin 2dy tdx t-=3 222cos sin 122t t td y t dx t-=- 5 3sin cos 4t t tt-= 6五.求解下列各题(每小题6分,共18分)1.222()lnx dx xlnx +⎰解:原式=212()()d xlnx xlnx ⎰ 42C xlnx-=+ 6 2.222max{,}x x dx -⎰解:原式=0122221x dx xdx x dx -++⎰⎰⎰ 4323012201[][][]323x x x -=++ 5=11/2 63.设21sin ()x tf x dt t =⎰,求10()xf x dx ⎰解:21100()()()2x xf x dx f x d =⎰⎰ 2221100[()](())22x x f x d f x =-⎰ 422112200sin 02sin 2x x xdx x x dx x =-=-⎰⎰ 2101[cos ]2x =cos112-= 6六. (本题10分)y已知星形线33cos sin x a ty a t ⎧=⎨=⎩如右图所示,其中0a >, a 1) 计算星形线的全长; a - 0 a x2) 求星形线与坐标轴所围成图形的面积.解:1)长度4L =⎰2 a -4=⎰46a = 52)面积024202443sin cos a S ydx a t tdt π==-⎰⎰ 82422012sin cos at tdt π=⎰238a π= 10七. (本题7分)已知某直角三角形的边长之和为常数,求该直角三角形面积的最大值. 解:设两直角边与斜边分别为,,x y z ,其和为常数k ,所求面积为S因x y z k ++=及222x y z +=,则222()kx k y x k -=- 3则221224()kx xk S xy x k -==-,且222(24)()4()k x kx k S x x k -+'=-有驻点22x k -= 5则22max34S k -==为所求 7八. (本题7分)求过点(2,1,3)M 且与直线11321x y z+-==-垂直相交的直线方程. 解:记直线111:321x y zL +-==-,设过点(2,1,3)M 且垂直相交于直线1L 的平面为π 则平面π方程为3(2)2(1)(3)0x y z -+---= 2令11321x y zt +-===-则13,12,x t y t z t =-+=-+=- 代入平面π得3/7t =,即交点为2133(,,)777A - 4以12624(,,)777MA --=为所求直线的方向向量得到所求直线为:213214x y z ---==- 7九. (本题6分)设函数()f x 在闭区间[0,1]上连续且0()1f x <<,试判断方程02()1x x f t dt -=⎰在(0,1)内有几个实根,并证明你的结论. 证:记0()2()1x g x x f t dt =--⎰则10(0)10,(1)1()0g g f t dt =-<=->⎰2且0()1f x <<知()2()0g x f x '=->,即在闭区间[0,1]上单调增加 4 故02()1x x f t dt -=⎰在(0,1)内有一个实根 6。

2001年春季高考数学试题(北京、内蒙古、安徽理)

2001年春季高考数学试题(北京、内蒙古、安徽理)

绝密★启用前2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式: 正棱台、圆台的侧面积公式 三角函数的积化和差公式)]sin()[sin(21cos sin β-α+β+α=βα l c c S )'(21+=台侧)]sin()[sin(21sin cos β-α-β+α=βα 其中'c 、c 分别表示上、下底面周长,l 表示斜高或母线长)]cos()[cos(21cos cos β-α+β+α=βα 球体的体积公式 334R V π=球)]cos()[cos(21sin sin β-α-β+α-=βα 其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)集体{}5,4,3,2,1=M 的子集个数是(A )32(B )31 (C )16 (D )15(2)函数)10()(≠>=a a a x f x且对于任意的实数y x ,都有 (A ))()()(y f x f xy f = (B ))()()(y f x f xy f +=(C ))()()(y f x f y x f =+(D ))()()(y f x f y x f +=+(3)=++∞→1222lim n n nn n C C(A )0 (B )2 (C )21 (D )41 (4)函数)1(1≤--=x x y 的反函数是 (A ))01(12≤≤--=x x y (B ))10(12≤≤-=x x y(C ))0(12≤-=x x y(D ))10(12≤≤-=x x y(5)极坐标系中,圆θ+θ=ρsin 3cos 4的圆心的坐标是(A ))53arcsin ,25((B ))54arcsin ,5((C ))53arcsin ,5((D ))54arcsin ,25((6)设动点P 在直线1=x 上,O 为坐标原点.以OP 为直角边、点O 为直角顶点作等腰OPQ Rt ∆,则动点Q 的轨迹是(A )圆(B )两条平行直线(C )抛物线(D )双曲线(7)已知x x f 26log )(=,那么)8(f 等于(A )34(B )8 (C )18 (D )21 (8)若A 、B 是锐角ABC ∆的两个内角,则点)cos sin ,sin (cos A B A B P --在(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (9)如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是 (A )︒30 (B )︒45 (C )︒60 (D )︒90(10)若实数b a ,满足2=+b a ,则ba 33+的最小值是(A )18 (B )6(C )32 (D )432(11)右图是正方体的平面展开图.在这个正方体...中, ①ED BM 与平行②CN 与BE 是异面直线 ③CN 与BM 成︒60角 ④DM 与BN 垂直以上四个命题中,正确命题的序号是 (A )①②③ (B )②④(C )③④ (D )②③④(12)根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量n S (万件)近似地满足)12,,2,1)(521(902 =--=n n n nS n 按此预测,在本年度内,需求量超过1.5万件的月份是 (A )5月、6月 (B )6月、7月 (C )7月、8月 (D )8月、9月绝密★启用前2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数 学(理工农医类) 第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.(13(14)椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.(15)已知α=γ+β+α(1sin sin sin 222、β、γ均为锐角),那么γβαcos cos cos 的最大值等于____________________.(16)已知m 、n 是直线, α、β、γ是平面,给出下列命题:①若m n m ⊥=⋂⊥,,βαβα,则βα⊥⊥n n 或;②若α∥β,n m =γ⋂β=γ⋂α,,则m ∥n ;③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若m =⋂βα,n ∥m ,且βα⊄⊄n n ,,则n ∥n 且α∥β.其中正确的命题的序号是_______________(注:把你认为正确的命题的序号都.填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 设函数)0()(>>+=b a bx x x f ,求)(x f 的单调区间,并证明)(x f 在其单调区间上的单调性. 已知)1(17≠∈=z C z z 且.(Ⅰ)证明0165432=++++++z z z z z z ;(Ⅱ)设z 的辐角为α,求ααα4cos 2cos cos ++的值.已知VC 是ABC 上的射影,且在ABC∆的高CD 上.AB VC a AB 与,=之间的距离为VC M h ∈点,.(Ⅰ)证明∠MDC 是二面角M –AB –C 的平面角; (Ⅱ)当∠MDC =∠CVN 时,证明VC AMB 平面⊥;(Ⅲ)若∠MDC =∠CVN =20( π<θ<θ,求四面体MABC 的体积.n 3211与2之间插入n 个正数n b b b b ,,,,321 ,使这2+n 个数成等差数列.记n n n n b b b b B a a a a A ++++== 321321,.(Ⅰ)求数列{}n A 和{}n B 的通项;(Ⅱ)当7≥n 时,比较n A 与n B 的大小,并证明你的结论.万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价–投入成本)⨯年销售量.(Ⅰ)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内?已知抛物线)0(22>=p px y .过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,p AB 2||≤.(Ⅰ)求a 的取值范围;(Ⅱ)若线段AB 的垂直平分线交x 轴于点N ,求NAB Rt ∆面积的最大值.。

2001年高考数学试题——(上海卷)及答案

2001年高考数学试题——(上海卷)及答案

2001年普通高等学校春季招生考试(上海卷)数学一、填空题(本大题满分48分)本大题共有12题.只要求直接填写结果,每题填对得4分,否则一律是零分.1.函数)0(1)(2≤+=x x x f 的反函数=-)(1x f______.2.若复数z 满足方程1-=i i z (i 是虚数单位),则z =________. 3.函数xx y cos 1sin -=的最小正周期为________.4.二项式6)1(xx +的展开式中常数项的值为________.5.若双曲线的一个顶点坐标为(3,0),焦距为10,则它的标准方程为________. 6.圆心在直线x y =上且与x 轴相切于点(1,0)的圆的方程为________. 7.计算:nn n n )13(lim ++∞→=________.8.若向量α,β满足||||β-α=β+α,则α与β所成角的大小为________.9.在大小相同的6个球中,2个红球,4个是白球.若从中任意选取3个,则所选的3个球中至少有1个红球的概率是________.(结果用分数表示) 10.若记号“*”表示求两个实数a 与b 的算术平均数的运算,即2b a b a +=*,则两边均含有运算符号“*”和“+”,且对于任意3个实当选a 、b 、c 都能成立的一个等式可以是_______ 11.关于x 的函数)sin()(φ+=x x f 有以下命题: (1)对任意的φ,)(x f 都是非奇非偶函数;(2)不存在φ,使)(x f 既是奇函数,又是偶函数; (3)存在φ,使)(x f 是奇函数;(4)对任意的φ,)(x f 都不是偶函数其中一个假命题的序号是_______因为当φ=_______时,该命题的结论不成立12.甲、乙两人于同一天分别携款1万元到银行储蓄,甲存五年期定期储蓄,年利率为2.88%乙存一年期定期储蓄,年利率为2.25%,并在每年到期时将本息续存一年期定期储蓄按规定每次计息时,储户须交纳利息的20%作为利息税,若存满五年后两人同时从银行取出存款,则甲与乙所得本息之和的差为__________元五年内保持不变,结果精确到1分)二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选,选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分13.若a 、b 为实数,则0>>b a 是22b a >的( )(A )充分不必要条件.(B )必要不充分条件.(C )充要条件.(D )既非充分条件也非必要条件. 14.若直线1=x 的倾斜角为α,则α( )(A )等于0(B )等于4π (C )等于2π (D )不存在15.若有平面α与β,且l P P l ∉α∈β⊥α=βα,,, ,则下列命题中的假命题为( )(A )过点P 且垂直于α的直线平行于β.(B )过点P 且垂直于l 的平面垂直于β. (C )过点P 且垂直于β的直线在α内.(D )过点P 且垂直于l 的直线在α内.16.若数列}{n a 前8项的值各异,且n 8n a a =+对任意的N n ∈都成立,则下列数列中可取遍}{n a 前8项值的数列为( )(A )}{12+k a(B )}{13+k a(C )}{14+k a(D )}{16+k a三、解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤. 17.(本题满分12分)已知R 为全集,}125|{},2)3(log |{21≥+=-≥-=x x B x x A ,求B A18.(本题满分12分)已知)24(12sin sin22π<α<π=α+α+αk tg ,试用k 表示ααcos sin -的值.19.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分.用一块钢锭浇铸一个厚度均匀,且全面积为2平方米的正四棱锥形有盖容器(如图),设容器的高为h 米,盖子边长为a 米.(1)求a 关于h 的函数解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值. (求解本题时,不计容器的厚度) 20.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分在长方体1111D C B A ABCD -中,点E 、F 分别1BB 、1DD 上,且B A AE 1⊥,D A AF 1⊥ (1)求证:AEF C A 平面⊥1;(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角),则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等试根据上述定理,在4=AB ,3=AD ,51=AA 时,求平面AEF 与平面BD B D 11所成的角的大小三角函数值表示) 21.(本题满分16分)本题共有2个小题,第1小题满分9分,第2小题满分7分已知椭圆C 的方程为1222=+yx ,点),(b a P 的坐标满足1222≤+ba 过点P 的直线l 与椭圆交于A 、B 两点,点Q 为线段AB 的中点,求:(1)点Q 的轨迹方程;(2)点Q 的轨迹与坐标轴的交点的个数.22.(本题满分18分)本题共有2个小题,第1小题满分5分,第2小题满分13分.已知}{n a 是首项为2,公比为21的等比数列,n S 为它的前n 项和.(1)用n S 表示1+n S ;(2)是否存在自然数c 和k ,使得21>--+cS c S k k 成立.2001年普通高等学校春季招生考试(上海卷)数学答案及评分标准说明:1.本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分.3.给分或扣分均以1分为单位. 答案及评分标准 一、(第1至12题)每一题正确的给4分,否则一律得零分. 1.1)x ≥. 2.1i -. 3.2π. 4.20. 5.221916xy-=.6.22(1)(1)1x y -+-=. 7.2e .8.90°. 9.45.10.),(*)()*(c a b a c b a ++=+(*)()(),()()()(),()()a b c a *c b *c a *b c a b *c b c *a a c *b a *b c b *a c +=++=+=+=++=+11.(1),()k k Z π∈;(1),()2k k Z ππ+∈;(4),()2k k Z ππ+∈等(两个空格全填对时才能得分,其中k 也可以写成任何整数) 12.219.01 二、(第13至16题)每一题正确的给4分,否则一律得零分 13.A 14.C 15.D 16.B 三、(第17至22题)17.解 由已知4log )3(log 2121≥-x因为x y 21log =为减函数,所43≤-x 由⎩⎨⎧>-≤-0343x x 解得31<≤-x 所以}31|{<≤-=x x A由125≥+x ,解得32≤<-x 所以}32|{≤<-=x x B 于是3}1|{≥-<=x x x A 或故}312|{=-<<-=x x x B A 或18.解 因为αα=α+α+αcos sin 2tg 12sin sin22所以αα=cos sin 2k因而k -=αα-=α-α1cos sin 21)cos (sin 2 又24π<α<π,于是0cos sin >α-α因此k -=α-α1cos sin19.解(1)设'h 为正四棱锥的斜高由已知⎪⎪⎩⎪⎪⎨⎧=+=⋅+,'h a 41h ,2a 'h 214a 2222解得)0(112>+=h h a(2))0()1(33122>+==h h h haV 易得)h 1h (31V +=因为2121=⋅≥+hh hh ,所以61≤V 等式当且仅当hh 1=,即1=h 时取得故当1=h 米时,V 有最大值,V 的最大值为61立方米.20.证(1)因为B A CB 1平面⊥,所C A 1在平面B A 1上的射影为B A 1由B A AE AE B A 11,平面⊂⊥,得AE C A ⊥1,同理可证AF C A ⊥1 因为AE C A AF C A ⊥⊥11, 所以AEF C A 平面⊥1解(2)过A 作BD 的垂线交CD 于G , 因为AG D D ⊥1,所以BD B D AG 11平面⊥设AG 与C A 1所成的角为α,则α即为平面AEF 与平面BD B D 11所成的角. 由已知,计算得49=DG .如图建立直角坐标系,则得点(0,0,0)A ,)0,3,4(),5,0,0(),0,3,49(1C A G ,}5,3,4{},0,3,49{1-==C A AG ,因为AG 与C A 1所成的角为α所以25212||||cos 11=⋅⋅=αC A AG C A AG 25212arccos=α由定理知,平面AEF 与平面CEF 所成角的大小为25212arccos21.解(1)设点A 、B 的坐标分别为),(11y x A 、),(22y x B ,点Q 的坐标为),(y x Q .当21x x ≠时,设直线l 的斜率为k ,则l 的方程为b a x k y +-=)(由已知12,1222222121=+=+y x y x (1)b a x k y b a x k y +-=+-=)(,)(2211(2) 由(1)得0))((21))((21212121=-++-+y y y y x x x x , (3)由(2)得b ak x x k y y 22)(2121+-+=+, (4) 由(3)、(4)及221x x x +=,221y y y +=,2121x x y y k --=,得点Q 的坐标满足方程02222=--+by ax y x (5)当21x x =时,k 不存在,此时l 平行于y 轴,因此AB 的中点Q 一定落在x 轴上,即Q 的坐标为(a ,0)显然点Q 的坐标满足方程(5)综上所述,点Q 的坐标满足方程02222=--+by ax y x 设方程(5)所表示的曲线为L ,则由⎪⎩⎪⎨⎧=+=--+,12,0222222y x by ax y x 得024)2(2222=-+-+b ax x b a 因为⎪⎪⎭⎫ ⎝⎛-+=∆128222b a b ,由已知1222≤+b a , 所以当1222=+ba 时,△=0,曲线L 与椭圆C 有且只有一个交点P (a ,b )当1222<+ba 时,△<0,曲线L 与椭圆C 没有交点因为(0,0)在椭圆C 内,又在曲线L 上,所以曲线L 在椭圆C 内故点Q 的轨迹方程为02222=--+by ax y x(2)由⎩⎨⎧==--+,0,02222x by ax y x 解得曲线L 与y 轴交于点(0,0),(0,b )由⎩⎨⎧==--+,0,02222y by ax y x 解得曲线L 与x 轴交于点(0,0),(a ,0)当a =0,b =0,即点P (a ,b )为原点时,(a ,0)、(0,b )与(0,0)重点,曲线L 与坐标轴只有一个交点(0,0)当a =0且20≤<b ,即点P (a ,b )不在椭圆C 外且在除去原点的y 轴上时,点(a ,0)与(0,0)重合,曲线L 与坐标轴有两个交点(0,b )与(0,0)同理,当b =0且10≤<a ,即点P (a ,b )不在椭圆C 外且在除去原点的x 轴上时,曲线L 与坐标轴有两个交点(a ,0)与(0,0)当10<<a 且)1(202a b -<<,即点P (a ,b )在椭圆C 内且不在坐标轴上时,曲线L 与坐标轴有三个交点(a ,0)、(0,b )与(0,0) 22.解(1)由⎪⎭⎫ ⎝⎛-=n n S 2114,得(221211411N n S S n n n ∈+=⎪⎭⎫ ⎝⎛-=++ (2)要使21>--+cS c S k k ,只要0223<-⎪⎭⎫⎝⎛--kk S c S c因为42114<⎪⎭⎫ ⎝⎛-=kk S ,所以N)(k S S S k k k ∈>-=⎪⎭⎫⎝⎛--0212223,故只要N)(k S c S k k ∈<<-223 ①因为)(1N k S S k k ∈>+,所以12232231=-≥-S S k ,又4<k S ,故要使①成立,c 只能取2或3当c =2时,因为21=S ,所以当k =1时,k S c <不成立,从而①不成立因为c S >=-252232,由)(1N k S S k k ∈<+,得2232231-<-+k k S S ,所以当2≥k 时,c S k >-223,从而①不成立当c =3时,因为21=S ,32=S ,所以当k =1,2时,k S c <不成立,从而①不成立因为c S >=-4132233,又2232231-<-+k k S S ,所以当3≥k 时,c S k >-223,从而①不成立故不存在自然数c 、k ,使21>--+cS c S k k 成立。

2001高考全国Ⅰ文科数学试卷及答案

2001高考全国Ⅰ文科数学试卷及答案

2001年普通高等学校招生考试全国Ⅰ文科数学一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设A=B A x x x B x x x 则},0|{},0|{22=+==-等于(A )0 (B ){0} (C )φ (D ){-1,0,1} (2)若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是(A )等比数列,但不是等差数列 (B )等差数列,但不是等比数列 (C )等差数列,而且也是等比数列 (D )既非等比数列又非等差数列 (3)过点A (1,-1)、B (-1,1)且圆心在直线x +y-2=0上的圆的方程是(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x (C )4)1()1(22=-+-y x(D )4)1()1(22=+++y x(4)若定义在区间(-1,0)内的函数a x f x x f a 则满足,0)()1(log )(2>+=的取值范围是 (A ))21,0((B )]21,0((C )),21(+∞ (D )),0(+∞(5)若向量a =(3,2),b =(0,-1),c =(-1,2),则向量2b -a 的坐标是(A )(3,-4) (B )(-3,4) (C )(3,4) (D )(-3,-4)(6)设A 、B 是x 轴上的两点,点P 的横坐标为2且|PA|=|PB|.若直线PA 的方程为 01=+-y x ,则直线PB 的方程是(A )05=-+y x (B )012=--y x (C )042=--x y (D )072=-+y x (7)若则,cos sin ,cos sin ,40b a =+=+<<<ββααπβα(A )b a < (B )b a > (C )1<ab (D )2>ab (8)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0)则其离心率为(A )43(B )32 (C )21 (D )41 (9)某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分.一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有(A )3种(B )4种(C )5种 (D )6种(10)设坐标原点为O ,抛物线x y 22=与过焦点的直线交于A 、B 两点,则=⋅OB OA (A )43 (B )-43 (C )3 (D )-3(11)一间平房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜. 记三种盖法屋顶面积分别为P 1、P 2、P 3若屋顶斜面与水平面所成的角都是α,则(A )P 3>P 2>P 1(B )P 3>P 2=P 1(C )P 3=P 2>P 1(D )P 3=P 2=P 1(12) 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标注的 数字表示该段网线单位时间内可以通过的最大信息量. 现从结点A 向结点B 传递信息,信息可以分开沿不同 的路线同时传递,则单位时间内传递的最大信息量为(A )26(B )24(C )20(D )19二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. (13)定义在R 上的函数x x x f cos 3sin )(+=的最大值是 .(14)一个工厂在若干个车间,今采用分层抽样方法从全厂某天的2048件产品中抽取一个 容量为128的样本进行质量检查,若一车间这一天生产256件产品,则从该车间抽 取的产品件数为 . (15)在空间中,①若四点不共面,则这四点中任何三点都不共线. ②若两条直线没有共点,则这两条直线是异面直线. 以上两个命题中,逆命题为真命题的是 . (把符合要求的命题序号都填上)(16)设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q = .三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知等差数列前三项为a ,4,3a ,前n 项的和为S n ,S k =2550. (Ⅰ)求a 及k 的值;(Ⅱ)求).111(lim 21nn S S S +++∞→ (18)(本小题满分12分)设计一幅宣传画,要求画面面积为4840cm 2,画面的宽与高的比为)1(<λλ,画面的上、下各有8cm 空白,左、右各有5cm 空白,怎样确定画面的高与宽尺寸,能使宣传画所用纸张的面积最小? (19)(本小题满分12分)如图,用A 、B 、C 三类不同的无件连接成两个系统N 1、N 2.当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为0.80,0.90,0.90.分别求系统N 1、N 2正常工作的概率P 1、P 2.— A — B — C —— A —— B —— C — N 1N 2注意:考生在(20甲)、(20乙)两题中选一题作答,如果两题都答,只以(20甲)计分. (20甲)(本小题满分12分)如图,以正四棱锥V —ABCD 底面中心O 为坐标原点建立空 间直角坐标系O —xyz ,其中Ox//BC ,Oy//AB .E 为VC 中点,正四棱锥底面边长 为2a ,高为h .(Ⅰ)求;,cos ><DE BE(Ⅱ)记面BCV 为α,面DCV 为β,若∠BED 是二面角α—VC —β的平面角,求cos ∠BED 的值.(20乙)(本小题满分12分)如图,在底面是直角梯形的四棱锥S —ABCD 中, ⊥︒=∠SA ABC ,90面ABCD , SA=AB=BC=1,AD=.21(Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值.(21)(本小题满分12分)已知函数bx ax x x f 23)(23+-=在点x=1处有极小值-1.试确定a 、b 的值.并求出 f (x )的单调区间.(22)(本小题满分14分)设,20πθ<<曲线1sin cos 1cos sin 2222=-=+θθθθy x y x 和有4个不同的交点.(Ⅰ)求θ的取值范围;(Ⅱ)证明这4个交点共圆,并求圆半径的取值范围.DSAB C2001年普通高等学校招生考试全国Ⅰ文科数学参考答案一、选择题:本题考查基本知识和基本运算(1)B (2)B (3)C (4)A (5)D (6)A (7)A (8)C (9)A (10)B (11)D (12)D 二、填空题:本题考查基本知识和基本运算 (13)2 (14)16 (15)② (16)1 三、解答题(17)本小题主要考查数列求和以及极限的基本概念和运算,考查综合分析的能力.解:(I )设该等差数列为{a n }, 则.2550,3,4,321====k S a a a a a由已知有,423⨯=+a a 解得首项,21==a a 公差.22412=-=-=a a d代入公式d k k a k S k ⋅-+⋅=2)1(1得.255022)1(2=⋅-+⋅k k k 即,025502=-+k k解得k=50,k=-51(舍去) 50,2==∴k a(II )由),1(2)1(1+=⋅-+⋅=n n S d n n a n S n n得 )1(132121111121+++⨯+⨯=+++∴n n S S S n,111)111()3121()2111(+-=+-++-+-=n n n .1)111(lim )111(lim 21=+-=+++∴∞→∞→n S S S n n n(18)本小题考查建立函数关系式,求函数最小值的方法和运用数学知识解决问题的能力.解:设画面高为xcm ,宽为λxcm ,则.48402=x λ 设纸张面积为S ,有,160)1016()10)(16(2+++=++=x x x x S λλλ将λ1022=x 代入上式得).58(10445000λλ++=S当,58λλ=即)185(85<=λ时,S 取得最小值.此时,高:,884840cm x ==λ宽:.558885cm x =⨯=λ 答:画面高为88cm ,宽为55cm 时,能使所用纸张面积最小.(19)本小题考查相互独立事件同时发生或互斥事件有一个发生的概率的计算方法,考查运用概率知识解 决实际问题的能力.解:分别记元件A 、B 、C 正常工作为事件A 、B 、C ,由已知条件 P (A )=0.80, P(B)=0.90, P(C)=0.90.(I )因为事件A 、B 、C 是相互独立的,所以,系统N 1正常工作的概率 P 1=P (A ·B ·C )=P (A )·P (B )·P (C )=0.80×0.90×0.90=0.648. 故系统N 1正常工作的概率为0.648. (II )系统N 2正常工作的概率 )],()(1[)()](1[)(2C P B P A P C B P A P P ⋅-⋅=⋅-⋅= ,10.090.01)(1)(,10.090.01)(1)(=-=-==-=-=C P C P B P B P.792.099.080.0]10.010.01[80.02=⨯=⨯-⨯=∴P故系统N 2正常工作的概率为0.792.(20甲)本小题主要考查空间直角坐标的概念、空间点和向量的坐标表示以及两个向量夹角的计算方法; 考查运用向量研究空间图形的数学思想方法.解:(I )由题意知B (a ,a ,0),C (―a ,a ,0),D (―a ,―a ,0),E ),2,2,2(h a a -由此得),2,23,2(),2,2,23(h a a DE h a a BE =--=,42322)232()223(22h a h h a a a a DE BE +-=⋅+⋅-+⋅-=⋅∴2001年普通高等学校招生考试全国Ⅰ文科数学答案解析.1021)2()2()23(||||22222h a h a a DE BE +=+-+-==由向量的数量积公式有.10610211021423||||,cos 2222222222h a h a h a h a h a DE BE DE BE DE BE ++-=+⋅++-=⋅⋅>=< (II )若∠BED 是二面角α—VC —β的平面角,则CV BE ⊥,即有CVBE ⋅=0. 又由C (-a ,a ,0),V (0,0,h ),有),,(h a a CV -=且),2,2,23(h a a BE --=,02223222=++-=⋅∴h a a CV BE 即,2a h=这时有.31)2(10)2(6106,cos 22222222-=++-=++->=<a a a a h a h aDE BE.31cos -=∠∴BED 即(20乙)本小题考查线面关系和棱锥体积计算,考查空间想象能力和逻辑推理能力,满分12分. 解:(Ⅰ)直角梯形ABCD 的面积是M 底面=,43125.01)(21=⨯+=⋅+AB AD BC∴四棱锥S —ABCD 的体积是V=底面M SA ⨯⨯3143131⨯⨯= =41. (Ⅱ)延长BA 、CD 相交于点E ,连结SE ,则SE 是所求二面角的棱.∵AD ∥BC, BC=2AD, ∴EA=AB=SA, ∴SE ⊥SB ,∴ SA ⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线,又BC ⊥EB ,∴BC ⊥面SEB ,故SE 是CS 在 面SEB 上的射影,∴ CS ⊥SE ,所以∠BSC 是所求二面角的平面角.∵,,1,222SB BC BC AB SA B S ⊥==+=∴.22tan ==∠SBBC BSC 即所求二面角的正切值为.22(21)本小题考查函数和函数极值概念,考查运用导数研究函数性质的方法,以及分析和解决数学问题的 能力.解:由已知,可得,1231)1(-=+-=b a f ① 又,263)(2b ax x x f +-=' .0263)1(=+-='∴b a f ②由①、②,可解得⎪⎪⎩⎪⎪⎨⎧-==.21,31b a 故函数的解析式为.)(23x x x x f --=由此得.123)(2--='x x x f 根据二次函数的性质,当31-<x 或x >1时,;0)(>'x f 当131<<-x 时,.0)(<'x f 因此,在区间)31,(--∞和),1(+∞上,函数f (x )为增函数;在区间)1,31(-内,函数f (x )为减函数.(22)本小题主要考查坐标法、曲线的交点和三角函数性质等基础知识,以及逻辑推理能力和运算能力.解:(I )两曲线的交点坐标(x ,y )满足方程组⎪⎩⎪⎨⎧=-=+,1sin cos ,1cos sin 2222θθθθy x y x 即⎪⎩⎪⎨⎧-=+=.sin cos ,cos sin 22θθθθy x 有4个不同交点等价于,02>x且,02>y 即⎩⎨⎧>->+.0sin cos ,0cos sin θθϑθ又因为,20πθ<<所以得θ的取值范围为(0,).4π(II )由(I )的推理知4个交点的坐标(x ,y )满足方程),40(cos 222πθθ<<=+y x即得4个交点共圆,该圆的圆心在原点,半径为).40(cos 2πθθ<<=r 因为θcos 在)4,0(π上是减函数,所以由.224cos ,10cos ==π知r 的取值范围是).2,2(4ESCA DB….………………………….…….. ……. ……. 2009-2001年普通高等学校招生考试全国Ⅰ文理科数学试卷及答案打包下载地址资料来源:木鱼石的百度空间……………………………………. ……. …….本资料仅供网友交流学习使用,请您在下载后24小时内删除,不得用于商业用途,否则追究您法律责任![木鱼石整理]更多优秀高中数学教学资料免费共享……。

高等数学考试题库(附答案).docx

高等数学考试题库(附答案).docx

WORD格式.《高数》试卷1(上)3分,共30一.选择题(将答案代号填入括号内,每题分).1.下列各组函数中,是相同的函数的是) .((A ) f2和 g | x |和x2x ln x x2ln x( B) f x g x| x |(C ) f21x x 和 g x x( D ) f x和 g xxsin x42x0在 x 0处连续,则2.函数 f x ln 1x a() .a x0(A)0( B)1( C) 1( D) 24x ln x的平行于直线y 1 0 的切线方程为(3.曲线 y x) .(A ) y x1( B ) y( x 1)( C ) y ln x 1x 1 ( D) y x| x | ,则函数在4.设函数 f x点x0 处() .(A )连续且可导( B )连续且可微( C)连续不可导( D )不连续不可微5.点 x 0 是函数 y x4的() .(A )驻点但非极值点( B )拐点( C )驻点且是拐点( D)驻点且是极值点6.曲线 y1)的渐近线情况是(. | x |(A )只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线1 17.的结果是().f x x2 dx11( C ) 1(D1(A ) f C ( B ) f C f C)f C x x x xdx8.x x 的结果是().e e专业资料整理WORD格式(A ) arctan C(B)arctan ee x x C(C)e x e x C(D)ln( e x e x )C 9.下列定积分为零的是().arctan x4 x arcsin x dx1(A ) 4 2 dx ( B )( C )141x410 .设x 1)f为连续函数,则 f 2x dx等于(.xe e x12sin xdx ( D) 1 x x dx 2f(A ) f 2f 0( B)1f 11f 0(C)1f 20( D ) f 1f 022二.填空题(每题 4 分,共 20分)专业资料整理WORD 格式.e2x1x.设函1数fxx在 x0 处连续,则 a.ax.已知曲线 y52x 在x2 处的切线的倾斜角为,则 f 2.f6x的垂直渐近线条3. y有 .x 21dx4..x 1 ln2x5. 2 x4 sincosx dx.x2三.计算(每小题 5 分,共 30 分)1.求极限2 x1 x② x sin x ①lim 2xlimx 0xxx e12.求曲线x y所确定的隐函数的导yln 数y x .3.求不定积分①dx②dx a0③ xe x dxx 1 x 3x2a2四.应用题(每题10分,共20分)1.作出函数 y x 33x2的图像 .2.求曲线 y 22x 和直线y x 4 所围图形的面积.专业资料整理WORD格式.《高数》试卷1参考答案一.选择题1. B 2. B3. A4. C 5. D6. C 7. D8. A9. A10. C二.填空题331. 22 .4. arctanln x c.25.23三.计算题专业资料整理WORD格式1① e 2② 1 2. y x16xy 1③exx13.① 1ln |x 1 | C② ln | x2a2x | C C2x 3四.应用题1.略2.S18专业资料整理WORD格式.《高数》试卷2(上)一.选择题 ( 将答案代号填入括, 每题号内3分 , 共 30分 )1. 下列各组函数中, 是相同函数的是 ().(A) f x x 和 g x x2(B) f x x21和 y x 1x1x和(C) f x g x x(sin 2 x cos2 x)(D) f x ln x 2和 g x2ln xsin 2x 1x1x12.设函数f x2x1,则lim f x() .x1x21x1(A)0(B)1(C)2(D)不存在3. 设函数在点 x 0处可导,且曲线则x在点 x 0 , fy f x f x >0, y f x0处的切线的倾斜角为{}.(D(A)0(B)(C)锐角)钝角2,则该点坐标是4. 曲线 y ln x上某点的切线平行于直线y 2x 3 ().1,ln(A)2,ln1(B)2, ln 1(C)2(D)1,ln 222225. 函数 y x2e x及图象在1,2 内是 ().(A) 单调减少且是凸(B) 单调增加且是凸(C) 单调减少且是凹的(D) 单调增加且是凹的的的专业资料整理WORD 格式6. 以下结论正确的是().若 x0为函数f的驻点 , 则 x0 必为函数(A) yxyfx 的极值点 . (B)fx 导数不存在的点, 一定不是函yf x的极值 函数 y数点 .在 x0处取得极值 ,存在 , 则必有 (C) 若函数 yfx 且 f x 0fx 0 =0.在 x 0 处连续 ,则(D) 若函数 yfx fx 一定存在 .17. 设函数x 2, 则 fyf x 的一个原函数为e x x=().专业资料整理WORD格式.1111(A)2x 1 e x(B)2x e x(C)2x 1 e x(D) 2xe x8. c , 则 sin若f x dx F x xf cosx dx().(A) F sin x c (B) F sin x c (C) F cosx c (D) F cos x c1x 为连续函数,则9. 设 F f x dx =().2(B2(A) f1 f 0)f1f 0(C) 2 f 2f0(D) 2 f1f02 b10.定积分dx a b在几何上的表示().a(A)线段长线段长矩形面(D)矩形面b a (B)a b (C)积 a b1积 b a1二. 填空题 ( 每题4分 , 共20 分)ln 1x21 设0 , 在 x. f x 1 cos x x0 连续 , 则 a =________.a x02sin x ,则. 设 y2dy_________________ d sin x .3x的水平和垂直渐近线共有_______. 函数 y1条 .x 2 14. 不定积分x ln xdx______________________.5 1 x2 sin x1. 定积分2dx___________.11x三.计算题 ( 每小题 5 分 ,共 30 分)1.求下列极限 :1arctanxx② lim2① lim 1 2x x1x 0x2.求由方程 y 1xe y所确定的隐函数的导数y x .3.求下列不定积分 :③ x2e x dx ① tan x sec 3xdx②dx a 0x 2a2四.应用题 ( 每题 10 分 ,共 20 分)x 的图象 .(要求列出表1. 作出函数 y1x3格)3专业资料整理WORD格式2. 计算由两条抛物线:y2x, y x 2所围成的图形的面积.专业资料整理WORD格式.《高数》试卷2 参考答案一.选择题: CDCDBCADDD二填空题: 1.- 2 2. 2sin x 3.3 4. 1 x 2 ln x1x2c 5.242三.计算题:2e y1.① e② 12. y xy23. ①sec3xc② ln x2a2xc ③ x22x 2 e x c 3四. 应用题: 1.2.S 1略3《高数》试卷3(上)一、填空题 ( 每小题3分,共24分)11.函数y的定义域为________________________.9 x2专业资料整理WORD格式sin 4x, x02. 设函数 fx x, 则当 a=_________ 时, f x 在 x0 处连续 .a,x 0x 213.函数 f (x)的无穷型间断点为 ________________.x 23x2设 f ( x)可f4.导 ,y( e x ) , 则 y ____________.x 215. lim2_________________.x2x x 5专业资料整理WORD格式.1x3sin 2 x6.dx =______________.1 x4x21x27.d dt_______________________.e tdx08.y y y30 是 _______阶微分方程 .二、求下列极限 ( 每小题 5分 ,共 15分 )x xli e 12li x311. m;.m2; 3. lim1.x x0sin3xx x92x三、求下列导数或微分(每小题5分,共15分)求y1.y x, (0) .2. y e cos x , 求 dy .x23.设 xy e x y ,求 dy .dx四、求下列积分( 每小题 5分 ,共 15分)11.2sin x dx .2.x ln(1x)dx .x13.e2x dxx t在五、 (8分 ) 求曲线t处的切线与法线方程 .y 1 cost2x 0和六、 (8分 ) 求由曲线 y x21,直线 y0, x 1 所围成的平面图形的面积, 以及此图形绕y 轴旋转所转体的体积七、 (8分)求微分方程y 6 y13 y0 的通解 .八、 (7分)求微分方程y y e x满足初始条件y 10 的特解 .x《高数》试卷3参考答案一. 1 . x 35. 12二.1. 原式 = limx11xx4. e x f2. a 43. x 2'(e x )6.07. 2 xe x 28.二阶12.limx 3 x3 611 3. 原式= lim[(11 2 x2e2)]x 三.1.2x2.专业资料整理WORD格式21xy' 2 , y '(0)dy sin xe cos x dx(2)2xy y y3. 两边对 x求写: y'e x(1 ')e x y y xy yy 'e x yx x xy四 .1. 原式 = lim x2cos x C2x )x2lim(2. 原式 = lim(1x)d ( 1 x) 1x2 d[lim(12x2x)]2= x lim(1 22x= lim(121 1 x2lim(1x) ( xx)1x dx x121x222xx) 1 [x lim(1x)]C222 x1112d (21)d1x 1x3. 原式 = 2 0sin e x) 2e0 2( e1),五.dy t dydx dx t1 且 ty122专业资料整理WORD格式.切线: y1x, 即x10 y22(法线: y1x),即 y x102211)dx(1六. S( x 2x2x) 1032211V(x 21) 2 dx( x42x21)dx 00x5 2 x2x)(1285315r26r130r 3 2ie 3 x(C 1 cos2 x C 2 sin七. 特征方程:y2 x)1 dx1 dxx ( e x e八. y e x dx C )1 [ (x x C]1e)x由 y x10,C0x 1 xye x《高数》试卷4(上)一、选择题(每小3 分)题1、函数y ln(1 x)x 2的定义域是().A2,1B2,1C2,1D2,1x2、极限 lim e的值是().x、、0C 、、不存在A B D3、 lim sin(x1)() .x1 1 x211 A、 1 B 、 0、D、C224、曲线y x3x2 在点 (1,0)处的切线方程是()专业资料整理WORD格式2(A、 y x1) B 、 y 4( x1)C、 y 4x 1 D 、 y 3( x 1)5、下列各微分式正确的是().2、()、d(sinAxdx d x B cos2xdx2x) C、 dx d (5x)D、 d (x 2 )(dx)2f (x)dx 2 cos x C f ( x)6、设,则() .2A、 sin x B 、sin x C、sin x C、xD2 sin 22227、2 ln x dx)(.x、21 ln2 x C B、1 (2ln x)2C Ax222专业资料整理WORD格式.ln1ln x、ln 2x CD 、CCx 2x2y轴旋转所得旋转体体积8、曲线 y, x 1 , y0所围成的图形绕V(11A、x4dx B 、ydy001 1 (1xC、0(1y)dy D 、4 )dx1e x9、() .0 1e x dxA、 ln 1 eB、 ln 2 e C 、 ln 1 e D 、 ln 1 2e223210、微分方程 y y y 2e 2 x 的一个特解为) .(、y 3e2xB、y3 e x、 2 xe2xD、y2e2 xA C y7777二、填空题(每小题 4 分)1、设函数 y xe x,则y;3sin mx22、如果 lim, 则 m.x2x313、 x 3 cos xdx;14、微分方程y5、函数 f( x)三、计算题(每小1、求极限 lim1x0 3、求函数y不定积分x).;的导专业资料整理WORD格式x3111dy xe5、求定积分 1 ln x dx;6、解方程;e dx y 1 x2四、应用题(每小题10 分)1、求抛物线 y x 2与y 2x 2所围成的平面图形的面积.2、利用导数作出函数y3x2x3的图象.参考答案专业资料整理WORD格式.一、 1 、C;2、 D;3、 C;4、 B;5、 C;6、 B ;7、B;8、 A;9、 A;10、D;2 、4(C1 C 2 x)e 2 x; 5 、二、 1 、 (x2)e x;;3、 0 ; 4 、 y8,091);6、y三、 1、 1 ;2、 cot 3 x;3、 6 x 2dx ; 4 、 2 x 1 2 ln(1x 1) C;5、2(22(2x 3 1)e四、 1、8;32、图略《高数》试卷5(上)一、选择题(每小题 3分)11、函数 y 2 x的定义域是() .l g ( x 1)2A 、, 10,B 、1,0(0, )、 ( 1,0)(0,)、( 1,)CD2、下列各式中,极限存在的是() .C 、 lim sinx、lim c o sxB 、 lim arctanxxD 、 lim 2Ax 0xxx、 lim3(xA 、 eB 、 e 2C 、 1D 、 1e4、曲线 y x ln x 的平行于直线 x y1 0 的切线方程是() .、、 y xBA专业资料整理WORD 格式C 、 y x 1D、 y(ln x 1)( x 1)y( x1)5、已知 y xsin 3x,则 dy () .、( cos3x3sin 3x)dx、 (sin 3x 3x cos3x) dxAB(cos 3xsin 3x) dxD(sin 3x x cos3x)dx、、C6、下列等式成立的是( ) .A 、B 、 axdx axln xx dx1x1CCC 、11cosxdxsin x CD 、 tan xdxC1 x 2专业资料整理WORD 格式.7、计算 esin x sin xcos xdx 的结果中正确的是() .A 、 esin xCB 、 esin x cos x CC 、 e sin x sin xCD 、esin x(sin x 1)Cx 20 所围成的图形)8、曲线 y, x 1, y绕x 轴旋转所得旋转体体积V (.1x 4dx1、B 、ydyA11C 、(1 y)dyD 、(1 x4)dxa ﹥ ,a9、设则 0a2x2dx() .B 、 a1 212、a 22C 、aD 、aA244)是一阶线性微分方 10 、方程(程 .A 、 x2y lny 0B 、 y exyx、(1x 2 ) yy sin yD 、 xy dx ( y26x)dy 0C二、填空题(每小题 4分)1,1、设 f e x x0( x),则有 lim f (x), lim f ( x);x0x 0ax b, x02、设 yxe x,则 y;3、函数 f x2 ) 在区1,2的最大值( x)ln(1间是,最小值是;14、 x3 cos xdx;15、微分方程y 3 y 2 y 0的通解是.三、计算题(每小题 5分)1、求极限lim(13) ;x1x 1 x2x2专业资料整理WORD格式2、求 y1 x2arccosx 的导数;x 3、求函数 y 的微分;1x214、求不定积分dx ;x 2ln x专业资料整理WORD格式.e ln x5、求定积分 1 dx;e6、求方程 x 2满足初始条件xy yy y(1) 4 的特解 .2四、应用题(每小题10 分)1、求由曲线y2x2和直线x y0所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x4的图象.参考答案(B卷)一、 1 、B;2、 A;3、 D;4、 C;5、 B ;6、 C;7、 D ;8、 A;9、 D;10 、B.二、 1 、 2,b; 2 、 ( x 2)e x; 3 、 ln 5,0;4、0;5、C1e x C 2 e 2x .三、 1、12 、x arccosx 131dx ;;;、3 1 x 2(1 x 2 ) 1 x2ln x1);22 1、;、、e;4 2 2C2(26y x5e x四、 1 、9;2、图略2。

《高等数学》统考模拟试题1及参考答案

《高等数学》统考模拟试题1及参考答案

《高等数学》统考模拟试题1参考答案中国农业大学网络教育学院编说明: 试卷按 全国高校网络教育部分基础课全国统一考试 “高等数学B ”考试大纲,适用于除数学专业以外的其它理工专业... ... 的本科学生。

一、选择题:本大题共5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。

1、设函数ln(1+5x )0() 0x f x xa x ⎧≠⎪=⎨⎪=⎩在x=0处连续,则a 等于( )A 、-1B 、1C 、2D 、5答:D2、当x 0→时,下列变量中是无穷小的为( )A 、x e B、1xC 、ln(12x )+D 、cos x x答:C 3. 231215x (x )(x )limx→∞++=( ) A.56 B.53 C.52 D.答:A4、若⎰+=C )x (F dx )x (f ,则sin (cos )x f x dx ⎰等于( )A 、F(sinx)+CB 、-F(sinx)+C C 、F(cosx)+CD 、-F(cosx)+C答:D5、设f(x, y)是连续函数,则二次积分 y d )y ,x (f dx1xx2⎰⎰=( )A.x d )y ,x (f dy 10 yy⎰⎰B.x d )y ,x (f dy 11 0⎰⎰C.x d )y ,x (f dy 1 0yy⎰⎰ D.x d )y ,x (f dy 1 0y⎰⎰答:A二、填空题:本大题共7个小题,共7个空,每空4分,共28分,把答案填在题中横线上。

1、2cos 3cos 4limx x xx→-= 722、设xx e cos f()=,则x f ()'= x e c o ss i n x-3、1dxx(ln x )+⎰=1cln(ln x )++4. 定积分21 d 1x sin x x =-⎰5、41xdx x+∞=+⎰4π6、微分方程x dxdy 2= 的通解为cx y +=27. 若22f (x y ,x y )x y +-=- 则 f (x ,y )= xy三、计算题:本大题共4个小题, 每小题7分,共28分 1、计算22131xx lim x -+→解: 21x limx→=232x lim→==2、求函数32694y x x x =-+-的极大值与极小值解:32694y x x x =-+- ()()231293x 1x 3y x x x '=-+=--令y 0'= 解得驻点 121 3x ,x ,==根据极值判别的充分条件得,函数有极大值y 10()=, 极小值y 34()=-3、计算e21ln x dxx⎰解ee2111ln x dx ln xdxx=-⎰⎰ee1111ln x d ln x x x⎡⎤=-+⎢⎥⎣⎦⎰e2111e dx x =-+⎰e11121e ex ⎛⎫=--=- ⎪⎝⎭4. 求函数33z ln(x y )=+的全微分dz 解:z z dz dx+dy xy∂∂=∂∂ 233z 3xxx y∂=∂+ ,233z 3yyx y∂=∂+ ,2233333x3ydz dx+dy x yx y=++四、计算题:本大题共3个小题,每小题8分,共24分1. 计算二重积分⎰⎰Dy xdxdy e其中D 由y 轴及开口向右的抛物线xy 2=和直线y=1围成的平面区域。

2004级华东地区农林水院校《高等数学》统考试卷

2004级华东地区农林水院校《高等数学》统考试卷

3. 下列恒等式成立的是( ( B) arctan x + arc cot x =
) 。
( A) arctan x + arc cot x = (C ) arctan x + arc cot x = 3π 4
π
4 ( D) arctan x + arc cot x = π
π
2
4 . 已知 f ′( x ) = sin x , 则 f ( x ) 的一个原函数是(
七、 (本题 7 分) :求曲线 y
( A ) 某邻域内单增
二 、 填 空 题 ( 每
( B ) 取得极小值
小 题 3 分
(C ) 取得极大值
, 共 15 分
( D ) 某邻域内单减
) :
1. 设 f ( x ) =
x2 − 1 , 则 x = _______ 为此函数的可去间断点 。 x2 + 2x − 3
x>0 , 则 f ( ห้องสมุดไป่ตู้) 在 x = 0 处的切线方程是 __________ 。 x≤0
5. ∫
+∞ 1
1 x( x + 1)
2
dx = __________ 。
三 、 计 算 题 ( 每 小 题 6 分 , 共 42 分 ):
1 . 求极限: lim
∫ 0 sin t dt x → 0+ x 2 ∫ 0 t sin t dt
x2
2. 求 y = e x sin x 的二阶导数。
⎧ x = ln(1 + t 2 ) dy d 2 y 3. 已知 ⎨ 求 , dx dx 2 ⎩ y = arctan t 4. 设 y = y ( x ) 由方程 x 2 y − e x + y = 5. 求 ∫ dx e (1 + e 2 x )

01-10高数上试题

01-10高数上试题

昆明理工大学01—10级高等数学(上)期末试题集2001级高等数学(上)期末试卷一、填空题(每小题3分、共24分)1、01lim sin x x x→=; 2、2 dx dx =;3、设)(x f 在[,]a a -连续并且为偶函数,则⎰-=aa dx x f )(;4、⎰= n x dx;5、过点)1,2,3(1-M 和)2,0,1(2-M 的直线方程是 ;*6、已知级数1n n u S ∞==∑,则级数11()n n n u u ∞+=+∑的和是 ; *7、.曲线x x y ln 2-=在1=x 点处的曲率是 ;8、函数, 0 (), 0x x f x x x ≥⎧=⎨-<⎩在点0=x 处的导数为 ; 二、计算下列各题(每小题5分,共25分)1、240ln(13)lim ln(3)x x x →++ 2、)arcsin(ln x x y =求y '. 3、求由方程sin ()0y x xcos x y -+=所确定的隐函数)(x y y =的导数y '.4、⎰++dx x x 1322 5、⎰ 三、计算下列各题(每小题5分,共25分)1、dx x ⎰--)1(11 2、⎰-x e dx 1323、判别级数∑∞=+1311n n 的敛散性 4、求幂级数∑∞=+1212n n n n x 的收敛区间 5、设点A,B,C 的坐标分别为A(2,3,-1),B(1,1,1)及C(0,4,-3)求23,,- 及C AB A ⋅.四、(7分)求幂级数∑∞=----112112)1(n n n n x的收敛区间,并求和函数.五、(7分)求过点P(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742:z y x z y x L 垂直的平面方程.六、(6分)求由曲线b y x y ln ,ln ==及0(0)x b =>所围图形的面积.七、(6分)讨论x x x f ln )(=在其定义域上的最大值与最小值.2002级高等数学(上)期末试题一、填空题(3分×10=30分)1、若s 2lim 23x inaxx →∞=,则a = .2、函数1,1,1x x y a x x -≥⎧=⎨-<⎩,当a = 时连续.3、设⎰=Φ,sin )(2dt t t x bx 则=Φdx d .4、曲线sint cos 2x y t =⎧⎨=⎩在4π=t 处的法线方程为 .5、当a 时,点(1, 3)为3232y x ax =-+的拐点.6、设cosx 是)(x f 的一个原函数,则)('x f = .7、⎰=--dx x x 221211arcsin . 8、设+-=+-=2,53,则a b ⋅= .*9、级数∑∞=+1)1(1n p n 当p 时发散.10、2332)(x x x f -=在[1-4]上的最小值为 .二、试解下列各题(5分×3=15分)1、020sin lim xx tdtx →⎰.2、设)()(x f x e e f y =,其中)(x f 可导,求dx dy.3、设x x y cos =,(0x >),求dy .三、求积分(5分×4=20分)1、⎰dx e e x x )sin( 2、3、⎰-221x x dx 4、10arctan x xdx ⎰*四、[9分]设平面图由xy x y 1,2==及x=2所围成,求: 1)平面图形的面积A (要求作草图);2)平面图形绕x 轴旋转的体积x V .五、[9分]一直线过点(0,2,4)且与两平面12=+z x 和23=-z y 平行,求直线方程.六、[5分]判断级数∑∞=12!n n n 的收敛性.七、[8分]设幂级数 ++++753753x x x x 1)、写出它的一般项;2)、求收敛半径及收敛域.八、[4分]证明:当1>x 时ex e x >2003级高等数学(上)期末试卷一、填空题:(共10题,每题3分)1、数列6661,1010,10n n x n n ⎧ < ⎪=⎨⎪ ≥ ⎩,则lim n n x →∞=___________________________. 2、()f x 在0x 的某去心邻域内无界是0lim ()x x f x →=∞的___________________条件. 3、0x =是1()sinf x x xα=的可去间断点,则常数α的取值范围是____________________. 4、()f x 可导, 0(1)(1)lim 12x f f x x→--=-, 则曲线()y f x =在点[1,(1)]f 处的切线斜率是____________________. 5、()(),(),y f x x f x dy f x x ∆=+∆-=∆′则y ∆与dy 之间的关系是________________________.6、可导函数()f x 在点0x 处取得极值的必要条件是___________________________.7、使公式()()k f x dx k f x dx =⎰⎰成立的常数k 应满足的条件是 .8、设物体以速度()v t 做直线运动, 则[0,]T 上物体经过的路程是___________________.9、投影Pr 2,3,b j a b == 则a b ⋅=______________________.10、a b +与a b -平行的充要条件是________________________.二.计算题(共8题,每题5分)1、求 2arctan lim 1ln(1)x x x x→∞+ 2、求 02lim 1cos x x x e e x -→+-- 3、ln (),()y f x f x ''=存在, 求y '' 4、求2ln x x e dx +⎰5、求2tan x xdx ⎰ 6、求11(1sin x -+⎰7、求1010x y x y z ++=⎧⎨-++=⎩的对称式方程. 8、求到220x y z ++=的距离为1的动点轨迹.三、设2,0()(1),0ax e x f x b x x ⎧ < ⎪=⎨- ≥⎪⎩,在0x =处可导,求11()f x dx -⎰.(8分) 四、设0()(2)(),()0xF x t x f t dt f x =- >⎰′,试问点(0,0)是否是曲线()y F x =的拐点,为什么?(8分)*五、设抛物线20(01),y ax bx x =+≥ ≤≤ 试确定,a b 之值,使抛物线与直线1,0x y ==所围面积为1 3,并且绕x 轴旋转的体积最小.(8分)六、设()()()0xa F x f t dt Fb =, ≠ , ⎰且()0F x ≠′,试证:方程()()x ba x f t dt f t dt =⎰⎰ 在(,)ab 内有且只有一根.(6分)2004级高等数学(上)期末试卷一、填空题(每题3分,共30分)1、设x 1f (x)=,x 0,x 1,x -≠≠则1f[]f (x)= .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ′(0) = 1 ,则极限 lim
h →0
2.若
f (− h) − f (0) = __________。 h
5.设 z
3.曲线 y
=
2− x x2 − x + 2
的渐近线是_____________。
4.广义积分
∫0
+∞
dx x ln 2 x ______________。
= x ln( x + y ),则dz = _______________________________。
( B ) a f ( x ) [ f ′( x )] 2
3.设 f (x) 的原函数是 e
− x2
(C ) a f ( x ) f ′′( x )
,则
( D)a f ( x ) ⋅ [[ f ′( x)]2 ln a + f ′′( x)] ⋅ ln a
∫ xf ′( x)dx = ______。
五、证明题(每小题 7 分,共 14 分) : 1.证明:当 | x | ≤ 2 时,| 3 x – x 3 | ≤ 2 。 2.设 f (x) 在 [ 0 , 1 ] 上可积,证明: 2
∫0
π
f (cos x)dx = ∫ 2 f (sin x)dx 。
0
π
六、 (9 分)求曲线 y
=
1 x x
,y =
二、选择题(单项选择,每小题 3 分,共 15 分) : 1.当 x→ 0 时,下列无穷小量中与 1 – cos x 等价的无穷小量是______。
( A) x
2
x2 ( B) − x 3 2
(C )e x − 1 ( D) x 3
2.设 f (x) 二阶可导, y ( x) = a
f ( x)
(a > 0) ,则 y ′′( x) = ______。 ( A)a f ( x ) ln 2 a
2
( A) − 2 x 2 e − x
2
(C ) − e − x ( 2 x 2 + 1) + C
( B ) − 2 xe − x
2
( D )e − x ( 2 x 2 + 1) + C
2
4.若微分方程 y ′′ + py ′ + qy = 0 的通解为: y (A)2,2 (B)–4,–4 (C)–4,4
(A)
(B)
(C)
(D)
三、计算题(每小题 5 分,共 35 分) : 1.求
e lim x ln(1 + ) 。 x→ ∞ x
2.设 y
= (sec x) 2 x ln π ,求
d( x y ) ,求: x
∂z ∂z − 2y 。 ∂y ∂x
4.求
《高等数学》试卷集
第1页
2001 级华东地区农林水院校《高等数学》统考试卷(时间:150 分钟)
一、填空题(每小题 3 分,共 15 分) : 1.设
⎧(1 + sin x) ctgx ,x ≠ 0 在 x=0 处连续,则 A = __________。 f ( x) = ⎨ , A x = 0 ⎩
∫ 2 sin x + sin 2 xdx 。
sin x
5.求
∫ 1 x ln xdx 。
e
6.求
∫∫D xy
dxdy ,其中 D 为由曲线 y 2 = x,直线 x + y = 2 及
满足条件 y | x =0 =1 的特解。
y = 0 所围成的第一象限部分。 7.求微分方程 (1 +
2 ln 2
= e −2 x (c1 x + c2 ) ,则 p 与 q 的值分别为______。
(D)4,4
5.设函数 y = f (x) 在[ a , b ] 上有 f ( a )f( b ) <0 ,且恒有 f ’( x )f ’’( x ) <0 ,则 y = f (x) 在[ a , b ] 上的示意图是______。
1 x2
及直线 x = 2 所围图形的面积,并求此图形绕 x 轴旋转一周生成的立体体积。
x2 )
dy − xy = 1 + x 2 dx
四、计算题(每小题 6 分,共 12 分) : 1.已知
∫x
dt et − 1
=
π
6
( x ≥ 0) ,求 x。
《高等数学》试卷集
第2页
⎧ x sin 1 ( x < 0) ⎪ x 0 ( x = 0) ⎪ ⎪ 2.设 f ( x ) = ⎨ sin x :(1)讨论当 x → 0 及 x → π 时 f (x) 的极限;(2)求 f (x) 的连续区间。 (0 < x < π ) 2 ⎪ x 2 ⎪ 2 ( π ≤ x) ⎪ ⎩ π 2
相关文档
最新文档