第二十二讲圆锥曲线中的最值和范围问题(二)

合集下载

圆锥曲线中的最值问题

圆锥曲线中的最值问题

02பைடு நூலகம்
求解方法
设两点坐标,利用距离公式求解,再通过求导找出极值 点,确定最大最小值。
03
应用场景
通信、导航等领域,经常需要求解信号的最远和最近传 输距离等问题。
圆锥曲线上的点的最值坐标
定义
指的是在圆锥曲线上找到具有某种性质最值(如距离最值、角度最值等)的点,并求出其坐标。
求解方法
通常要根据具体性质设立目标函数,再利用求导等数学工具求出极值点,进而得到最值坐标。
求解方法
通过运用圆锥曲线与直线的 交点的坐标表达式,结合距 离公式,利用微积分工具求
解最值。
应用场景
该问题在光学、几何设计等 领域有应用,如望远镜的设 计、镜面的曲率选择等。
圆锥曲线内接多边形的最值面积
定义与背景
圆锥曲线内接多边形是指多边形的顶点都在圆锥曲线上的多边形 。在最值情况下,该多边形的面积达到最大或最小值。
最值问题在物理学中的应用
光学
在物理学中,圆锥曲线与光学有着密 切的联系。例如,利用圆锥曲线的性 质可以解决光的反射、折射等最值问 题,从而优化光学系统的设计。
力学
圆锥曲线在力学中也有应用,例如在 研究天体运动时,可以利用圆锥曲线 的性质来解决最值问题,从而预测天 体的运行轨迹和位置。
最值问题在工程实践中的应用
性质
圆锥曲线有许多重要的性质,如对称性、焦点性质、准线性质等。这些性质在 最值问题的研究中起着重要作用。
最值问题的概述
定义
最值问题是寻找函数在给定区间上的最大值和最小值的问题 。在圆锥曲线中,最值问题通常涉及到曲线上的点与特定直 线或点之间的距离、角度等的最值。
解决方法
解决最值问题的方法包括导数法、不等式法、几何法等。在 圆锥曲线的最值问题中,通常结合曲线的几何性质和代数方 法来进行求解。

圆锥曲线中的最值与范围问题

圆锥曲线中的最值与范围问题

圆锥曲线中的最值与范围问题圆锥曲线中的最值与范围问题是高考的考查热点,往往以圆锥曲线(包括圆)与直线为载体,结合函数、不等式及导数等知识,综合考查解题能力. 求解这类问题的基本方法有几何特征法和代数法.几何特征法几何特征法即利用圆锥曲线的几何特征蕴含的条件,如抛物线上任意一点到焦点的距离等于其到准线的距离、过椭圆焦点的所有弦中通径最短等,构造相应的函数或不等式求解.例1已知直线l:x+y+3=0和圆C:x2+y2-2x-2y-2=0,设A是直线l上一动点,直线AC交圆C于点B,若在圆C 上存在点M,使∠MAB=,则点A横坐标的取值范围为.解析:圆C:(x-1)2+(y-1)2=4. 如图1所示,过C 点作CN⊥AM于点N,则CN≤CM=2.在Rt△CNA中,∠NAC=,所以AC=2CN≤4.设A(x,-x-3),则AC2=(x-1)2+(-x-3-1)2=2x2+6x+17≤16,解得≤x≤.所以点A横坐标的取值范围为≤x≤.点评:解答例1 的关键是利用圆心到直线的距离与圆的半径的大小关系,建立不等关系求解.当直线AM与圆C相切时,N, M两点重合,CN取到最大值2;而AC可通过∠MAB与CN建立量的关系,由此构建以点A的横坐标x 为自变量、以AC为因变量的函数,进而求解.例2[2013年嘉兴市高三教学测试(一)第17题]已知抛物线y2=4x的焦点为F,若点A,B是该抛物线上的点,∠AFB=,线段AB的中点M在抛物线的准线上的射影为N,则的最大值为.解析:如图2所示,过点A,B分别作准线的垂线,垂足分别为A1,B1.设FA=t1,FB=t2,则由∠AFB=可得AB=.因为AM=MB,NM∥AA1∥BB1,所以MN=(AA1+BB1).由抛物线定义可知AA1=FA,BB1=FB,所以MN=(FA+FB)=(t1+t2),所以=.由[t1][2]+[t2][2]≥2t1t2可得2[t1][2]+2[t2][2]≥2t1t2+([t1][2]+[t2][2])=(t1+t2)2,t1+t2≤?,所以≤=,当且仅当t1=t2时取到等号,所以的最大值为.点评:例2利用抛物线的定义,将线段MN的长度与FA,FB的长度t1,t2相联系,构造了含有双变量的函数,然后利用不等式(a+b)2≤2(a2+b2)求得函数的最大值.代数法利用题目所给条件的范围或限制,如点的坐标、直线的斜率、线与线之间构成的多边形的面积等,构造相应的函数或不等式求解.例3设椭圆+=1 (a>b>0)的焦点分别为F1(-1,0),F2(1,0),直线l:x=a2交x轴于点A,且F2为F1 A的中点.(1)求椭圆的方程;(2)如图3所示,过F1,F2分别作互相垂直的两直线与椭圆分别交于D,E,M,N四点,试求四边形DMEN面积的最大值和最小值.解析:(1)由F2为F1A的中点可得F1F2=F2 A,又OF2=1,所以F2 A=2,点A的坐标为(3,0).由直线l:x=a2交x轴于点A可得a=,b==,所以椭圆方程为+=1.(2)当直线DE与x轴垂直时,MN=2a=2.由F1(-1,0),椭圆方程+=1可得点D-1,,所以DF1=,DE=2DF1=,四边形DMEN的面积S==4.同理,当MN与x轴垂直时,也可得四边形DMEN的面积S==4.当直线DE,MN均不与x轴垂直时,设直线DE:y=k (x+1),代入+=1中消去y,得(2+3k2)x2+6k2x+(3k2-6)=0.设D(x1,y1),E(x2,y2),则x1+x2=,x1x2=.所以x1-x2==,DE==?x1-x2= .设直线MN:y=-(x-1),同理可得MN=.所以四边形DMEN的面积S==??=.令u=k2+,得S==4-S≥4-=,当且仅当k2=1时取等号.所以当k=±1时,Smin=;当直线DE或MN与x轴垂直时,Smax=4.点评:与抛物线的焦点弦长的计算方法(往往利用定义,即几何特征法)不同,椭圆的焦点弦长一般利用代数法求解,以焦点弦的斜率或倾斜角为变量来表示其长度,如例3中的DE=.例3正是通过建立四边形DMEN的面积S与焦点弦的斜率k的函数关系,求得了面积S的最值.与抛物线的焦点弦长的计算方法(往往利用定义,即几何特征法)不同,椭圆的焦点弦长一般利用代数法求解,以焦点弦的斜率或倾斜角为变量来表示其长度.【练一练】[2012年嘉兴市高三教学测试(二)第9题]已知椭圆x2+my2=1的离心率e∈,1,则实数m的取值范围是(A)0 ,(B),+∞(C)0 ,∪,+∞(D),1∪1,【参考答案】解析:先将椭圆方程x2+my2=1化为标准方程:x2+=1,因方程为椭圆方程,所以m>0.又因其焦点位置不确定,所以需要分类讨论. 当01时,椭圆长半轴长a=1,短半轴长b=,所以离心率e===.由e∈,1可得1,所以. 当>1即0。

圆锥曲线中的最值问题

圆锥曲线中的最值问题

面积最值问题
总结词
面积最值问题主要研究圆锥曲线与其 内部区域的面积的最小或最大值。
详细描述
求解面积最值问题通常需要利用曲线 的参数方程或极坐标方程,转化为关 于角度或参数的定积分,通过求积分 得到面积表达式,再求最值。
周长最值问题
总结词
周长最值问题主要研究圆锥曲线 上的点的轨迹形成的曲线的周长 的最小或最大值。
圆锥曲线中的最值问
• 引言 • 圆锥曲线中的最值问题类型 • 解决圆锥曲线中最大值最线中的最值问题的实例分析
01
引言
圆锥曲线的定义与性质
圆锥曲线是由平面与圆锥的侧面或顶 点相交形成的几何图形,包括椭圆、 抛物线和双曲线等。
圆锥曲线具有多种性质,如对称性、 焦点、准线等,这些性质在解决最值 问题时具有重要作用。
详细描述
解决周长最值问题通常需要利用 曲线的参数方程,通过求导数找 到曲线的拐点,从而确定周长的 最大或最小值。
角度最值问题
总结词
角度最值问题主要研究圆锥曲线上的点与坐标轴形成的角度 的最小或最大值。
详细描述
解决角度最值问题通常需要利用曲线的极坐标方程,通过求 导数找到曲线的极值点,从而确定角度的最小或最大值。
在实际生活中的应用
航天器轨道设计
在航天领域,卫星和行星的轨道通常呈现为某种圆锥曲线 的形状,通过研究这些轨道的最值问题,可以优化航天器 的发射和运行轨迹。
物流运输
在物流和运输行业中,货物的运输路径通常受到多种因素 的限制,呈现出某种圆锥曲线的轨迹,通过求解最值问题, 可以找到最优的运输路径和最低的成本。
03
解决圆锥曲线中最大值最小值问题的
方法
利用导数求最值
导数可以帮助我们找到函数的极值点 ,通过求导并令导数为零,我们可以 找到可能的极值点。

圆锥曲线中的最值和取值范围

圆锥曲线中的最值和取值范围

2解得X"或…泞,则AM k28k2 -63 4k2=1 k2123 4k2因为AM _AN,所以圆锥曲线中的最值和范围圆锥曲线是高考数学压轴题之一,是有效区分学生层次不可或缺的一个题型,能否解决圆锥曲线问题,对提高学生的数学成绩某种程度上至关重要。

回顾几年高考中的圆锥曲线试题,其核心问题大概有两大类型,一是定值、定点、存在性问题,二是最值和范围问题。

本文就第二问题进行归纳和分析。

最值和范围一般有两个求解方法:一是几何方法,所求最值量具有明显几何意义时可利用几何性质结合图形直观求解;二是代数方法,选择适当变量,建立函数模型,按照求最值的方法求解,求最值方法中:利用基本不等式、函数单调性、分离常数、配方法等是常用方法。

对目标函数的的整理和恰当变形是难点。

所涉及的量有斜率、面积、离心率、线段长度等。

一.近几年高考试题回顾。

X y21.(2017全国2)已知椭圆E: 1的焦点在x轴上,A是E的左顶点,斜率为k(k 0)的t 3直线交E于A, M两点,点N在E上,MA丄NA. (I)当t =4 , AM| | AN时,求△ AMN的面积;(II)当2 AM二AN时,求k的取值范围•2 2X y【解析】⑴当t =4时,椭圆E的方程为 1 , A点坐标为-2 , 0,4 3则直线AM的方程为y =k X • 2 .'2 2£ I 二1联立 4 3 " 并整理得, 3 4k2 x2 16k2x 16k2 -1^0y -k X 2厂匚2 12厂〒2 12因为 AM 二 AN , k 0,所以 1 kFTk^= 1 k3I 7^,k整理得k -1 4k —k ・4产0 , 4k 2_k ・4=0无实根,所以k.⑵直线AM 的方程为y 二k x • ..t ,r 22x y1联立 t 3并整理得,3 tk 2 x 2 2x t 2k ^3^-0 y =k (X + JT )解得 3 2 ::: k ::: 2 .2.(2015高考真题山东理21 )在平面直角坐标系 xOy 中,F 是抛物线C:x 2=2py (p 0) 的焦点,M 是抛物线C 上位于第一象限内的任意一点,过 M,F,0三点的圆的圆心为 Q ,点Q 到抛物线C 的准线的距离为 3 .[来源学科网](I)求抛物线 C 的方程;(n)是否存在点 M , 4使得直线MQ 与抛物线C 相切于点M ?若存在,求出点 M 的坐标;若不存在,说明理由; (川)若点M 的横坐标为 2 ,直线l : ^kx 4与抛物线C 有两个不同的交点 A, B , l 与 圆Q 有两个不同的交点 D, E ,求当g 乞k 乞2时,|AB|2J DE|2的最小值 分析:(I )由题意,OF 为圆Q 的弦,y^— , ••• yQ — = 3 =o抛物线方程x 2 =2y4 2 41 2所以△ AMN 的面积为| AM | =144 79解得 ^-F 或x =曲昇,3 +tk 2所以 AM23 tk26 tAN = 1 亠 k 2—―—"k E 所以3k 」k因为2 AM | | AN 所以 2T k6・口隹,整理得,k3 tk2t 6k -3k t3k -2因为椭圆E 的焦点在x 轴,所以t 3,即1 k —2 k3_2 ::(n)设存在点2X。

专题---圆锥曲线中的最值与范围问题

专题---圆锥曲线中的最值与范围问题

高三数学专题复习圆锥曲线中的最值问题和范围的求解策略最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。

解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。

以下从五个方面予以阐述。

一.求距离的最值或范围:例1.设AB 为抛物线y=x 2的一条弦,假设AB=4,那么AB 的中点M 到直线y+1=0的最短距离为 ,解析:抛物线y=x 2的焦点为F 〔0 ,41〕,准线为y=41-,过A 、B 、M 准线y=41-的垂线,垂足分别是A 1、B 1、M 1,那么所求的距离d=MM 1+43=21(AA 1+BB 1) +43=21(AF+BF) +43≥21AB+43=21×4+43=411,当且仅当弦AB 过焦点F 时,d 取最小值411, 评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识,使解题简洁明快,得心应手。

练习:1、(2021海南、宁夏理)点P 在抛物线y 2 = 4x 上,那么点P 到点Q 〔2,-1〕的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为〔 A 〕A. 〔41,-1〕 B. 〔41,1〕 C. 〔1,2〕 D. 〔1,-2〕2、〔2021安徽文〕设椭圆2222:1(0)x y C a b a b+=>>其相应于焦点(2,0)F 的准线方程为4x =.〔Ⅰ〕求椭圆C 的方程;〔Ⅱ〕过点1(2,0)F -倾斜角为θ的直线交椭圆C 于,A B 两点,求证:2422AB COS θ=-;〔Ⅲ〕过点1(2,0)F -作两条互相垂直的直线分别交椭圆C 于,A B 和,D E ,求AB DE + 的最小值解 :〔1〕由题意得:2222222844c a a c b a b c=⎧⎪⎧=⎪⎪=⎨⎨=⎪⎩⎪⎪=+⎩∴ ∴椭圆C 的方程为22184x y += (2)方法一:由〔1〕知1(2,0)F -是椭圆C 的左焦点,离心率22e =设l 为椭圆的左准线。

圆锥曲线中的最值、定值和范围问题

圆锥曲线中的最值、定值和范围问题

圆锥曲线中的最值、定值和范围问题与圆锥曲线有关的最值、定值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。

下面我们探讨与圆锥曲线有关的最值、定值和范围问题的常用方法。

一. 最值问题求解的基本策略有二:一是从几何角度考虑,当题目中的条件和结论明显体现几何特征及意义时,可用图形性质来解;二是从代数角度考虑,通过建立目标函数,求其目标函数的最值,求函数最值的常用方法有:二次函数法、基本不等式法、判别式法、定义法、函数单调性法等。

例1:如图所示,设点1F ,2F 是22132xy+=的两个焦点,过2F 的直线与椭圆相交于A 、B两点,求△1F AB 的面积的最大值,并求出此时直线的方程。

分析:12112F F B F AB F FAS S S =+ ,设11(,)A x y ,22(,)B x y ,则11212121||||||(1)2F AB F F y y y y c S =⋅-=- =设直线A B 的方程为1x ky =+代入椭圆方程得22(23)440k y ky ++-=12122244,2323k y y y y k k --⇒+==++即122||123y y k - ==+令1t =≥,∴12FA Bt tS +=12t t+(1t ≥)利用均值不等式不能区取“=”∴利用1()2f t t t=+(1t ≥)的单调性易得在1t =时取最小值1F AB S 在1t =即0k =时取最大值为3,此时直线A B 的方程为1x =例2.设椭圆方程为1422=+yx ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足OP (21=OA + )O B ,点N 的坐标为)21,21(,当l 绕点M 旋转时,求(1)动点P 的轨迹方程;(2)||N P的最小值与最大值.解(1)法1:直线l 过点M (0,1)设其斜率为k ,则l 的方程为y=kx+1.记A (x 1,y 1),B (x 2,y 2),由题设可得点A 、B 的坐标 (x 1,y 1)、 (x 2,y 2)是方程组⎪⎩⎪⎨⎧=++=14122yx kx y 的解. 将①代入②并化简得(4+k 2)x 2+2kx -3=0, 所以⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y k k x x于是).44,4()2,2()(21222121kkk y y x x OB OA OP ++-=++=+=设点P 的坐标为(x,y ), 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y kk x 消去参数k 得4x 2+y 2-y =0 ③ 当k 不存在时,A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为4x 2+y 2-y =0解法二:设点P 的坐标为(x ,y ),因A (x 1,y 1),B (x 2,y 2)在椭圆上,所以,142121=+y x ④ .142222=+y x ⑤④—⑤得0)(4122212221=-+-y y x x ,所以.0))((41))((21212121=+-++-y y y y x x x x 当21x x ≠时,有.0)(4121212121=--⋅+++x x y y y y x x ⑥并且⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-+=+=.1,2,221212121x x y y xy y y y x x x ⑦ 将⑦代入⑥并整理得 4x 2+y 2-y =0 ⑧ 当x 1=x 2时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为 (0,0)也满足⑧,所以点P 的轨迹方程为.141)21(16122=-+y x(2)由点P 的轨迹方程知.4141,1612≤≤-≤x x 即所以 127)61(3441)21()21()21(||222222++-=-+-=-+-=x xx y x NP故当41=x ,||NP 取得最小值,最小值为1;4① ②当16x =-时,||NP 取得最大值,最大值为.621对于()*,有∆=m 2+4b =10-m 2>0,所以m <<。

圆锥曲线中的最值问题

圆锥曲线中的最值问题

圆锥曲线是指在二维平面上满足一定条件的曲线,其中包括双曲线和抛物线等。

当圆锥曲线是双曲线或抛物线时,可以利用其函数的性质解决最值问题。

对于双曲线y=a/x,在x>0时,它的最小值为y=a/xmin,最大值为y=a/xmax。

对于抛物线y=ax^2,在a>0时,它的最小值为y=0,最大值为y=+∞。

对于其他类型的圆锥曲线,最值问题的解决方法需要根据其具体函数形式进行分析。

对于一般的圆锥曲线,解决最值问题需要利用微积分知识。

对于函数y=f(x)在区间[a,b]上的最值问题,可以通过对函数在该区间内求导,然后求函数在该区间内的极值点。

求导之后,求函数在该区间内的极值点,即对导数为0的点进行分析。

通过二分法或牛顿迭代等方法来求导数为0的点的值,对导数为0的点进行分析,即可求得圆锥曲线在该区间内的最值点。

需要注意的是,在求解过程中需要证明该点是极值点,而非局部极值点。

高考圆锥曲线中的最值和范围问题解析版

高考圆锥曲线中的最值和范围问题解析版

高考专题 圆锥曲线中的最值和范围问题★★★高考要考什么1 圆锥曲线的最值与范围问题 (1)圆锥曲线上本身存在的最值问题: ①椭圆上两点间最大距离为2a (长轴长).②双曲线上不同支的两点间最小距离为2a (实轴长).③椭圆焦半径的取值范围为[a -c ,a +c ],a -c 与a +c 分别表示椭圆焦点到椭圆上的点的最小距离与最大距离.④抛物线上的点中顶点与抛物线的准线距离最近.(2)圆锥曲线上的点到定点的距离的最值问题,常用两点间的距离公式转化为区间上的二次函数的最值问题解决,有时也用圆锥曲线的参数方程,化为三角函数的最值问题或用三角形的两边之和(或差)与第三边的不等关系求解.(3)圆锥曲线上的点到定直线的距离的最值问题解法同上或用平行切线法.(4)点在圆锥曲线上(非线性约束条件)的条件下,求相关式子(目标函数)的取值范围问题,常用参数方程代入转化为三角函数的最值问题,或根据平面几何知识或引入一个参数(有几何意义)化为函数进行处理. (5)由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数,另一个元作为自变量求解.与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决:(1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。

(4)利用代数基本不等式。

代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;(5)结合参数方程,利用三角函数的有界性。

直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。

因此,它们的应用价值在于: ① 通过参数θ简明地表示曲线上点的坐标;② 利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题; (6)构造一个二次方程,利用判别式∆≥0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十二讲圆锥曲线中的最值和范围问题(二)
【例5】长度为a (0a >)的线段AB 的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在线段AB 上,且AP PB λ=
(λ为常数且0λ>).
(1)求点P 的轨迹方程C ,并说明轨迹类型; (2)当λ=2时,已知直线1l 与原点O 的距离为2
a ,且直线1l 与轨迹C 有公共点,求直线1l 的斜率k 的
取值范围.
答案:(1)设(,)P x y 、0(,0)A x 、0(0,)B y ,则
0000(1)1()x x
x x x
AP PB y y y y y λλλλλλ=+⎧-=-⎧⎪
=⇒⇒
⎨⎨+=-=⎩
⎪⎩
,由此及22200||AB a x y a =⇒+=,得 []
2
2
2
1(1)x y a λλλ⎡⎤+⎛⎫++= ⎪⎢⎥⎝
⎭⎣⎦,即2
2
22
1y a x λλ⎛⎫+= ⎪+⎝⎭ (*) ①当10<<λ时,方程(*)的轨迹是焦点为)0,11(a λλ+-±
,长轴长为
a λ
+12的椭圆.
②当1>λ时,方程(*)的轨迹是焦点为)11,0(a λ
λ++-±,长轴长为
a λ
λ+12的椭圆.
③当1=λ时,方程(*)的轨迹是焦点为以O 点为圆心,
2
a 为半径的圆.
(2)设直线1l 的方程:h kx y +=,据题意有
2
12
a k
h =
+,即2
12
k
a h +=

由⎪⎩
⎪⎨⎧=++=2
22499a
y x h kx y 得 04929)41(92
222
=-+++a h khx x k . 因为直线1l 与椭圆22
2
4
99a y
x =+
有公共点,所以,081)4(92
22≥-+=∆h
a k
又把2
12
k
a h +=
代入上式得 :5
355
35,5
72

≤-
∴≤
k k

【例6】椭圆E 的中心在原点O ,焦点在x 轴上,其离心率3
2=
e , 过点C (-1,0)的直线l 与椭圆E
相交于A 、B 两点,且满足点C 分向量B A 的比为2.
(1)用直线l 的斜率k ( k ≠0 ) 表示△OAB 的面积;(2)当△OAB 的面积最大时,求椭圆E 的方程。

解:(1)设椭圆E 的方程为
12
22
2=+
b
y a
x ( a >b >0 ),由e =
3
2=
a
c
∴a 2=3b 2 故椭圆方程x 2 + 3y 2 = 3b 2
设A (x 1,y 1)、B (x 2,y 2),由于点C (-1,0)分向量AB 的比为2,
∴⎪⎪⎩
⎪⎪⎨⎧=+-=+03
21
3
22121
y y x x 即⎩⎨⎧-=+-=+21
212)
1(21y y x x 由⎩⎨⎧+==+)
1(332
22x k y b y x 消去y 整理并化简得 (3k 2+1)x 2+6k 2x +3k 2-3b 2
=0 由直线l 与椭圆E 相交于A (x 1,y 1), B (x 2,y 2)两点得:
⎪⎪⎪

⎪⎪⎪⎨⎧
+-=+-=+>∆1333136022
2212
2
21k b k x x k k x x AB C 的内分点)是恒成立(点 而S △OAB |1|||2
3
|)1(|2
3||2
3|2|2
1||2
12222221+=+==--=-=x k x k y y y y y ⑤
由①③得:x 2+1=-
1
322
+k
,代入⑤得:S △OAB =
)0(1
3|
|32
≠+k k k
(2)因S △OAB =
2
33
23|
|1||33
1
3||32
=
≤+
=
+k k k k ,
当且仅当,3

=k S △OAB 取得最大值
此时 x 1 + x 2 =-1, 又∵
3
22
1x x + =-1 ∴x 1=1,x 2 =-2
将x 1,x 2及k 2 =
3
1代入④得3b 2 = 5 ∴椭圆方程x 2 + 3y 2 = 5
① ②

④。

相关文档
最新文档