相似三角形经典题型及解答

合集下载

相似三角形难题集锦(含问题详解)

相似三角形难题集锦(含问题详解)

一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.〔1〕当t为何值时,AD=AB,并求出此时DE的长度;〔2〕当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.〔1〕①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S〔平方米〕关于时间t〔秒〕的函数解析式;〔2〕在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM ⊥BD,垂足为M,EN⊥CD,垂足为N.〔1〕当AD=CD时,求证:DE∥AC;〔2〕探究:AD为何值时,△BME与△E相似?4.如下列图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C 〔1〕当x为何值时,PQ∥BC?〔2〕△APQ与△CQB能否相似?假如能,求出AP的长;假如不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A 以1cm/s的速度移动.如果P、Q同时出发,用t〔s〕表示移动的时间〔0<t <6〕。

〔1〕当t为何值时,△QAP为等腰直角三角形?〔2〕当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?二、构造相似辅助线——双垂直模型6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为〔1,3〕,将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为〔〕A. B.C. D.10..,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。

完整版)相似三角形题型归纳

完整版)相似三角形题型归纳

完整版)相似三角形题型归纳1、在平行四边形ABCD中,点E为对角线AC上的一点,且AE∶EC=1∶3.将BE延长至与CD的延长线交于点G,与AD交于点F。

证明BF∶FG=1∶2.2、在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC的中点,E为AC上的一点。

点G在BE上,连接DG并延长至交AE于点F,且∠FGE=45°。

证明:(1)BD·BC=BG·BE;(2)AG⊥BE;(3)若E为AC的中点,则EF∶FD=1∶2.3、在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上的一点,连接BO交AD于点F,OE⊥OB交BC边于点E。

证明:(1)△ABF∽△COE;(2)当O为AC的中点时,求△ABC的面积;(3)当O为AC边中点时,求△ABC的面积。

4、在平行四边形ABCD和平行四边形ACED中,点R为DE的中点,BR分别交AC、CD于点P、Q。

写出各对相似三角形(相似比为1除外),并求出BP∶PQ∶QR的值。

5、在△ABC中,AD平分∠BAC,EM为AD的中垂线,交BC延长线于点E。

证明DE=BE·CE。

6、过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和E。

证明AE∶ED=2AF∶FB。

7、在Rt△ABC中,CD为斜边AB上的高,点M在CD 上,DH⊥BM且与AC的延长线交于点E。

证明:(1)△AED∽△CBM;(2)DE=DM。

8、在△ABC中,BD、CE分别是两边上的高,过D作DG⊥BC于点G,分别交CE及BA的延长线于点F、H。

证明:(1)DG=BG·CG;(2)BG·CG=GF·GH。

9、在平行四边形ABCD中,点P为对角线AC上的一点。

过P的直线与AD、BC、CD的延长线、AB的延长线分别相交于点E、F、G、H。

证明:AG∶GB=CP∶PD。

1、求证:如图,已知平行四边形ABCD中,点P在AC上,点Q在BC上,且AP=CQ。

相似三角形经典大题解析(含答案)

相似三角形经典大题解析(含答案)

相似三角形经典大题解析1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?【答案】解:(1)MN BC ∥AMN ABC ∴△∽△ 68h x ∴= 34x h ∴=(2)1AMN A MN △≌△1A MN ∴△的边MN 上的高为h ,①当点1A 落在四边形BCNM 内或BC 边上时,1A MN y S =△=211332248MN h x x x ==··(04x <≤)②当1A 落在四边形BCNM 外时,如下图(48)x <<,设1A EF △的边EF 上的高为1h , 则132662h h x =-=- 11EF MNA EF A MN ∴∥△∽△11AMN ABC A EF ABC ∴△∽△△∽△ 1216A EF S h S ⎛⎫= ⎪⎝⎭△△ABC168242ABC S =⨯⨯=△ 22363224122462EFx S x x ⎛⎫- ⎪∴==⨯=-+ ⎪⎪⎝⎭1△A 1122233912241224828A MN A EF y S S x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭△△所以 291224(48)8y x x x =-+-<<综上所述:当04x <≤时,238y x =,取4x =,6y =最大 当48x <<时,2912248y x x =-+-, 取163x =,8y =最大 86>∴当163x =时,y 最大,8y =最大2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;【答案】解:(1)该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-.将(40)A ,,(10)B ,代入, 得1642020a b a b .+-=⎧⎨+-=⎩,解得1252a b .⎧=-⎪⎪⎨⎪=⎪⎩,M NCBEFAA 1∴此抛物线的解析式为215222y x x =-+-.(2)存在.如图,设P 点的横坐标为m ,215222m m -+- 则P 点的纵坐标为, 当14m <<时,4AM m =-,215222PM m m =-+-.又90COA PMA ∠=∠=°, ∴①当21AM AO PM OC ==时, APM ACO △∽△,即21542222m m m ⎛⎫-=-+- ⎪⎝⎭.解得1224m m ==,(舍去),(21)P ∴,. ②当12AM OC PM OA ==时,APM CAO △∽△,即2152(4)222m m m -=-+-. 解得14m =,25m =(均不合题意,舍去)∴当14m <<时,(21)P ,. 类似地可求出当4m >时,(52)P -,. 当1m <时,(314)P --,. 综上所述,符合条件的点P 为(21),或(52)-,或(314)--,.3.如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.【答案】(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,.由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=.由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ∴111263622ABC C S AB y ==⨯⨯=△·.(2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,. ∴D 点坐标为()88,.又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,.. ∴E 点坐标为()48,. ∴8448OE EF =-==,.(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则R t R t R G B C M B△∽△.∴BG RG BM CM =,即36t RG=,∴2RG t =. Rt Rt AFH AMC △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++.当83<≤t 时,如图2,为梯形面积,∵G (8-t,0)∴GR=32838)8(32t t -=+-,∴38038]32838)4(32[421+-=-++-⨯=t t t s 当128<≤t 时,如图3,为三角形面积,4883)12)(328(212+-=--=t t t t s4.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒. (1)若4a =厘米,1t =秒,则PM =______厘米;(图3)(图1)(图2)(2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.【答案】解: (1)34PM =, (2)2t =,使PNB PAD △∽△,相似比为3:2 (3)PM AB CB AB AMP ABC ∠=∠⊥,⊥,,AMP ABC △∽△,PM AM BN AB ∴=即()PM a t t a t PM t a a--==,, (1)3t a QM a-∴=-当梯形PMBN 与梯形PQDA 的面积相等,即()()22QP AD DQ MP BN BM++=()33(1)()22t a t t a a t t ta a -⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭==化简得66a t a =+,3t ≤,636aa∴+≤,则636a a ∴<≤,≤, (4)36a <≤时梯形PMBN 与梯形PQDA 的面积相等∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM =()3t a t t a ∴-=-,把66a t a=+代入,解之得a =±a = 所以,存在a ,当a =PMBN 与梯形PQDA 的面积、梯形PQCN 的面积相等. 5.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s,当点NQ 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题:(1)当t =2时,判断△BPQ 的形状,并说明理由;(2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?【答案】 解:(1)△BPQ 是等边三角形,当t=2时,AP=2×1=2,BQ=2×2=4,所以BP=AB-AP=6-2=4,所以BQ=BP .又因为∠B=600,所以△BPQ 是等边三角形. (2)过Q 作QE ⊥AB,垂足为E,由QB=2y,得QE=2t ·sin600=3t,由AP=t,得PB=6-t,所以S △BPQ=21×BP ×QE=21(6-t)×3t=-23t 2+33t ; (3)因为QR ∥BA,所以∠QRC=∠A=600,∠RQC=∠B=600,又因为∠C=600, 所以△QRC 是等边三角形,所以QR=RC=QC=6-2t.因为BE=BQ ·cos600=21×2t=t, 所以EP=AB-AP-BE=6-t-t=6-2t,所以EP ∥QR,EP=QR,所以四边形EPRQ 是平行四边形, 所以PR=EQ=3t,又因为∠PEQ=900,所以∠APR=∠PRQ=900.因为△APR ~△PRQ, 所以∠QPR=∠A=600,所以tan600=PR QR ,即3326=-tt,所以t=56, 所以当t=56时, △APR ~△PRQ 6.在直角梯形OABC 中,CB ∥OA ,∠CO A =90º,CB =3,OA =6,BA =35.分别以OA 、OC 边所在直线为x 轴、y 轴建立如图1所示的平面直角坐标系. (1)求点B 的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2E B,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N.使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.图7-2AD O BC 2 1MN图7-1AD B M N12图7-3AD OBC 21MNO.7.在图15-1至图15-3中,直线MN 与线段AB 相交 于点O ,∠1 = ∠2 = 45°.(1)如图15-1,若AO = OB ,请写出AO 与BD的数量关系和位置关系;(2)将图15-1中的MN 绕点O 顺时针旋转得到图15-2,其中AO = OB . 求证:AC = BD ,AC ⊥ BD ;(3)将图15-2中的OB 拉长为AO 的k 倍得到图15-3,求AC BD 的值.【答案】 解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA 交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC = ∠BOE , ∴△AOC ≌ △BOE .∴AC = BE . 又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°.∴∠DEB = 45°.∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD . 延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD .(3)如图5,过点B 作BE ∥CA 交DO 于E ,∴∠BEO = ∠ACO .又∵∠BOE = ∠AOC ,∴△BOE ∽ △AOC . ∴AO BO AC BE =. 又∵OB = kAO , 由(2)的方法易得 BE = BD .∴k ACBD =. 10.如图,已知过A (2,4)分别作x 轴、y 轴的垂线,垂足分别为M 、N ,若点P 从O 点出发,沿OM 作匀速运动,1分钟可到达M 点,点Q 从M 点出发,沿MA 作匀速运动,1分钟图4 ADO B C 21 M N E F AO B C 1 D 2图5 MN E可到达A点。

相似三角形练习题及答案

相似三角形练习题及答案

相似三角形练习题及答案在初中数学中,相似三角形是一个很重要的概念。

相似三角形具有相同的形状,但是尺寸不同。

理解相似三角形的性质对于解决几何问题和计算三角形的边长和角度非常有帮助。

下面是一些相似三角形的练习题,帮助你巩固对该概念的理解,并附有答案供参考。

练习题一:已知△ABC和△DEF相似,且AB = 6cm,AC = 8cm,BC = 12cm。

若DE = 9cm,求DF和EF的长度。

练习题二:△ABC和△PQR中,∠B = ∠Q,AB = 5cm,BC = 8cm,PQ = 6cm,若AC = 10cm,求PR的长度。

练习题三:已知△ABC和△DEF相似,DE = 4.5cm,EF = 6cm,BC = 12cm,若AC = 8cm,求△ABC和△DEF的周长比。

练习题四:在△ABC中,∠B = 90°,AB = 9cm,BC = 12cm。

点D是BC的中点,于BC上作DE ⊥ BC,DE = 3cm。

求△ADE和△ABC的周长比。

练习题五:已知△ABC和△DEF相似,AB = 10cm,BC = 12cm,AC = 15cm,EF = 6cm,若△DEF的面积为18平方厘米,求△ABC的面积。

答案及解析如下:练习题一:由相似三角形的性质可知,相似三角形的边长之比相等。

设DF = x,EF = y。

根据题意可写出比例:AB/DE = AC/EF = BC/DF代入已知值,得到:6/9 = 8/y = 12/x解得:x = 16cm,y = 12cm因此,DF = 16cm,EF = 12cm。

练习题二:由相似三角形的性质可知,相似三角形的边长之比相等。

设PR = x。

根据题意可写出比例:AB/PQ = AC/PR = BC/QR代入已知值,得到:5/6 = 10/x = 8/(6 + x)解得:x = 15cm因此,PR = 15cm。

练习题三:由相似三角形的性质可知,相似三角形的边长之比相等。

相似三角形(解析版)

相似三角形(解析版)

4.3相似三角形一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形. 要点:(1) 相似图形就是指形状相同,但大小不一定相同的图形; (2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两 个图形全等;二、相似三角形 在和中,如果我们就说与相似,记作∽.k 就是它们的相似比,“∽”读作“相似于”一、单选题 1.若ABC A B C ''',40A ∠=︒,110B ∠=︒,则'C ∠的度数为( )A .30°B .40°C .70°D .110°【解答】A【提示】若ABC A B C '''∽△△,则说明点A 的对应点为点'A ,点B 的对应点B ',点C 的对应点为点C ',且对应角相等.【详解】因为ABC A B C '''∽△△,所以'C C ∠=∠.因为40A ∠=︒,110B ∠=︒,所以30C ∠=︒,所以'30C ∠=︒故选A.【点睛】考核知识点:相似比.熟记相似三角形性质:对应角相等,是关键. 2.若ABCA B C '''',3BC =,'' 1.8B C =,则A B C '''与ABC 的相似比为( )A .5∶3B .32∶C .23∶D .35∶ 【解答】D【提示】根据相似三角形的对应角相等、对应边成比例可得:A B C '''与ABC 的相似比为1.83B C BC =''. 【详解】因为ABC A B C '''∽△△,3BC =,'' 1.8B C =,所以A B C '''与ABC 的相似比为1.8335B C BC ''==. 故选D.【点睛】考核知识点:相似比.熟记相似三角形性质是关键. 3.如图,已知ADEACB ,若AB=10,AC=8,AD=4,则AE 的长是( )A .4B .3.2C .20D .5【解答】D【提示】根据相似三角形对应边成比例直接建立等式求解即可. 【详解】由相似三角形的性质可得:AD AEAC AB=, 则·41058AD AB AE AC ⨯===, 故选:D .【点睛】本题考查相似三角形的性质,熟记相似三角形对应边成比例是解题关键.4.如果ABC DEF ∆∆∽,A 、B 分别对应D 、E ,且:1:2AB DE =,那么下列等式一定成立的是( ) A .:1:2BC DE =B .ABC ∆的面积:DEF ∆的面积1:2=C .A ∠的度数:D ∠的度数1:2= D .ABC ∆的周长:DEF ∆的周长1:2= 【解答】D【提示】相似三角形对应边的比等于相似比,面积之比等于相似比的平方,对应角相等.【详解】根据相似三角形性质可得:A :BC 和DE 不是对应边,故错;B :面积比应该是1:4,故错;C:对应角相等,故错;D :周长比等于相似比,故正确. 故选:D【点睛】考核知识点:相似三角形性质.理解基本性质是关键.5.如图所示,△ACB ∽△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )A .20°B .30°C .35°D .40° 【解答】B【提示】根据相似三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB 即可. 【详解】解:∵△ACB ∽△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB-∠A′CB=∠A′CB′-∠A′CB , ∴∠ACA′=∠BCB′, ∵∠BCB′=30°, ∴∠ACA′=30°, 故选:B .【点睛】本题考查了相似三角形性质,掌握相似三角形的对应角相等是解题的关键.6.如图,在△ABC 中,∠A =75°,AB =6,AC =8,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .【解答】D【提示】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A 、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误; B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误; C 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误. D 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确; 故选D .【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.7.在△ABC 中,已知AB =5,BC =4,AC =8.若△ABC ∽△A1B1C1,△A1B1C1的最长边的长为16,则其他两边的长分别为( )A .A1B1=8,B1C1=10B .A1B1=10,B1C1=8C .A1B1=5,B1C1=8D .A1B1=10,B1C1=4【解答】B【详解】分析:根据相似三角形对应边的比相等解答即可.详解:∵两个三角形中最长边和最长边是对应边,△ABC ∽△A1B1C1,∴111111AB BC ACA B B C AC == ,∴111154816A B B C ==,∴A1B1=10,B1C1=8. 故选B .点睛:本题主要考查学生对两个三角形相似的性质的理解及运用.掌握相似三角形的性质是解题的关键.8.若ABC DEF △△,且ABC 与DEF 的相似比为m ,DEF 与ABC 的相似比为n ,则(.): A .m n = B .0m n += C .1⋅=m n D .1m n ⋅=-【解答】C【提示】根据题意,可判定ABC 与DEF 的相似比为m ,则DEF 与ABC 的相似比为其倒数,所以两者积为1.【详解】解:∵ABC 与DEF 的相似比为m , ∴DEF 与ABC 的相似比为1m ,即1n m=, ∴1⋅=m n 故答案为C.【点睛】此题主要考查相似三角形相似比的性质,熟练掌握,即可解题.9.△ABC ∽△A′B′C′,已知AB =5,A′B′=6,△ABC 面积为10,那么另一个三角形的面积为( ) A .15B .14.4C .12D .10.8【解答】B【提示】利用相似三角形的性质得出两三角形的面积比,进而求出即可. 【详解】解:∵△ABC ∽△A′B′C′,AB =5,A′B′=6, ∴A'B'C'2536ABC S S =, ∵△ABC 面积为10, ∴解得:S △A′B′C′=14.4. 故选B .【点睛】本题考查相似三角形的性质,利用相似比与面积比的关系得出是解题关键.10.如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△EBD 相似的三角形是( )A .ABCB .ADEC .DABD .BDC 【解答】C【提示】由于∠A=36°,AB=AC ,易求∠ABC=∠C=72°,而BD 是角平分线,易求∠ABD=∠CBD=36°,又DE ∥BC ,那么有∠EDB=∠CBD=36°,即∠A=∠BDE ,∠ABD=∠DBE ,从而可证△ABD ∽△DBE . 【详解】∵∠A=36°,AB=AC , ∴∠ABC=∠C=72°, 又∵BD 是∠ABC 的平分线, ∴∠ABD=∠CBD=36°, ∵DE ∥BC ,∴∠EDB=∠CBD=36°,即∠A=∠BDE ,∠ABD=∠DBE , ∴△ABD ∽△DBE , 故选C .【点睛】本题考查了相似三角形的判定、等腰三角形的性质、三角形内角和定理.解题的关键是求出相关角的度数.二、填空题11.已知111ABC A B C △△,相似比为23,111222A B C A B C △△,相似比为54,则222ABC A B C △△,其相似比为________. 【解答】56【提示】根据相似三角形的性质可得1123AB A B =,112254A B A B =,故可得2256AB A B =. 【详解】因为111ABC A B C ∽△△,相似比为23,所以1123AB A B =,因为111222A B C A B C ∽△△,相似比为54,所以112254A B A B =,所以2256AB A B =,即所求相似比为56. 故答案为56【点睛】考核知识点:相似三角形的性质.根据相似三角形性质和比例性质求解是关键.12.ΔABC 与△DEF 中,65A ∠=︒,42B ∠=︒,65D ∠=︒,73F ∠=︒,3AB =,5AC =,6BC =,6DE =,10DF =,12EF =,则△DEF 与△ABC________【解答】相似【提示】根据相似三角形的判定方法解答即可. 【详解】∵65A ∠=︒,42B ∠=︒, ∴∠C=180°-65°-42°=73°. ∵65D ∠=︒,73F ∠=︒, ∴∠A=∠D, ∠C=∠F, ∴△DEF 与△ABC 相似. 故答案为相似.【点睛】本题考查了相似三角形的判定方法,相似三角形的判定方法有:①对应角相等,对应边成比例的两个三角形叫做相似三角形;②平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;③两角相等的两个三角形相似;④两边对应成比例,且夹角相等的两个三角形相似判定即可;⑤三边对应成比例的两个三角形相似.13.已知ABC 的三边分别是4,5,6,则与它相似'''A B C 的最长边为12,则'''A B C 的周长是________. 【解答】30【提示】由于A B C '''的最大边为12,所以边长12对应的边只能是ABC 中边长为6的边,进而再由对应边成比例即可求解.【详解】∵△ABC ∽△A′B′C′,且其最大边为12,所以边长12对应的边只能是△ABC 中边长为6的边,∴△′B′C′的另两边的长为8,10, 故△′B′C′的周长为8+10+12=30. 故答案为:30.【点睛】考查相似三角形的性质,掌握相似三角形的周长比等于相似比是解决问题的关键. 14.若ABC DEF ∽,50B ∠=,70C ∠=,则D ∠的度数为________. 【解答】60【提示】根据三角形的内角和定理求出∠A ,再根据相似三角形的对应角相等可得∠D=∠A . 【详解】∵50B ∠=,70C ∠=∴180180507060,A B C ∠=-∠-∠=--= ∵△ABC ∽△DEF , ∴60.D A ∠=∠=故答案为60.【点睛】考查相似三角形的性质,掌握相似三角形对应角相等是解题的关键.15.如图,在△ ABC 中, DE ∥ BC , AD =3cm , BD =2cm ,则△ ADE 与△ ABC 相似比是_____;若 DE =4cm ,则 BC =________.【解答】 3:5203cm ; 【详解】∵AD=3cm ,BD=2cm , ∴AB=AD+DB=5cm. ∵DE ∥BC ,∴△ADE ∽△ABC ,且相似比为:35AD AB =; ∴35DE AD BC AB ==,即435BC =, ∴BC=203. 故答案为(1)35;(2)203.点睛:本题解题的要点是根据“平行于三角形一边的直线截另外两边(或两边的延长线),所得新三角形与原三角形相似”由DE ∥BC 得到△ADE ∽△ABC ,这样利用相似三角形的性质即可求得所求量了.16.在ABC 中,5AB AC ==,6BC =,点E 、F 分别在AB 、BC 边上,将BEF 沿直线EF 翻折后,点B 落在对边AC 的点为'B ,若'B FC 与ABC 相似,那么BF =________.【解答】3或3011【提示】由于对应边不确定,所以本题应分两种情况进行讨论:①△ABC ∽△B ' FC;②△ABC ∽△F B 'C.【详解】①当△ABC ∽△B 'FC 时:根据△ABC 是等腰三角形,则△B 'FC 也是等腰三角形, 则B 'FC=∠C=∠B,设BF=x,则CF=6-x, B 'F=B 'C=x,根据△ABC ∽△B 'FC ,得到:B F CFAB BC'=,得到656x x -=,解得x=3011;②当△ABC ∽△F B 'C 则FC=B 'F=BF,则x=6-x,解得x=3. 因而BF=3或3011. 【点睛】本题考查了相似三角形的性质,对应边的比相等,注意到分两种情况进行讨论是解决本题的关键.17.如图,已知ADE ABC ∽,相似比为2:3,则:BC DE 的值为________.【解答】3:2【提示】由于△ADE ∽△ABC ,且已知了它们的相似比,因此两三角形的对应边的比等于相似比.由此可求出BC 、DE 的比例关系.【详解】∵△ADE ∽△ABC ,且相似比为2:3, ∴BC :DE=3:2, 故答案为3:2.【点睛】本题考查对相似三角形性质的理解. (1)相似三角形面积的比等于相似比的平方;(2)相似三角形周长的比等于相似比; (3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.18.如图,在△ABC 中,AB=AC ,点D 在边BC 上,连接AD ,将线段AD 绕点A 逆时针旋转到AE ,使得∠DAE=∠BAC ,连接DE 交AC 于F ,请写出图中一对相似的三角形:________(只要写出一对即可).【解答】△ABD ∽△AEF(或△ABD ∽△DCF 或△DCF ∽△AEF 或△ADE ∽△ABC) 【详解】分析:先根据等腰三角形的性质,由AB=AC 得∠B=∠C ,再利用旋转的性质得∠ADE=∠E=∠B=∠C ,且∠BAD=∠CAE ,于是根据有两组角对应相等的两个三角形相似可判断△ABD ∽AEF . 详解:∵AB=AC , ∴∠B=∠C ,∵线段AD 绕点A 逆时针旋转到AE ,使得∠DAE=∠BAC ,∴∠ADE=∠E=∠B=∠C,∴∠BAD=∠CAE,∴△ABD∽AEF.故答案为△ABD∽AEF.点睛:本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.三、解答题19.根据下列条件,判断△ABC与△A′B′C′是否相似,并说明理由(1)AB=12,BC=15,AC=24,A′B′=25,B′C′=40,C′A′=20(2)AB=3,BC=4,AC=5,A′B′=12,B′C′=16,C′A′=20【解答】(1)见解析;(2)见解析.【提示】(1)通过计算得出两个三角形三边成比例,即可得出结论.(2)通过计算得出两个三角形三边成比例,即可得出结论.【详解】解:(1)∵AB123BC153AC243C'A'205A'B'255B'C'405 ======,,,∴△ABC∽△C′A′B′(2)∵AB31BC41AC51 A'B'124B'C'164A'C'204 ======,,∴△ABC∽△A′B′C′.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定方法,通过计算得出三边成比例是解题的关键.20.如图,在△ABC中,D、E两点分别在AC、AB两边上,∠ABC=∠ADE,AB=7,AD=3,AE=2.7,求AC的长.【解答】6.3.【详解】试题分析:已知∠ABC=∠ADE,∠A=∠A,则可推出△ABC∽△ADE,根据相似三角形的相似比即可求得AC的长.试题解析:在△ABC和△ADE中,∵∠ABC=∠ADE,∠A=∠A∴△ABC∽△ADE.∴AB ACAD AE=,即AB AE7 2.7AC 6.3AD3⋅⨯===.考点:相似三角形的判定和性质.21.如图,在正方形网格上有△ABC 和△DEF .(1)这两个三角形相似吗?为什么? (2)请直接写出∠A 的度数 ;(3)在上边的网格内再画一个三角形,使它与△ABC 相似,并求出其相似比. 【解答】(1)相似,理由见解析;(2)45º;(3)见解析【提示】(1)根据勾股定理列式求出AB 、AC 、BC 、DE 、DF 、EF 的长度,然后根据三边对应成比例,两三角形相似解答;(2)取AC 的中点O ,连接BO ,根据网格结构可以判断∠ABO=90°,△ABO 是等腰直角三角形,即可得解;(3)把△ABC 三边扩大2倍,然后利用网格结构作出即可. 【详解】(1)AB=22152=+, AC=22026=21+, BC=5, DE=1,DF=22152=+, EF=22222=2+, ∵5AB AC BCDE EF DF===, ∴△ABC ∽△DEF ;(2)如图,取AC 的中点O ,连接BO , 则△ABO 是等腰直角三角形, ∴∠A=45°;(3)如图,△A′B′C′与△ABC 相似,它们的相似比是2.【点睛】本题考查了利用相似变换作图,熟练掌握相似三角形的判定与性质,网格结构的特点是解题的关键.22.已知:如图AB//CD//EF ,AC 、BD 相交于点O ,E 在AC 上,F 在BD 上,且AE:EC=2:3,BD=10.(1)求BF 的长;(2)当AB=12,CD=8时,求EF 的长.【解答】(1)4 (2)4【提示】(1)根据平行线分线段成比例定理得出BF :FD 的值,从而得出BF 与FD 的数量关系,再再结合BF+DF=BD=10求出BF 的值.(2)先证明~,~OEF OAB OEF OCD 从而得出两组关于EF 的比例式,再根据和比的性质对比例式进行变形得出23AB EF AE CD EF EC -==+,代入AB 和CD 的值即可求出EF. 【详解】解:(1)∵AB//CD//EFAE BF EC DF∴= :2:3AE EC =23BF DF ∴= 23DF BF ∴= 10BD = 10DF BD BF BF ∴=-=-2(10)3BF BF ∴-=4BF ∴=(2)AB CD EF ‖‖~,~OEF OAB OEF OCD ∴,AB OA CD OC EF OE EF OE ∴== ,AB EF OA OE CD EF OC OE EF OE EF OE--++∴== ,AB EF AE CD EF EC EF OE EF OE-+==23AB EF AE CD EF EC -∴==+ 3()2()AB EF CD EF ∴-=+12,8AB CD ==3(12)2(8)EF EF ∴-=+4EF ∴=【点睛】本题考查平行线分线段成比例,相似三角形的性质与判定,比例的性质.(1)中能根据平行线分线段成比例得出BF 与FD 的数量关系是解决此问的关键;(2)中的难度在于能根据和比的性质将比例式进行变形,建立EF 有关的比例式和AE:EC 之间的等量关系.23.如图,直线EF 分别交ABC 的边AB ,AC 于点F ,E ,交BC 的延长线于点D ,已知BF BA BC BD ⋅=⋅.求证:AE CE DE EF ⋅=⋅.【解答】见解析【提示】由对应线段成比例且夹角相等可证ABC DBF ∽△△,根据两组对应角相等即证AEF DEC ∽△△,由相似三角形对应线段成比例的性质可得结论.【详解】证:BF BA BC BD ⋅=⋅,∴AB BC BD BF =, 又ABC DBF ∠=∠,∴ABC DBF ∽△△,∴A D ∠=∠.又AEF DEC ∠=∠,∴AEF DEC ∽△△,∴AE EF DE EC=,即AE CE DE EF ⋅=⋅. 【点睛】本题考查了相似三角形的性质和判定,综合利用其判定和性质进行证明是解题的关键. 24.如图,在△ABC 中,AB =AC ,点D ,E 分别在BC ,AB 上,且∠BDE =∠CAD.求证:△ADE ∽△ABD.【解答】证明见解析.【详解】试题分析:由等腰三角形的性质得出∠B=∠C,由三角形的外角性质和已知条件得出∠ADE=∠C,因此∠B=∠ADE,再由公共角∠DAE=∠BAD,即可得出△ADE∽△ABD.试题解析:∵AB=AC,∴∠B=∠C.∵∠ADB=∠C+∠CAD=∠BDE+∠ADE,∠BDE=∠CAD,∴∠ADE=∠C,∠B=∠ADE.∵∠DAE=∠BAD,∴△ADE∽△ABD.25.点D、E分别是△ABC两边AB、BC所在直线上的点,∠BDE+∠ACB=180°,DE=AC,AD =2BD.(1) 如图1,当点D、E分别在AB、CB的延长线上时,求证:BE=BD(2) 如图2,当点D、E分别在AB、BC边上时,BE与BD存在怎样的数量关系?请写出你的结论,并证明【解答】(1)证明见解析;(2)BE=3BD【提示】(1)在BD上找一点M,连接EM,使EM=ED,如图1.证明EMB ACB≅可得EB=AB,利用AD=2BD,AB=AD-BD即可得结论;(2)在AB上找一点M,连接EM,使EM=ED,如图2.证明EBM ABC可得BE EMAB AC=由AD=2BD,可得AB=AD+BD=3BD代入,即可得结论.【详解】(1)在BD上找一点M,连接EM,使EM=ED,如图1.则∠BDE=∠EMD.∵∠BDE+∠ACB=180°,∴∠EMB=∠ACB.∵DE=AC,∴EM=AC在△EMB 和△ACB 中,EBM ABC EMB ACB EM AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()EMB ACB AAS ∴≅∴EB=AB∵AD=2BD ,∴AB=AD-BD=BD.∴BE=BD ;(2) BE=3BD ,理由如下:在AB 上找一点M ,连接EM ,使EM=ED ,如图 2.则∠MDE=∠EMD.∵DE=AC,∴EM=AC.∵∠BDE+∠ACB=180, ∠EDM+∠BDE=180,∴∠EMD=∠ACB∵∠EBM=∠ABC,EBMABC ∴ BE EM AB AC∴= ∵AD=2BD,∴AB=AD+BD=3BD3BE AC BD AC∴=. ∴BE=3BD【点睛】本题考查了三角形全等的判定及性质以及相似三角形的判定及性质,掌握三角形全等的判定方法及相似三角形的判定及性质是解题的关键.。

初中相似三角形经典习题(附答案)

初中相似三角形经典习题(附答案)

一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。

分析:根据平行线的性质可知∠AED=∠C,∠A=∠FEC,根据相似三角形的判定定理可知△ADE∽△EFC.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考查的是平行线的性质及相似三角形的判定定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.考点:相似三角形的判定;三角形中位线定理;梯形。

菁优网版权所有专题:几何综合题。

分析:(1)利用平行线的性质可证明△CDF∽△BGF.(2)根据点F是BC的中点这一条件,可得△CDF≌△BGF,则CD=BG,只要求出BG的长即可解题.解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)点评:本题主要考查了相似三角形的判定定理及性质,全等三角形的判定及线段的等量代换,比较复杂.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.分析:由FD∥AB,FE∥AC,可知∠B=∠FDE,∠C=∠FED,根据三角形相似的判定定理可知:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.点评:本题很简单,考查的是相似三角形的判定定理:(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,则这两个三角形相似.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.解答:证明:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考查相似三角形的判定定理,关键是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.考点:相似三角形的判定;全等三角形的判定;等腰三角形的判定;旋转的性质。

相似三角形性质完整的题型+答案

相似三角形性质完整的题型+答案

相似三角形性质知识精要一、相似三角形的性质1、(定义):相似三角形的对应角相等,对应边成比例。

2、性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比。

3、性质定理2:相似三角形的周长比等于相似比。

4、性质定理3:相似三角形的面积比等于相似比的平方。

二、相似三角形的应用例题讲解:例题:地图比例尺为1:2000,一块多边形地区在地图上周长为50cm,面积为100cm2,实际周长为1000 m,实际面积为40000m2。

变式:东海大桥全长32.5千米,如果东海大桥在某张地图上的长为6.5厘米,那么该地图上距离与实际距离的比为( )。

A.1:5000000B.1:500000C.1:50000D.1:5000答案:B例题:(1)两个相似三角形的面积之比为9:16,它们的对应高之比为3:4 。

(2)两个相似三角形的相似比为1:3,则它们的周长比为1:3 ,面积比为1:9 。

变式:(1)两个相似三角形面积之比是1:3,则他们对应边上的高之比为( )。

(A).1:3 (B) 3:1 (C) 1:3(D) 1:9(2)两个相似三角形的相似比是2:3,面积相差30厘米2,则它们的面积之和是( )。

(A)150厘米2(B) 65厘米2(C) 45厘米2(D) 78厘米2答案:(1) C (2)D。

例题:如图,已知DE//BC ,AD:DB=2:3,那么S △ADE :S △ECB = 4:15 。

变式:如图,在ABCD 中,AC 与DE 交于点F ,AE:EB=1:2,S △AEF =6cm 2,则S △CDF 的值为( )。

A.12cm 2B.15cm 2C.24cm 2D.54cm 2答案:D 。

例题:如图,已知梯形ABCD 中,AD//BC ,AD:BC=3:5, 求: (1)S △AOD :S △BOC 的值;(2)S △AOB :S △AOD 的值. 答案:(1)9:25 (2)5:3。

相似三角形专题练习及答案

相似三角形专题练习及答案

相似三角形专题练习及答案一、单选题1.以下条件不可以判定与相似的是()A.B.,且’C.’,’D.,且’2.如图,中,、分别为边、上的点,且,下列判断错误的是()A. B. C. D.3.已知:如图,在中,,则下列等式成立的是()A. B. C. D.4.如图,下列能判断的条件是()A. B. C. D.5.若两个相似三角形对应边上的高线之比为3:1,则对应角的平分线之比为()A. 9:1 B. 6:1 C. 3:1 D.:16.若两个相似三角形的面积比为,那么这两个三角形的对应边的比为()A. 4:1 B. 1:4 C. 2:1 D. 16:17.如图,在△ABC中,AB=9,BC=18,AC=12,点D在边AC上,且CD=4,过点D作一条直线交边AB于点E,使△ADE与△ABC相似,则DE的长是()A. 12 B. 16 C. 12或16 D.以上都不对8.中,,,点从点开始沿边向点以的速度移动,点从点开始沿边向点以的速度移动,如果,分别从,同时出发,经过()秒钟与相似?()A. 2.5 B. 3.5 C. 1和2.5 D. 1和3.59.如图,是直角三角形的斜边上异于、的一点,过点作直线截三角形,使截得的三角形于三角形相似,则过点满足这样条件的直线最多有()条.A. 1 B. 2 C. 3 D. 410.如图,是的边上异于、一点,过点作直线截得的三角形与相似,那么这样的直线可以作的条数是()A. 1条 B. 2条 C. 3条 D. 4条二、填空题11.如图,在△ABC中,DE∥BC,,则=________.12.如图,中,为上一点,连接,请添加一个条件,使,你添加的条件是________.13.如图,正五边形ABCDE内接于⊙O,对角线AC,BE相交于点M.若AB=1,则BM的长为_____.14.如图,在直角坐标系中,为直角三角形,,,点A坐标为,AB 与x轴交于点C,则AC:BC的值为______.15.如图,一条宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为________.16.如图,已知正方形ABCD的边长为4,点P为平面上任意一点,PB=2,则PD﹣PC的最大值为_____.三、解答题17.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)(1)若△CEF与△ABC相似,且当AC=BC=2时,求AD的长;(2)若△CEF与△ABC相似,且当AC=3,BC=4时,求AD的长;(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.18.如图,已知中,,,.如果点由出发沿方向点匀速运动,同时点由出发沿方向向点匀速运动,它们的速度均为.连接,设运动的时间为(单位:).解答下列问题:当为何值时平行于;当为何值时,与相似?是否存在某时刻,使线段恰好把的周长平分?若存在,求出此时的值;若不存在,请说明理由.是否存在某时刻,使线段恰好把的面积平分?若存在,求出此时的值;若不存在,请说明理由.19.如图三角形中,有一内接矩形,为边上的高,,,矩形面积为,与交于,设为,为.求与的函数关系式.当取何值时,有最大值,最大值是多少?20.已知:如图,在中,点,分别在边,上,求证:;如果,求证:.21.如图,在中,是角平分线,点在上,且.求证::已知,,求长.22.在的方格纸中,每个小格的顶点叫做格点.以格点连线为边的三角形叫做格点三角形.请你在图的方格纸中,画一个格点三角形,使与一个格点三角形相似(相似比不为).请你在图的方格纸中,画一个格点三角形,使与一个格点三角形相似,面积最大,并求最大值是多少.与的相似比不是的格点三角形共有几个(相似比相同时只算个)?23.如图,AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、A不重合),过点C作AB的垂线交⊙O于点D,连接OD,过点B作OD的平行线交⊙O于点E,交CD的延长线于点F.(1)若∠F=30°,请证明E是的中点;(2)若AC=,求BE•EF的值.24.如图,△ABC中,∠ACB=90°,点E在BC上,以CE为直径的⊙O交AB于点F,AO∥EF (1)求证:AB是⊙O的切线;(2)如图2,连结CF交AO于点G,交AE于点P,若BE=2,BF=4,求的值.参考答案1.D2.B3.C4.C5.C6.C7.A8.C9.C10.D【详解】(1)如图1,作PE∥BC,则△AEP∽△ACB;(2)如图2,作PE∥AC,则△BPE∽△BAC;(3)如图3,作PE,使AE:AB=AP:AC,则△AEP∽△ABC;(4)如图4,作PE,使BP:CB=BE:AB,则△BEP∽△BAC.故选D.11.12.或或13..【详解】设BM=x,∵ABCDE是正五边形,∴∠BAE=108°,∠AEB=∠ABE=36°,∴∠EAM=∠AME=72°,∴ME=AE,∵∠BAE=∠AMB,∠BAM=∠AEB∠ABM=∠ABE,∴△ABM∽△ABE,∴即,解得(舍去),,故答案为:14.【详解】如图所示:作轴,垂足为D,作轴,垂足为E.,.,,.,,,又,∽,,即,解得:.::::.故答案为:.15.【详解】如图,作DE⊥AC于点E,∵道路的宽为4m,∴DE=4米,∴AE=3m,∵∠DAE+∠BAE=90°,∠DAE+∠ADE=90°,∴∠BAE=∠ADE,∴△DAE∽△ACB,∴ DE:AB = AE:BC,即4:AB = 3:12,解得:AB=16(cm),∴道路的面积为AD×AB=5×16=80(m2),故答案为:80.【点睛】16.5详解:如图1中,在BC上取一点G,使BG=1., ,.∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴,∴PD﹣PC=PD-PG.∵PD-PG≤DG,∴当点P在DG的延长线上时PD﹣PC的值最大,如图2.∵,∴PD﹣PC的值最大值是5.故答案为:5.17.(1);(2) 1.8或2.5;(3) 当点D是AB的中点时,△CEF与△ABC相似.理由见解析.解:(1)如答图1.∵△CEF∽△ABC,∴=,又∵AC=BC=2,∴CE=CF,由翻折性质得CE=DE,CF=DF,∴四边形CEDF是菱形,∴∠ACD=∠BCD,又∵AC=BC,∴AD=BD=AB=×=.(2)若△CEF与△ABC相似,且当AC=3,BC=4时,有两种情况:①当△CEF∽△CAB时,如答图2.此时∠CEF=∠A,∴EF∥BC.由折叠性质可知,CD⊥EF,∴CD⊥AB,在Rt△ABC中,AC=3,BC=4,∴AB=5,∴cosA=.∴在Rt△ACD中,AD=AC•cosA=3×=1.8;②当△CEF∽CBA时,如答图3.此时∠CEF=∠B.由折叠性质可知,∠CQE=90°,∴∠CEF+∠ECD=90°,又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得CD=BD,∴AD=AB=×5=2.5.综上所述,当AC=3,BC=4时,AD的长为1.8或2.5.(3)当点D是AB的中点时,△CEF与△ABC相似.理由如下:如答图4,连接CD,与EF交于点Q.∵CD是Rt△ABC的中线,∴CD=DB=AB,∴∠DCB=∠B. 由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,又∵∠B+∠A=90°,∴∠CFE=∠A,又∵∠ECF=∠BCA,∴△CEF∽△CBA.18.解:∵,,,∴,∵、的运动速度为,∴,则,当时,则,即,解得,即当时;∵为直角三角形,∴当和相似时,必有一个角为直角,当时,则,由可知,当时,则,即,解得,∴当为或时和相似;不存在.理由如下:当线段恰好把的周长平分时,则有,即,整理得,显然不成立,∴不存在使把周长平分的;存在.如图,过作于点,则,∴,即,解得,∴,且,当线段恰好把的面积平分时,则有,即,整理可得,解得(舍去)或,∴当时,线段恰好把的面积平分.19.∵矩形,,∴,∴,,∴,∵,,为,为.∴,∵,∴,∴;∵•,∴,∴,∴当时,的值最大.20证明:∵,∴,又∵,∴,∴,∴;∵,∴,∵,∴,∴,∵,,∴,∴,∵,,∴,∴.21.证明:∵是角平分线,∴,∵,∴,∴,∴;解:∵,∴,∵,∴,∴,∴,∴.22.如图所示:如图所示:最大格点三角形三边分别为:,,;根据相似比为:,∴三角形面积比为:,∴最大值为:.根据三角形最大边长以及最小边长即可得出答案:个.23.(1)证明:连接OE,如图1所示.∵CF⊥AB,∴∠FCB=90°.∵∠F=30°,∴∠OBE=60°.∵OB=OE,∴△OBE为等边三角形,∴∠OEB=∠BOE=60°.∵OD∥BF,∴∠DOE=∠BEO=∠BOE=60°,∴=.(2)过点Q作OM⊥BE于M,如图2所示.∵OB=OE,∴BE=2BM.∵OD∥BF,∴∠COD=∠B.在△OBM和△DOC中,∴△OBM≌△DOC(AAS),∴BM=OC=2﹣=,∴BE=2OC=3.∵OD∥BF,∴△COD∽△CBF,∴=,即=,∴BF=,∴EF=BF﹣BE=﹣3=,∴BE•EF=3×=5.24.(1)连接OF,如图1,∵OA∥EF,∴∠1=∠3,∠2=∠4,∵OE=OF,∴∠3=∠4,∴∠1=∠2,在△AOC和△AOF中,,∴△AOC≌△AOF,∴∠ACO=∠AFO=90°,∴OF⊥AB,∴AB是⊙O的切线;(2)如图2,在Rt△OFB中,设OE=OF=r,∵OF2+BF2=OB2,∴r2+42=(r+2)2,解得r=3,∴OB=5,设AC=AF=t,则AB=4+t,在Rt△ACB中,t2+82=(t+4)2,解得t=6,即AC=6,∴AO=,∵∠CAO=∠GAO,∠ACO=∠AGC=90°,∴△ACO∽△AGO,∴AC:AO=AG:AC,∴AC2=AO•AG,∴AG=,∴AO=AG,∵OA∥EF,∴△BEF∽△BOA,∴,∴,∴,∵EF∥GA,∴△PEF∽△PAG,∴=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.如图所示,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC=;④2AC AD AB = . 其中单独能够判定ABC ACD △∽△的个数为( )A .1B .2C .3D .4【答案】C2.如图,已知AB CD EF ∥∥,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF=【答案】A3.已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为(A)1:2 (B)1:4 (C)2:1 (D)4:1【答案】B4. 如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为1:4.其中正确的有:A .0个B .1个C .2个D .3个【答案】D5.若△ABC ∽△DEF, △ABC 与△DEF 的相似比为1∶2,则△ABC 与△DEF 的周长比为( )A .1∶4B .1∶2C .2∶1D 【答案】B6.(2009年杭州市)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个【关键词】相似三角形有关的计算和证明【答案】B7.2009年宁波市)如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( )A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形D .四边形MBCO 和四边形NDCO 都是等腰梯形【关键词】位似【答案】C8.(2009年江苏省)如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格【关键词】平移【答案】D9.(2009年义乌)在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。

已知这本书的长为20cm ,则它的宽约为A .12.36cm B.13.6cm C.32.36cm D.7.64cm【关键词】黄金比【答案】A10. (2009年娄底)小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O 、准星A 、目标B 在同一条直线上,如图4所示,在射击时,小明有轻微的抖动,致使准星A 偏离到A ′,若OA=0.2米,OB=40米,AA ′=0.0015米,则小明射击到的点B ′偏离目标点B 的长度BB ′为 ( )A .3米B .0.3米C .0.03米D .0.2米【关键词】相似三角形【答案】B11.(2009恩施市)如图,在ABC △中,C ∠9060B D =∠=°,°,是AC 上一点,DE AB ⊥于E ,且21CD DE ==,,则BC 的长为( )A .2 BC. D. 【关键词】解直角三角形、相似【答案】BD B AN MO12.(2009年甘肃白银)如图3,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( )A .12mB .10mC .8mD .7m【关键词】相似三角形判定和性质【答案】A13.(2009年孝感)如图,将放置于平面直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得△A′OB′.已知∠AOB =30°,∠B =90°,AB =1,则B′点的坐标为A.3)22 B.3(22 C.1(22 D.1)22【关键词】旋转【答案】A14.(2009年孝感)美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为A .4cmB .6cmC .8cmD .10cm 【答案】C15. (2009年新疆)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )【关键词】相似三角形的判定【答案】A16.(2009年天津市)在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为( )A .A .8,3B .8,6C .4,3D .4,6【关键词】相似三角形的性质【答案】A17.(2009年牡丹江市)如图, ABC △中,CD AB ⊥于D ,一定能确定ABC △为直角三角形的条件的个数是( )①1A ∠=∠,②CD DB AD CD=,③290B ∠+∠=°,④345BC AC AB =∶∶∶∶, ⑤CD AC BD AC ∙=∙A .1B .2C .3D .4【关键词】三角形相似的判定和性质【答案】C18. (2009白银市)如图,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( )A .12mB .10mC .8mD .7m【关键词】相似三角形的判定和性质【答案】A19. (2009年衢州)在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为A .9.5B .10.5C .11D .15.5【关键词】线段的比和比例线段【答案】D20.(2009年衢州)如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原来的2倍,记所得的像是△A ′B ′C .设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+【关键词】相似三角形判定和性质【答案】D21.(2009年舟山)在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为A.9.5 B.10.5C.11 D.15.5【关键词】线段的比和比例线段【答案】D22.(2009年舟山)如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的横坐标是a,则点B的横坐标是A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+【关键词】相似三角形判定和性质【答案】D23.(2009年济宁市)如图,在长为8 cm、宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A. 2 cm2B. 4 cm2C. 8 cm2D. 16 cm2【关键词】相似多边形【答案】C24. (2009年福州)如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MN, B.3DE=2MN, C. 3∠A=2∠F D.2∠A=3∠F【关键词】位似变换【答案】B25.(2009年宜宾)若一个图形的面积为2,那么将它与成中心对称的图形放大为原来的两倍后的图形面积为( )A. 8B. 6C. 4D. 2【关键词】相似图形的性质【答案】A.26. .(2009年广西梧州)如图,正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O , 则DOAO 等于( ) A .352 B .31 C .32 D .21【关键词】相似三角形【答案】D27.(2009年甘肃定西)如图,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( )A .12mB .10mC .8mD .7m【关键词】相似三角形【答案】A28. (2009年湖州)如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE AC ⊥,EF AB ⊥,FD BC ⊥,则DEF △的面积与ABC △的面积之比等于( )A .1∶3B .2∶3C 2D 3【关键词】等边三角形的性质,相似的性质【答案】A29.(2009年温州)一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A .第4张B .第5张 C.第6张 D .第7张【关键词】等腰三角形性质,三角形相似的性质,梯形中位线【答案】C30.(2009年兰州)如图,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是1.5m ,两个路灯的高度都是9m ,则两路灯之间的距离是A .24mB .25mC .28mD .30m【关键词】相似三角形、灯光与影子【答案】D31.(2009年济宁市)如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A. 2 cm 2B. 4 cm 2C. 8 cm 2D. 16 cm 2【关键词】相似多边形【答案】C32. (09湖南怀化)如图1,D 、E 分别是AB 、AC 的中点,则:ADE ABC S S =△△( )A . 1∶2B .1∶3C .1∶4D . 2∶3【关键词】相似三角形有关的计算【答案】C33. (2009年山西省)如图,AB 是O ⊙的直径,AD 是O ⊙的切线,点C 在O ⊙上,BC OD ∥,23AB OD ==,,则BC 的长为( )A .23B .32C D【关键词】圆周角和圆心角;切线定理;相似三角形有关的计算;相似三角形与圆【答案】A34.(2009年山西省)如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32 B.76 C .256 D .2【关键词】相似三角形判定和性质;勾股定理;线段和角的概念、性质【答案】B35. (2009年枣庄市)如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA ,OB ,OC的中点,则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:6【关键词】相似三角形有关的计算和证明【答案】B36. (2009呼和浩特)如图,AB 是O ⊙的直径,点C 在圆上,CD AB DE BC ⊥,∥,则图中与ABC △相似的三角形的个数有( )A .4个B .3个C .2个D .1个【答案】37.(2009年抚顺市)如图所示,已知点E F 、分别是ABC △中AC AB 、边的中点,BE CF 、相交于点G ,2FG =,则CF 的长为( )C D O EA.4 B.4.5 C.5 D.6【关键词】中位线二、填空题1.(2009年重庆市江津区)锐角△ABC中,BC=6,,12=∆ABCS两动点M、N分别在边AB、AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y >0),当x =,公共部分面积y最大,y最大值= ,【关键词】三角形、正方形、二次函数极值相似【答案】3,6x y==2.(2009年滨州)在平面直角坐标系中,ABC△顶点A的坐标为(23),,若以原点O为位似中心,画ABC△的位似图形A B C'''△,使ABC△与A B C'''△的相似比等于12,则点A'的坐标为.【关键词】三角形位似..【答案】(4,6)3.(2009威海)如图,△ABC与△A′B′C ′是位似图形,点O是位似中心,若OA=2A A′,S△ABC=8,则S △A′B′C ′=________.【关键词】位似图形【答案】184.(2009年吉林省)如图,OAB△的顶点B的坐标为(4,0),把OAB△沿x轴向右平移得到CDE△,如果1,CB=那么OE的长为.【关键词】平移,平面直角坐标系内的平移【答案】7AF ECBG5.(2009山西省太原市)如图是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割.已知AB =10cm ,则AC 的长约为 cm .(结果精确到0.1cm )解析:本题考查黄金分割的有关知识,由题意知2AC BC AB =⨯,∴()21010AC AC =-⨯,解得x ≈6.2,故填6.2..【关键词】黄金分割【答案】6.2.6.(2009烟台市)如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论:①AFC C ∠=∠;②DF CF =; ③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是 (填写所有正确结论的序号).【关键词】全等、相似【答案】①,③,④7.(2009年甘肃庆阳)如图11,正方形OEFG 和正方形ABCD 是位似形,点F 的坐标为(1,1),点C 的坐标为(4,2),则这两个正方形位似中心的坐标是 .【关键词】相似三角形判定和性质【答案】(2-,0)8.(2009年广西南宁)三角尺在灯泡O 的照射下在墙上形成影子(如图6所示).现测得20cm 50cm OA OA '==,,这个三角尺的周长与它在墙上形成的影子的周长的比是 .【关键词】投影;相似三角形 【答案】259.(2009年孝感)如图,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC 的面积是 ▲ .【关键词】相似三角形 【答案】144;10.(2009年牡丹江市)如图,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CFAD= .【关键词】相似三角形的性质 【答案】1211. (2009年日照市)将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .【关键词】相似三角形的性质 【答案】712或2; 12.(2009年重庆)已知ABC △与DEF △相似且面积比为4∶25,则ABC △与DEF △的相似比为 .【关键词】相似三角形的性质 【答案】2:5. 13.(2009年莆田)如图,A B 、两处被池塘隔开,为了测量A B 、两处的距离,在AB 外选一适当的点C ,连接AC BC 、,并分别取线段AC BC 、的中点E F 、,测得EF =20m ,则AB =__________m .【关键词】相似三角形 答案:4014. (2009年牡丹江)如图,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CFAD= . 【关键词】相似三角形的面积比 【答案】1215.(2009年凉山州)已知ABC A B C '''△∽△且1:2ABC A B C S S '''=△△:,则:AB A B ''= . 【关键词】相似三角形的性质【答案】16. (2009年宁德市)如图,△ABC 与△DEF 是位似图形,位似比为2∶3,已知AB =4,则DE 的长为 ____.【关键词】位似 【答案】617.(2009年湖北荆州)如图,已知零件的外径为25mm ,现用一个交叉卡钳(两条尺长AC 和BD 相等,OC=OD )量零件的内孔直径AB .若OC ∶OA=1∶2,量得CD =10mm ,则零件的厚度_____x mm =.【关键词】相似三角形 【答案】18.(2009年新疆乌鲁木齐市)如图,在ABC △中,DE BC ∥,若123AD DE BD ===,,,则BC = .【关键词】相似三角形判定和性质 【答案】819. (2009年山西省)如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是 .【关键词】相似,中心投影 【答案】(9,0)20. (2009年黄石市)在□ABCD 中,E 在DC 上,若:1:2DE EC =,则:BF BE = . 【关键词】平行四边形的性质;相似三角形判定和性质【答案】5:321.(2009东营)将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 . 【关键词】相似三角形【答案】127或2;三、解答题1.(2009年台湾) 某校一年级有64人,分成甲、乙、丙三队,其人数比为4:5:7。

相关文档
最新文档