鸡兔同笼问题几种不同的解法

合集下载

奥数-鸡兔同笼问题的四种题型

奥数-鸡兔同笼问题的四种题型

鸡兔同笼冋题的几种解法鸡兔同笼问题是我国古代著名趣题之一。

通过学习解鸡兔同笼冋题,可以提高我们的分析问题、解决问题的能力。

下面我来介绍几种解鸡兔同笼问题的方法:大约一千五百年前,我国古代数学名著《孙子算经》中记载了一道数学趣题,这就是著名的“鸡兔同笼”问题。

书中是这样叙述的:”今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?〃意思就是:笼子里有若干只鸡和兔,从上面数,有35个头,从下面数, 有94只脚,问鸡和兔各有多少只?解法一:列表枚举法列表枚举法就是让我们列出表格,采用依次列举,逐步尝试的方法来解决这个问题。

详细过程见下表:鸡3534333226252423兔01239101112脚7072747688909294解法二:抬腿法这是古人解题的方法,也就是《孙子算经》中采用的方法。

1、抬腿,即鸡"金鸡独立”,兔两个后腿着地,前腿抬起,腿的数量就为原来数量的一半。

944- 2=47 只脚。

2、现在鸡有一只脚,兔有两只脚。

笼子里只要有一只兔子,脚数就比头数多1。

3、那么脚数与头数的差47-35=12就是兔子的只数<4、最后用头数减去兔的只数35-12=23就得岀鸡的只数。

所以,我们可以总结岀这样的公式:兔子的只数二总*2-总只数。

解法三:假设法假设法是鸡兔同笼类间题最常用的方法之一。

假设这35个头都是兔子,那么腿数就应该是35X4=140,就比94还多,那么是哪里多的呢?当然是我们把两条腿的鸡看成了四条腿的兔子了。

我们都知道一只兔子比一只鸡多2条腿,多2条腿就有1只鸡,那么多的腿数当中有多少个2就有多少只鸡。

我们可以列式为:鸡的只数二(35X4- 94) - (4-2).总结公式为:鸡的只数二(兔的脚数X总只数-总腿数)三(兔的腿数-鸡的腿数)。

当然我们也可以把这35个头都看成鸡的,那么腿数应该是35X2=70,就比94还少,相信不说你也明白为什么少了?对,因为我们把4条腿的兔子看成了2条腿的鸡,那么每少两条腿就有1只兔子。

鸡兔同笼问题几种不同的解法

鸡兔同笼问题几种不同的解法

鸡兔同笼问题几种不同的解法鸡兔同笼是中国古代著名的数学趣题,大约在 1500 年前的《孙子算经》中就有记载。

这个问题虽然看似简单,却蕴含着丰富的数学思维和解题方法。

接下来,咱们就一起探讨一下鸡兔同笼问题常见的几种解法。

假设笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,那鸡和兔各有多少只呢?解法一:假设法咱们先假设笼子里全部都是鸡。

因为每只鸡有 2 只脚,那么 35 只鸡总共就应该有 35×2 = 70 只脚。

但实际上有 94 只脚,这说明我们少算了脚的数量。

少算的脚的数量为 94 70 = 24 只。

为什么会少算呢?因为每把一只兔当成鸡就会少算 4 2 = 2 只脚。

那少算的 24 只脚里面有几个 2 只脚,就有几只兔。

所以兔的数量就是 24÷2 = 12 只。

鸡的数量就是 35 12 = 23 只。

同样的,咱们也可以先假设笼子里全部都是兔。

每只兔有 4 只脚,35 只兔就应该有 35×4 = 140 只脚。

但实际上只有 94 只脚,多算了 140 94 = 46 只脚。

每把一只鸡当成兔就会多算 4 2 = 2 只脚。

多算的 46 只脚里面有几个 2 只脚,就有几只鸡。

所以鸡的数量就是 46÷2 = 23 只,兔的数量就是 35 23 = 12 只。

解法二:方程法设鸡的数量为 x 只,兔的数量就是 35 x 只。

因为每只鸡有 2 只脚,每只兔有 4 只脚,总共 94 只脚,所以可以列出方程 2x + 4×(35 x) = 94 。

先计算括号里的式子:2x + 140 4x = 94 。

移项可得:4x 2x = 140 94 。

合并同类项:2x = 46 。

解得:x = 23 ,所以鸡有 23 只,兔有 35 23 = 12 只。

咱们也可以设兔的数量为 y 只,那么鸡的数量就是 35 y 只,列出方程 4y + 2×(35 y) = 94 ,按照同样的步骤也能求出兔有 12 只,鸡有 23 只。

鸡兔同笼13种解题方法

鸡兔同笼13种解题方法

鸡兔同笼13种解题方法鸡兔同笼问题是一类经典的数学问题,常见于初中数学题目中。

这个问题的基本思路是通过解方程组来求解鸡和兔子的数量。

在本文中,将介绍13种不同的解题方法,包括逆向思维、代数法、图形法等多种方法,帮助读者更好地理解和掌握这一问题。

一、逆向思维法逆向思维法是一种比较简单易懂的方法,其基本思路是先确定总数量,再确定其中一个物品的数量,最后计算出另一个物品的数量。

1. 假设笼子里有13只动物,则鸡和兔子的总数量为13。

2. 假设有x只鸡,则有13-x只兔子。

3. 根据题目所给条件“总腿数为32”,得到方程式2x+4(13-x)=32。

4. 解方程得到x=6,则笼子里有6只鸡和7只兔子。

二、代数法代数法是一种常用的解题方法,其基本思路是通过设定未知量来建立方程组,并通过求解方程组来得到答案。

1. 设鸡和兔子的数量分别为x和y,则有方程组:x+y=132x+4y=322. 通过求解方程组得到x=6,y=7,则笼子里有6只鸡和7只兔子。

三、图形法图形法是一种直观易懂的方法,其基本思路是通过画图来解决问题。

1. 在平面直角坐标系中,设鸡和兔子的数量分别为x和y,则可以用一条直线表示鸡和兔子的总数量为13。

2. 根据题目所给条件“总腿数为32”,可以得到另一条直线表示鸡和兔子的总腿数为32。

3. 通过求解两条直线的交点,即可得到笼子里有6只鸡和7只兔子。

四、枚举法枚举法是一种简单易行的方法,其基本思路是通过列举所有可能情况来找到符合条件的答案。

1. 从1到12枚举鸡的数量x。

2. 根据题目所给条件“总腿数为32”,计算出相应的兔子数量y。

3. 如果x+y=13,则找到符合条件的答案。

五、分段函数法分段函数法是一种利用函数性质解题的方法,其基本思路是将问题拆分成多个部分,并建立相应的函数关系式来求解问题。

1. 假设笼子里有x只鸡,则有13-x只兔子。

2. 根据题目所给条件“总腿数为32”,可以得到下列函数关系式: f(x)=2x+4(13-x)3. 通过求解f(x)=32的解,即可得到笼子里有6只鸡和7只兔子。

鸡兔同笼问题几种不同解法

鸡兔同笼问题几种不同解法

鸡兔同笼问题几种不一样的解法一、鸡兔同笼问题例 1 笼中有若干只鸡和兔,它们共有 50 个头和 140 只脚,问鸡兔各有多少只解法 1 假设法假设一个未知数是已知的,比方假设 50 个头全部是兔,则共有脚( 4×50=) 200 (只),这与题中已知 140 只不符,多出( 200-140=)60(只),多的原由是鸡当兔后每只鸡多算了 2 只脚,所以鸡的只数是( 60÷2=)30(只),则兔的只数为( 50-30 =) 20(只)。

这类解法,思路清楚,但较复杂,不便操作。

能不可以形象地画个图呢让我们试一试。

解法 2 图形法从图中看 ACDF的面积= 4×50=200(只脚),比实质多出GHEF的面积= 200-140 =60(只脚),AB=GH=60÷ 2=30(只鸡),BC=AC-AB=50-30= 20(只兔)解法 2 比解法 1 高级,算理是相同的。

这里答案是图上算出的,明显这两种解法都要用纸和笔。

不用纸和笔一定是用口诀或易记的公式,这是老公公的传家宝。

解法 3 公式法老公公讲:只要用哨子一吹,并喊一声口令:“全体肃立”。

这时每只鸡呈金鸡独立之状,每只兔呈玉兔拜月状,着地的脚数之和有( 140÷2=) 70(只),此中鸡的头数与脚数相等,因为每只兔的脚比头数多 1,所以兔的头数为( 70-50=)20(个),即兔有 20 只,则鸡有( 50-20=) 30(只)。

这个故事实质上老公公用了以下的公式。

脚数和÷ 2- 头数和 =兔子数。

小孙子们听了兴趣为之大增,纷纷叫老公公再出几道题。

老公公又出了(1) 30 个头, 80 只脚。

(兔 10,鸡 20)。

(2) 100 只脚, 40 个头。

(兔 10,鸡 30)。

(3) 80 个头, 200 只脚。

(兔 20,鸡 60)小孙子们个个都快乐地答出来了。

这个公式简洁好用,它是祖代传下来的还是老公公想出来的呢我们中华文化广博精湛,这两种可能性都是有的。

鸡兔同笼问题的 种解法

鸡兔同笼问题的 种解法

鸡兔同笼的13种解法方法一:人见人爱的方法“列表法”分析:如果二年级小朋友做这道题,可以用列表法!列表法容易理解,同时也是数学中一个重要的方法,学会后,为以后的学习打一个坚实的基础!好啦,我们来看一下!鸡0 3 5 7 9 …兔14 11 9 7 5 …腿56 50 46 42 38 …根据上面的表格,我们可以看出,鸡为9只,兔子为5只。

我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些!方法二:最快乐的方法“画图法”分析:画图法也是低年级小朋友很好接受的一个方法,呵呵,画图还可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。

这样就有14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。

方法三:最酷的方法“金鸡独立法”分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。

鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。

方法四:最逗的方法“吹哨法”分析:假设及和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。

这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。

方法五:最常用的方法“假设法”分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。

小学六年级鸡兔同笼问题解法

小学六年级鸡兔同笼问题解法

小学六年级鸡兔同笼问题解法鸡兔同笼是中国古代的数学名题之一。

书中曾这样叙述:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。

问笼中各有几只鸡和兔?鸡兔同笼这道题,有这样几种解法:1、假设法假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)2、方程法一元一次方程解:设兔有x只,则鸡有(35-x)只。

4x+2(35-x)=944x+70-2x=942x=94-702x=24x=1235-12=23(只)或解:设鸡有x只,则兔有(35-x)只。

2x+4(35-x)=942x+140-4x=942x=46x=2335-23=12(只)答:兔子有12只,鸡有23只。

注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。

二元一次方程解:设鸡有x只,兔有y只。

x+y=352x+4y=94(x+y=35)×2=2x+2y=70(2x+2y=70)-(2x+4y=94)=(2y=24)y=12把y=12代入(x+y=35) x+12=35x=35-12(只)x=23(只)答:兔子有12只,鸡有23只3、抬腿法法一假如让鸡抬起一只脚,兔子抬起2只脚,还有94除以2=47只脚。

笼子里的兔就比鸡的头数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。

法二假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚,这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。

鸡兔同笼的十种解法公式

鸡兔同笼的十种解法公式

鸡兔同笼的十种解法公式(原创版)目录1.鸡兔同笼问题概述2.解法一:列表法3.解法二:画图法4.解法三:假设法5.解法四:方程法6.解法五:代入法7.解法六:消元法8.解法七:比例法9.解法八:割补法10.解法九:假设 - 检验法11.解法十:数学归纳法12.总结正文一、鸡兔同笼问题概述鸡兔同笼问题是一个著名的数学问题,指的是在一个笼子里关着鸡和兔子,已知共有 n 个头,m 只脚。

如何求出鸡和兔子各有多少只?二、解法一:列表法通过列举所有可能的情况,找到符合条件的解。

此法适用于题目规模较小的情况。

三、解法二:画图法通过画图表示鸡和兔子的脚,直观地找到符合条件的解。

此法适用于空间思维能力较强的人。

四、解法三:假设法先假设鸡和兔子的数量,然后根据总头数和总脚数进行调整。

此法适用于初步猜测解题者。

五、解法四:方程法设鸡为 x,兔子为 y,根据题意建立方程组求解。

此法适用于熟悉方程解法的人。

六、解法五:代入法将方程法中求得的解代入方程进行验证。

此法适用于检验解的正确性。

七、解法六:消元法通过消去一个未知数,将方程组化简为只有一个未知数的方程。

此法适用于解二元一次方程的人。

八、解法七:比例法通过设定比例关系,将问题转化为一个简单的比例问题。

此法适用于熟悉比例关系的人。

九、解法八:割补法通过割补的方式,将多出的脚割掉,将少的脚补上,求解鸡和兔子的数量。

此法适用于善于思考的人。

十、解法九:假设 - 检验法先假设一种情况,然后通过检验,判断假设是否正确。

此法适用于有较强逻辑思维能力的人。

十一、解法十:数学归纳法通过数学归纳法,证明鸡兔同笼问题的解法正确。

此法适用于熟悉数学归纳法的人。

十二、总结鸡兔同笼问题有多种解法,每种解法都有其适用的情况和人群。

鸡兔同笼的9种解法

鸡兔同笼的9种解法

鸡兔同笼是我国古代著名趣题之一,记载于《孙子算经》之中。

鸡兔同笼问题,是小学奥数的常见题型。

是指已知鸡与兔的总头数和总足数,求鸡和兔各是多少只的应用题。

1、列表法。

2、画图法,画图法也是低年级小朋友很好接受的一个方法,呵呵,画图还可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。

3、金鸡独立法,让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。

鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍。

4、吹哨法。

5、假设法,假设全部是鸡。

6、假设法,假设全部是兔子。

7、特异功能法,鸡有2条腿,比兔子少2条腿,这不公平,但是鸡有2只翅膀,兔子却没有。

假设鸡有特级功能,把两只翅膀变成2条腿,那么鸡也有4条腿。

8、特异功能法,假设每只鸡兔都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的。

9、特异功能法,假设孙悟空变成兔子,说“变”,每只兔子又长出一个头来,然后对妖精说“将它劈开”,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚。

10、砍足法,假如把每只砍掉1只脚、每只兔砍掉3只脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。

基本概念:鸡饭同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来:基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲•样):②假设后,发生了和题目条件不同的差,找出这个差是多少:③每个事物造成的差是固定的,从而找出出现这个差的原因:④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数X总头数一总脚数)子(兔脚数一鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数X总头数)子(兔脚数一鸡脚数)关犍问题:找出总量的差与单位量的差。

解决鸡兔同笼一般用“假设法”来求解。

即假设全是鸡或是全是兔,然后根据出现的足数差,推算出鸡或兔的只数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼问题几种不同的解法
一、鸡兔同笼问题
例1 笼中有若干只鸡和兔,它们共有50个头和140只脚,问鸡兔各有多少只
解法1 假设法
假设一个未知数是已知的,比如假定50个头全是兔,则共有脚(4×50=)200(只),这与题中已知140只不符,多出(200-140=)60(只),多的原因是鸡当兔后每只鸡多算了2只脚,所以鸡的只数是(60÷2=)30(只),则兔的只数为(50-30=)20(只)。

这种解法,思路清晰,但较复杂,不便操作。

能不能形象地画个图呢让我们试试。

解法2 图形法
从图中看ACDF的面积=4×50=200(只脚),比实际多出GHEF 的面积=200-140=60(只脚),AB=GH=60÷2=30(只鸡),BC=AC-AB=50-30=20(只兔)
解法2比解法1高级,算理是一样的。

这里答案是图上算出的,显然这两种解法都要用纸和笔。

不用纸和笔肯定是用口诀或易记的公式,这是老公公的传家宝。

解法3 公式法
老公公讲:只要用哨子一吹,并喊一声口令:“全体肃立”。

这时每只鸡呈金鸡独立之状,每只兔呈玉兔拜月状,着地的脚数之和有(140÷2=)70(只),其中鸡的头数与脚数相等,由于每只兔的脚比头数多1,因此兔的头数为(70-50=)20(个),即兔有20只,则鸡有(50-20=)30(只)。

这个故事实际上老公公用了如下的公式。

脚数和÷2-头数和=兔子数。

小孙子们听了兴趣为之大增,纷纷叫老公公再出几道题。

老公公又出了(1)30个头,80只脚……。

(兔10,鸡20)。

(2)100只脚,40个头……。

(兔10,鸡30)。

(3)80个头,200只脚……。

(兔20,鸡60)
小孙子们个个都愉快地答出来了。

这个公式简洁好用,它是祖代传下来的还是老公公想出来的呢我们中华文化博大精深,这两种可能性都是有的。

这个公式是碰巧做对还是符合算理的呢这是十分重要的。

数学家高斯说过:“数学中许多方法与定理是靠归纳发现的,证明只是补行的手续而已。

”现在我们就来补行这个手续。

2鸡头=鸡脚。

4兔头=兔脚。

得:兔脚+鸡脚=2鸡头+4兔头
=2(鸡头+2兔头)。

这就证明了老公公归纳的公式。

说到鸡兔同笼问题,常常大家精神就紧张起来,以为是难题来了。

现在掌握了规律其实不难,所以凡事都应去摸索规律,照规律办事。

鸡兔同笼问题在民间是当故事讲的,有没有实际价值呢我们再来看下面的问题。

二、邮票问题
例2 买3角与5角的邮票共24张,总值元,问两种邮票各买了几张解这道题当然可以用假设法和图形法,但用什么样的公式呢美国数学教育家C·波利亚说:“……不论初等数学、高等数学中的发现……特别是不能没有类比。

”用类比很容易发现这个公式是:邮
设3角邮票为A1张,价值A2角;
5角邮票为B1张,价值B2角。

说明数量关系与鸡兔同笼问题相一致。

又3A1=A2,5B1=B2。

得:A2+B2=3A1+5B1,
这就与例1的公式相类似,很容易将这个公式翻译成语言陈述,大家试(24-12=)12(张)。

如果你认为这个公式不太好记,就不妨用图来解。

(24×5-96)÷2=12(张、3角)24-12=12
所以解题方法的选用常常是根据具体情况而定的。

再试试
(1)6角与8角的邮票共18张,总价元,问两种邮票各几张(10,8)(2)3角与8角的邮票共100张,总价50元,问两种邮票各几张(60,40)
三、植树问题
例3 一次植树活动,规定大树每人种2棵,小树每人种4棵,全班50人种树140棵,问种这两种树的各有多少人
这道题可用例1的公式很快解得种大树的有30人,种小树的有20人。

四、运输(工作)问题
例4 有小卡车50辆,大卡车每辆运4吨,小卡车每辆运2吨,共运140吨化肥,问大小卡车各几辆
难道不是题目看完答案就出来了吗
五、农药问题
例5 甲种农药每千克兑水20千克,乙种农药每千克兑水40千克,现为了提高药效,根据农科所意见,甲乙两种农药混合使用,已知两种农药共50千克,要配药水140千克,问甲、乙两种农药各需多少千克
用公式解很简单(30,20),如果将这个公式交给农民,那么他们配起农药来就既方便又正确,你能想出这个公式是什么吗
还会遇到许多许多的问题,它们的数量关系(应用题的本质)与鸡兔同笼问题相一致,都可以用鸡兔同笼问题的三种方法来解,这些问题我们将它们统称为鸡兔同笼问题。

相传大禹治水到黄河,发现一只神龟,背上驮了一张图叫河图(洛书)。

(左图),用阿拉伯数字表示就是右图,图中三条竖线、三条横线、二条对角线共八条线上三个数的和都是15,这样的图是怎样造出来的呢其法一时失传了,
于是有人用它来占卜、相风水,进入迷信状态。

后来数学家发现其原理是二进制,说明二进制是中国人最先发明的,近代根据二进制发明了计算机,所以有些基础科学的研究成果一时看起来无多大用途,以后渐渐会发现有大用途。

相关文档
最新文档