带有大开口的船用玻璃钢夹层板结构力学性能分析

合集下载

钢夹层板船体结构优化设计及其强度研究

钢夹层板船体结构优化设计及其强度研究

钢夹层板船体结构优化设计及其强度研究摘要:钢夹层板作为复合材料领域的新兴产品,凭借其简单的工艺、较高的强度、稳定的性能、较低的成本等一系列优势,得以应用于驳船、渡轮、散货船等船体结构中,进一步研究和优化意义重大。

关键词:钢夹层板;船体结构优化;强度钢夹层板复合材料刚性大、强度高、重量轻,而且经济环保、舒适性好,逐渐成为船体结构的重要材料,需对钢夹层板船体结构予以优化设计,深入研究。

1.钢夹层板船体结构优化设计原理强度是复合材料推广应用过程中必须解决的关键问题,钢夹层板材料也不例外,若钢夹层板船体结构强度设计不当,则易对船体的安全性和使用效益构成威胁。

因此通过综合分析、合理对比夹层板理论、单层板等效、有限元结构等钢夹层板船体结构分析方法,以及屈曲强度和极限强度分析方法后,得出了优化钢夹层板船体结构的设计原理,具体阐述如下。

对于船体而言,高航速和大荷载是其重要的技术指标,所以如何在满足刚度和强度的基础上实现厚度优化尤为关键,简而言之,就是设计的夹层板和芯层厚度,既要符合屈曲、强度、频率、位移、尺寸等约束要求,也要确保结构重量最轻[1]。

这就需要我们合理计算强度因子在满足R<1的条件下单位夹层板的重量参数的最小值,即的极小值,其中、、、、、分别代表顶板厚度、底板厚度、芯材厚度、表板密度、芯材密度和胶层重量,且设/ =k,当其满足4.2 / -3.4时可得到最小的F值,表示可实现钢夹层板船体结构设计的优化,但在实际设计中应妥善处理剖面模数与结构重量的矛盾。

2.钢夹层板船体结构优化设计及其强度研究2.1.结构优化设计为更为直观的了解钢夹层板船体结构优化设计及其强度性能,在此以一钢制油船为例加以分析。

已知该母型船为无限航区的双壳油船,总长、垂线间长、型宽、型深、设计吃水分别为144.0、134.5、21.5、11.3、7.65(m),吃水方形系数为0.8177,排水量和压载舱容分别为16660和6610(m?),中拱和中垂最大静水弯矩分别为958516和-1010319(kN.m)[2];然后基于上述提及的结构优化原理和实际需要对该船的原有结构作了改装设计,其中甲板、内外壳、内外底、斜板等为重点优化部位,经初步分析发现,优化后的钢夹层板船体结构的重量有所减轻;为进一步了解结构优化结果以及其强度性能,则构建了有限元模型,但为实现非对称性载荷工况,除了涉及端部横舱壁外,还应在模型中引入船体左右部位的舷结构。

船用多孔材料夹层板冲击动态响应实验研究

船用多孔材料夹层板冲击动态响应实验研究

船用多孔材料夹层板冲击动态响应实验研究朱凌;郭开岭;李应刚;訾欢【摘要】多孔材料夹层结构具有优越的力学性能,可用于设计船舶防护结构,以提高船体结构的抗爆抗冲击性能.文章利用INSTRON 9350冲击试验机对泡沫铝夹层板和轻木夹层板进行了动态冲击实验,分析了在不同能量冲击作用下以上两种多孔材料夹层板的冲击响应特点,并将两种夹层板的抗冲击性能进行了对比.结果表明,在冲击载荷作用下,泡沫铝夹层板的冲击力峰值大于轻木,而其最终挠度小于轻木;泡沫铝夹层板上下面板与芯层之间没有出现脱层现象,而轻木夹层板出现了脱层现象,并且轻木芯层出现断裂失效;泡沫铝夹层板的塑性吸能率大于轻木,其能量吸收性能比轻木夹层板好,即泡沫铝夹层板的抗冲击性能优于轻木.文中的研究成果可以为船舶结构的抗冲击设计提供技术支撑.【期刊名称】《船舶力学》【年(卷),期】2019(023)006【总页数】13页(P706-718)【关键词】船用多孔夹层结构;冲击响应;能量吸收;实验研究【作者】朱凌;郭开岭;李应刚;訾欢【作者单位】高性能船舶技术教育部重点实验室(武汉理工大学),武汉 430063;武汉理工大学交通学院,船舶与海洋结构工程系,武汉 430063;高新船舶与深海开发装备协同创新中心,武汉 430063;高性能船舶技术教育部重点实验室(武汉理工大学),武汉 430063;武汉理工大学交通学院,船舶与海洋结构工程系,武汉 430063;高性能船舶技术教育部重点实验室(武汉理工大学),武汉 430063;武汉理工大学交通学院,船舶与海洋结构工程系,武汉 430063;高性能船舶技术教育部重点实验室(武汉理工大学),武汉 430063;武汉理工大学交通学院,船舶与海洋结构工程系,武汉 430063【正文语种】中文【中图分类】U661.720 IntroductionWhen ships navigate in the rough sea,they could suffer complex loadings,such as impacts from wave,collision with other ships and bridges,resulting in serious accidents,which can lead to loss of people's life and properties.Thus,to improve the impact resistance of ship structures is very important for the safety and reliability of ships and other marine structures.The conventional method to improve the structural safety of ship is to increase the thickness,but it may result in the growth of the energy consumption of ships,and the decline of the loadingcapacity.Contributing to the lightweight and excellent mechanical properties in energy absorption,the applications of sandwich structures with lightweight material cores in anti-impact for engineering structures design are increasing rapidly[1-4].Nowadays,many researchers have investigated the mechanical properties of sandwich structures with balsa wood core and aluminum foam core respectively[5-14].The compression tests loading in three different directions,i.e.transverse,longitudinal,radial,were conducted to analyze the differences of the mechanical properties of balsa wood under differentimpact loading states[6].What is more,three point bending tests were performed to examine the failure patterns of balsa wood sandwich beam and then the collapse loading was discussed[7].Besides,the dynamic responses of balsa wood sandwich plates and PVC foam sandwich plates suffering from impact loadings were compared and discussed based on the results of impact tests[8].The dynamic behavior of sandwich plates with balsa wood core and cork core subjected to mass impacts with medium velocity was investigated,the contact force,energy absorption,indentation depth and global deformation were compared[9].On the other hand,there are also some studies on the mechanical performances of aluminum foam as well as its sandwich structures.The quasi-static and penetration behavior of aluminum foam sandwich structures was experimentally studied,the effects of impact velocity,face sheet thickness and density of aluminum foam on the anti-penetration capacity were discussed[10].In addition,the repeated impact tests were conducted on sandwich plates with aluminum foam core,and the relationship between the dynamic responses and the impact number was examined[12].Moreover,the effects of low temperature on dynamic behavior of aluminum foam sandwich plates under single and repeated impacts were experimentally studied[13-14].BWSP and AFSP both have excellent impact resistance,but there are some differences in their physical and mechanical properties.As for physical properties,the density of balsa wood is much lighter than that of aluminum foam,thus balsa wood is better in lightweight design.On the other hand,balsa wood is the kind of material absorbing water easily,whilealuminum foam is waterproof,thus when accident happens,the BWSP may absorb amount of water and increase the weight of the ship,which can accelerate the sinking of the ship and make the situation worse.As for mechanical properties,though there were already many studies on BWSP and AFSP respectively,the differences between the impact resistance of them were rarely investigated.The applications of sandwich structures with porous materials core in structural design of ship are affected by the impact resistance of the structures significantly,so it is very important and essential to discuss the differences in impact resistance between AFSP and BWSP,and to reveal the mechanics mechanism causing the differences.In this paper,the impact tests on AFSP and BWSP were performed by INSTRON 9350 Drop Tower,and the time histories of impactforce,displacement,velocity and absorbed energy,as well as the force-displacement curves were obtained and analyzed.Moreover,the deformation and failure modes,the energy absorption capacity of AFSP and BWSP were compared and discussed.Finally,the impact resistance of BWSP and AFSP was compared comprehensively and some suggestions were proposed for the applications of porous material sandwich structures on the structural design of ship and other marine structures.1 Impact tests on sandwich plates1.1 Experiment apparatus and methodThe impact tests were conducted by using INSTRON 9350 Drop Tower as shown in Fig.1.The total impact mass including impact nose,force transducer and additional mass is 31.459 kg and the maximum velocity canbe up to 24 m/s.The impactor with a 25 mm diameter hemispherical nose was connected to a force transducer with a maximum loadcarrying capacity of 90 kN.During the impact tests,all the data were collected from the force transducer by a data acquisition system(DAS 64K).Thus,the time histories of velocity,displacement,absorbed energy were converted from the time history of impact force by Eqs.(1)-(3).Before the impact test,the sample was clamped in the middle of the clamp with bolts to provide fixed boundary,and the inner dimension of the clamp apparatus was 180mm×180 mm.In order to determine the dynamic behavior of BWSP and AFSP subjected to impact loadings and examine the effects of impact energy,a series of impact energy from 100 J to 300 J were selected,as shown in Tab.1.Fig.1 INSTRON 9350 drop towerTab.1 Impact tests conditionNumber Impact energy/J Impact mass/kg Impact velocity/(m/s)T1 T2 T3 T4 T5 100 150 200 250 300 31.459 31.459 31.459 31.459 31.459 2.52 3.09 3.57 3.99 4.371.2 Test samples and material propertiesThe samples of AFSP and BWSP(shown in Fig.2)were composed of front face sheet,back face sheet and foam core.The face sheets were bonded to the foam core with epoxy resin ad-hesive being heated under about 60℃.The overall dimensions of the sandwich plate were 250 mm×250 mm with thickness of 22.5 mm.The thicknesses of the face sheets and foam core were 1.25 mm and 20 mm,respectively.Fig.2 Test specimensThe material properties of aluminum foam and balsa wood were obtained by conducting quasi-static compression tests,using the Universal Testing Machine.The material properties are summarized in Tab.2,and the stress-strain curves of aluminum foam and balsa wood are illustrated in Fig.3. Tab.2 Mechanical properties of porous materialsDensity(g/cm3)Young's model(MPa)Yield stress(MPa)Plateau stress(MPa) Densification strain Aluminum foam Balsa wood 0.40 0.16 812 708 7.2 8.5 7.0 7.5 0.60 0.85 Fig.3 Stress-strain curves of porous materialsThough aluminum foam and balsa wood are both lightweight porous materials,the matrix materials of them are quite different,i.e.the matrix material of aluminum foam is metal,while that of balsa wood is fiber.It can be found from Fig.3,the plateau stress of aluminum foam and balsa wood is approximately equal.However,behind the yield point,the tendencies of the stress versus strain for them are reversed.In the plateau stage,as the strain increased the plateau stress of aluminum foam increased slightly,while the plateau stress of balsa wood decreased.The reason for this phenomenon is the difference in the microstructure.Aluminum foam can be regarded as isotropic material,during compressing process,the wall of core collapses gradually,thus the plateau stress increases.On the contrary,balsa wood is anisotropic material,the fiber of which is very easy to delaminate when suffering from shear force,and then be separated from the sample,resulting in the fiber closed to the boundary cannot resistance the compression force anymore.Besides,in the plateau stage,the oscillationof stress of aluminum foam is larger than that of balsa wood,because the unit size of balsa wood is much smaller than that of aluminumfoam,resulting in the stress variation of balsa wood is smoother than that of aluminum foam.As is known the densification strain is relevant to the unit size of porous material.By comparison,it can be found that the densification strain of balsa wood is larger than that of aluminum foam,indicating the porosity of balsa wood is larger than that of aluminum foam.1.3 Experimental resultsThe deformation profiles of AFSP and BWSP suffering from impacts with different impact energy are presented in Fig.4 and Fig.5.It can be found that the deformation patterns of the AFSP and BWSP were almost the same,i.e.the front face experienced local indention,while the global deformation is very small,and there is almost no deformation adjacent to the boundary.Judging from the changes of the white lines,it can be known the deformation area and the deflection of front face increased gradually with the increase of impact energy.By contrast,the back face underwent transverse bending,and the deflection of back face also increased as the impact energy increased.The white lines on the boundary were still straight,indicating that the boundary condition can be approximately regarded as fixed with no displacement and ration.Fig.4 Deformation of AFSP under impact loadingsFig.5 Deformation of BWSP under impact loadingsThe process of the impact can be divided into two main stages,i.e.loadingstage and unloading stage.In the loading stage,as the time increased,the impact force and the deflections of face sheets increased gradually,while the impact velocity declined moderately until the deflections of the sandwich plate reached the maximum value.In the unloading stage,the elastic deformation started to recover,resulting in the energy absorbed by sandwich plate descended,the impact force dropped gradually,while the impact velocity grew from zero in reverse direction until the impactor separated from the front face sheet.The time histories of dynamic responses of AFSP and BWSP under different impact energy are illustrated in Fig.6 and Fig.7.The tendencies of time histories of impact force,displacement,impact velocity and absorbed energy were very similar for AFSP and BWSP.Under different impact energy,the duration time of impact is almost the same,while the peak impact force increased with the increase of impact energy.As the impact time increased,the deflection of front face increased steadily.When the value of deflection arrived the maximum,the impactor began to rebound,and then the deflection of front face declined gradually to be constant after the separation of the impactor from the front face.At the beginning of the impact,the impact velocity decreased steadily to be zero at the moment the deformation of front face arrived to its largest value;afterwards,owning to the rebound of the impactor the impact velocity increased in reverse direction until the separation of the impactor from the front face.During the impact,the deformation energy is mainly composed of two parts,including elastic energy and plastic energy.Theelastic energy can be released in the end of the impact,while the plastic energy will be transformed into permanent plastic deformation which cannot be released.The energy absorbed by sandwich plates increased with the increase of the impact time.When the deformation is the largest,the energy absorption is the largest,and then the elastic energy began to be released,resulting in the energy absorbed by sandwich plates declined to be constant values once the impactor separated from the front faces.Fig.6 Time histories of dynamic responses of AFSPFig.7 Time histories of dynamic responses of BWSPFig.8 Force-displacement curve of porous materials sandwich structures The force-displacement curves of sandwich plates under different impact energy are presented in Fig.8.As the displacement increased,the impact force increased,and the loading stiffness almost kept the same.When the value of impact force reached maximum,the impactor began to rebound from the front face,and the unloading stage occurred.In the unloading stage,the slopes of force-displacement curves changed to be negative,and no change occurred in the unloading stiffness.Under different impact energy,the values of loading stiffness and unloading stiffness were almost equal to each other respectively,resulting from the paths of loading and unloading under different impact energy were almost the same.Under impact loadings,there was no delamination between the face sheet of AFSP and the core layer,but the phenomenon of delamination occurred in BWSP.The front face sheet and the stiffness of balsa wood does notmatch,when suffering from impact loadings,the front face sheet appeared large local deformation,and then balsa wood was separated from the face sheet as shown in Fig.9.The initial specimen of BWSP is presented in Fig.9(a),the epoxy resin was used as adhesive.Under impact with low energy,there was no delamination between the front face and the core layer as shown in Fig.9(b),contributing to the deformation was very small.However,as the impact energy became larger,the phenomenon of delamination happened in some local area as displayed in Fig.9(c),and when the impact energy was large enough the front face would be separated from the core entirely as illustrated in Fig.9(d).Thus,compared with BWSP,AFSP is priority to BWSP in structural integrity when subjected to identical impact loadings.Fig.9 Delamination of BWSPFig.10 Failure model of BWSPDifferent from aluminum foam,balsa wood is an isotropic material,along the direction of the fiber it can undertake large tension and compression stress.However,in the direction vertical to the fibers,the loading capacity is much weaker,the fibers are very easy to delaminate from each other.Under impact loading,the balsa wood core is more easy to occur fracture,which will also consume energy.The damage modes of BWSP are shown in Fig.10.It can be seen that when the impact energy was 100 J,the impact zone appeared local indentation and fracture.When the impact energy was 150 J,except the impact zone occurred indentation and fraction,the area adjacent to the boundary would also appear fracture.When the impactenergy increased to 300 J,the fracture moved towards the areas far from impact zone,meanwhile the fracture began to occur closed to the boundary.2 Effect of impact energy on impact resistance of sandwich plates2.1 Comparison in time histories of dynamic responsesTo compare the impact resistance of AFSP and BWSP,it is necessary to analyze the relationship between the dynamic responses with the impact energy.Firstly,the dynamic responses of AFSP and BWSP under impact energy of 200 J were compared,as the represent of medium energy impact.As shown in Fig.11(a),the peak impact force of AFSP was larger than that of BWSP,while the impact time duration was shorter than that of BWSP.It can be seen from Fig.11(b),the tendencies of time history of front face deflection were almost the same for AFSP and BWSP,while the maximum deflection and permanent deflection of AFSP were smaller than those of BWSP.The trends of time history of impact velocity of AFSP were similar to that of BWSP,while the rebound velocity of AFSP was smaller than that of BWSP,as illustrated in Fig.11(c).The energy absorption ratio of AFSP was larger than that of BWSP.Fig.11 Comparison of dynamic responses of porous materials sandwich structuresThe force-displacement curves of AFSP and BWSP are illustrated in Fig.12.It can be known,the loading stiffness and unloading stiffness of AFSP were both larger than those of BWSP.When subjected to impactloadings,aluminum foam would not appear brittle fracture,but for BWSPthe balsa wood core fractured which cannot store elastic deformation energy anymore,resulting in only the face sheets can store elastic deformation energy.Thus,the unloading stiffness of AFSP was much larger than that of BWSP.Besides,it also can be found that the plastic deformation energy of AFSP was larger than that of BWSP.On the contrary,the elastic energy of AFSP was smaller than that of BWSP.Fig.12 Comparison of force-displacement curves of porous materials sandwich structures2.2 Relationship between dynamic responses with impact energy Aluminum foam and balsa wood are both porous materials,however there are some differences in the mechanical properties,resulting in some differences in the dynamic behaviors,when suffering from impact loadings. Fig.13 Dynamic responses versus impact energyThe curves of dynamic responses of AFSP and BWSP versus impact energy are presented in Fig.13.The impact force increased with the increase of impact energy,but the increments of them declined.The impact force of AFSP is larger than that of BWSP for various of impact energy.As the impact energy increased,the deflections of front face and back face as well as compression of core layers both increased.Meanwhile,compared with deflection of front face sheet,the deflection of back face sheet was much smaller,indicating that the impact energy ab-sorbed by front face sheet is much larger than that of back face.When the impact energy is 100 J,for AFSP the deflection of front face was almost equal to that of BWSP,and the deflection of back face was smaller than that of BWSP,while thecompression of core layers was larger than that of BWSP.When the impact energy is larger than 100 J,as for AFSP the deflections of front face and back face were both smaller than those of BWSP,however the compression of core layers was larger than that of BWSP.As for AFSP,the deflections of front and back face sheets,the compression of foam core increased with the increase of impact energy,while the increments of them declined gradually.However,as for BWSP the relevance between deflections of front and back faces,compression of balsa wood core with impact energy was not obvious.The fibers are easy to separate from each other in the transverse direction under impact loadings,in terms of local fracture as shown in Fig.10.Once the fiber fractured,it cannot undertake any loadings,resulting in the impact energy was absorbed mainly by front and back face sheets.Thus,the deflections of face sheets of BWSP were larger than those of AFSP,and the compressions of aluminum foam core were smaller than those of balsa wood core.The relationship between the rebound velocity with the impact velocity is illustrated in Fig.14.As the impact velocity increased,the rebound velocity increased,while the increments decreased.However,when the impact energy was 300 J,the rebound velocity declined for BWSP,because when the impact energy was large enough,the balsa wood core fractured adjacent to the impact zone and boundaries,which would absorb larger amount of energy.The initial impact energy was mainly transformed into two parts,including plastic deformation energy and kinetic energy of the impactor in terms of rebound velocity,as illustrated in Eqs.(4)-(5).Theenergy consumed by friction between the front face and core layers is very small,thus it can be neglected.The curves of energy ratio of AFSP and BWSP versus impact energy are illustrated in Fig.15.As the impact energy increased,the plastic energy ratios of AFSP and BWSP both increased gradually,while the increment of BWSP was larger than that ofAFSP.Besides,it can be found that the plastic energy ratio of AFSP was always larger than that of BWSP,indicating that the performance of energy absorption of AFSP is better than that of BWSP.Fig.14 Rebound velocity versus impact velocityFig.15 Energy ratio versus impact energyWhen suffering from identical impact energy,the deflections of AFSP were smaller than those of BWSP,meanwhile the plastic energy ratio of AFSP was larger than that of BWSP.Thus,it can be said that the impact resistance of AFSP is better than that of BWSP,for the design of ship structures considering the impact loadings,it is priority to choose AFSP.3 ConclusionsThe impact tests under variety of impact energy were performed by using INSTRON 9350 Drop Tower,and the dynamic responses of AFSP and BWSP were obtained and discussed,and then the impact resistance of them was compared and analyzed.The following conclusions can be drawn:(1)When suffering from impact loadings,the deformation patterns of face sheets of AFSP and BWSP are almost the same,i.e.the front faceexperiences local indentation,the back face undergoes global bending.However,the deformation patterns of core layers as well as the failure modes of aluminum foam and balsa wood core are quite different.The aluminum foam core was compressed or even crushed,the balsa wood core appeared indention and fracture adjacent to the impact area,meanwhile,the delamination between the fibers occurred.(2)When subjected to identical impact energy,the peak impactforce,loading and unloading stiffness of AFSP are both larger than those of BWSP,indicating that the structural rigidity of AFSP is stronger than that of BWSP.Besides,the deflections of front face and back face of AFSP are smaller than those of BWSP,while the maximum compressions of AFSP are larger than those of BWSP,meaning that aluminum foam can absorb much more energy than balsa wood core.Overall,the impact resistance of AFSP is better than that of BWSP.(3)The plastic deformation energy as well as the ratio of plastic deformation increase with the impact energy,while the plastic energy ratio of AFSP is larger than that of BWSP,which means the performance of impact energy absorption of AFSP is better than that of BWSP.Due to the impact resistance of AFSP is better than that of BWSP,it is priority to choose AFSP as the protective structure of the lightweight ships when considering the possibility of impact loadings.References【相关文献】[1]Mouritz A P,Gellert E,Burchill P,et al.Review of advanced composite structures for naval ships and submarines[J].Composite Structures,2001,53(1):21-42.[2]Liu K,Bao J,Wang Z,Tang W Y.Numerical simulation analysis on protective performance of sandwich plate system[J].Journal of Ship Mechanics,2015,19(8):982-993.(in Chinese) [3]Tian Y,Liu J,Wang H,Cheng Y S.Dynamic response of light weight corrugated-core sandwich plates subjected to slamming impact[J].Journal of Ship Mechanics,2016,20(10):1300-1308.(in Chinese)[4]Crupi V,Epasto G,Guglielmino parison of aluminium sandwiches for lightweight ship structures:Honeycomb vs.foam[J].Marine Structures,2013,30(1):74-96.[5]Lu G,Yu T.Energy absorption of structures and materials[J].Energy Absorption of Structures&Materials,2003:385-400.[6]Silva A D,Kyriakides pressive response and failure of balsa wood[J].International Journal of Solids&Structures,2007,44(25):8685-8717.[7]Wan L,Liu W,Zhou D,et al.Failure analysis of sandwich beams with balsacore[J].Engineering Mechanics,2011,28(2):134-140.[8]Atas C,Sevim C.On the impact response of sandwich composites with cores of balsa wood and PVC foam[J].Composite Structures,2010,93(1):40-48.[9]Wang H,Ramakrishnan K R,Shankar K.Experimental study of the medium velocity impact response of sandwich panels with different cores[J].Materials&Design,2016,99:68-82.[10]Hou W,Zhu F,Lu G,et al.Ballistic impact experiments of metallic sandwich panels with aluminium foam core[J].International Journal of Impact Engineering,2010,37(10):1045-1055.[11]Li Z,Zheng Z,Yu J.Low-velocity perforation behavior of composite sandwich panels with aluminum foam core[J].Journal of Sandwich Structures&Materials,2013,15(1):92-109.[12]Guo K,Zhu L,Li Y,Yu T X,Shenoi R A,Zhou Q.Experimental investigation on the dynamic behavior of aluminium foam sandwich plates under repeated impacts[J].Composite Structures,2018,200:298-305.[13]Zhu L,Guo K,Li Y,Yu T X,Zhou Q.Dynamic responses of aluminum foam sandwich plates in the repeated impact at low temperature[C]//The 27th International Ocean and Polar Engineering A,2017:1257-1260.[14]Zhu L,Guo K,Li Y,Yu T X,Zhou Q.Experimental study on the dynamic behaviour of aluminium foam sandwich plates under single and repeated impacts at low temperature[J].International Journal of Impact Engineering,2018,114:123-132.。

舰用波纹夹层板的抗冲击性能分析

舰用波纹夹层板的抗冲击性能分析

电子质量2019年第01期(总第382期)0引言随着现代军事的复杂化和越来越活跃的恐怖袭击,以及导弹威力和精确打击精度的提升,舰船面临的威胁越来越严峻。

另外随着海上交易的日益繁华,航行的密度越来越大,船舶经常发生搁浅和碰撞事故,对船东造成严重的财产损失。

夹层板结构的各种优越性能得到了充分的体现并受到各个领域的青睐,夹层板作为一种新型的轻质结构,它具有比强度高、比刚度大、成本低廉、高效的吸能效率和隔音隔震的优良性能,在船舶、汽车、建筑、航天航空和军事工程等领域应用广泛[2]。

所以在军事舰艇设计中采用夹层板结构能够有效的增强船体结构刚度,大幅度减少焊接工作及焊接带来的结构变形,增加舰船的可靠性和持续力,对舰船结构的防护性研究具有重大意义[5]。

1波纹夹层板数值计算在船舶、汽车、建筑、航天航空和军事工程等领域应用广泛,前景广阔[1]。

典型的夹芯层结构由上下两层面板基金项目:青岛黄海学院校级科技立项(2016dxkj06):舰用波纹夹层板的抗爆性能优化设计作者简介:周新院(1988-),男,山东菏泽人,工程硕士,讲师,研究方向为船舶节能减排技术、船舶结构性能分析。

舰用波纹夹层板的抗冲击性能分析Analysis on Anti-shock Performance of a Corrugated Sandwich Panel周新院,曹爱霞,杜友威,于佳为(青岛黄海学院,山东青岛266427)Zhou Xin-yuan,Cao Ai-xia,Du You-wei,Yu Jia-wei (Qingdao Huanghai University,Shan-dong Qingdao 266427)摘要:夹层板作为新型的轻质结构,它的比强度高、比刚度大、能量吸收效率高和隔音隔震优异,在航空、汽车、建筑、船舶和军事行业应用广泛。

利用ABAQUS 建立了波纹夹层板的有限元计算模型,分析波纹夹层板的抵抗冲击能力,给出其在不同夹芯层厚度、不同夹芯层高度、不同夹芯层与面板角度下的最大位移曲线,通过对比分析找出最好的抗爆抗冲击结构参数。

舰船用玻璃钢夹层结构设计基础

舰船用玻璃钢夹层结构设计基础
,’ ) ’/ A . + ’, A . ’ 5# ) D+ 2 2 式中 ) . > ) . @ ; < = ; < = ’ 5 为玻璃钢面板内经纬向剪切模量 + D 为树脂的剪切模量 + I 3 I J I 芯材基本性能 ( 以下仅列出聚氨酯 + 泡沫塑料 ? 聚氯乙烯 + 泡沫塑料 ? 胶合板 ? 松木的基本性能 @ . < K. < LM
,: ’ F ’ E N #’ J : T PQ ’ O 1J
+ ’ ’ .
6# O J O ’ 5 O F 1
’ J S H F ,: ’ J E O :
+ ’ 5 .
U #’ J P 5 FQ ’ O 1
’ J F H 5
+ ’ : .
)# O J O ’ T E 5 1 : 式+ 中的 为密度 单位为 具体计算时只取数值 @ S V’ E . 1 ! Y W X Z! 5 J 5 J : 胶合板
" ’ ) *
" ’ 3 *
> " ’ / * F? GH> I 式中 > 与泡沫塑料的品种及 @ G为系数 5 % A GK ’是表征面板对弯剪强度的 I 为芯材的剪切强度 J C 有关 5 贡献 7 通过对试验结果的回归统计 5 得出下列统计曲线公式 L 对于聚氨酯泡沫塑料为 L 对于聚氯乙烯泡沫塑料为 L 对于胶合板芯为 L
+ ’ E .
: 不同的胶合板 ! 其性能略有不同 ! 我们所进行过试验的胶合板密度为 F 其性能列于表 ’ H S Y @ W X Z! 表 ’ 胶合板基本力学性能
拉 性 能 纵向 强度 + . R< = 模量 + . ; < = : ’ J F H J : T

探讨大开口对船体结构抗冲击性能的影响

探讨大开口对船体结构抗冲击性能的影响

探讨大开口对船体结构抗冲击性能的影响摘要:本文通过具体的数据和变化曲线介绍了大开口对船体结构抗冲击性能的影响,分别从舰艇抗冲击数值仿真工况选取分析、仿真模型计算应力点选取分析、相对应力的定义与说明、大开口结构强度数值仿真分析等方面加以具体说明,为船体的相关设计提供了借鉴关键词:舰艇; 抗冲击; 结构大开口; 结构强度; 应力储备系数中图分类号:c37 文献标识码:a 文章编号:舰艇在执行战略战术任务过程中难免会遭到敌方反舰武器攻击,其中鱼雷、水雷、炸弹等武器会引起舰艇的水下非接触爆炸冲击损伤。

目前,舰艇抗水下非接触爆炸冲击( 抗冲击) 研究的主要手段包括: 实船抗冲击试验、模型试验以及数值仿真分析等。

其中,由于数值仿真分析成本低廉、便于操作且精度基本可满足工程分析的要求,越来越受到研究者们的关注。

在各种舰艇仿真分析技术手段中,大型商用有限元动力学分析程序( 如abaqus、ansys /ls -dyna、msc/dytran 等) 越来越受到重视,并已被广泛应用于相关工程领域。

随着新技术的发展,舰艇对极端工况下的结构强度要求越来越高。

极端工况下船体所要承受的外载荷包括极限风浪载荷、水中兵器对船体结构的作用、弹性/刚性体( 其它舰艇、礁石等) 的接触作用等。

舰艇在设计过程中难免需要布置大开口结构,比如由于主机或武备的安装需要,水面舰艇的中部或其他部位的船体主甲板上可能有很大的开口,其中有些开口的宽度甚至达到该处甲板宽度的一半以上,深度可以延伸数层甲板。

这些大开口结构将严重影响舰艇的总纵强度和局部结构稳定性。

尤其是舰艇的主甲板,其作为船体结构的主要承力构件,当遭受水下非接触爆炸冲击后,受到拉伸和压缩的交变载荷作用,甲板大开口处就会产生应力集中现象,特别是在大开口角隅处,应力集中现象尤为显著。

本研究利用大型商用有限元动力学分析程序abaqus,采用声固耦合技术,以船体结构大开口角隅处为考核点,分析不同海况静水弯矩条件下,舰艇大开口结构受到水下非接触爆炸冲击载荷作用时动力学响应。

舰用复合材料夹层板力学特性试验研究

舰用复合材料夹层板力学特性试验研究
A bsr c t a t: Asa n w o m , ls d c m p st s r vd s ad lg tulf u e i pp iai . me rfr nc a e e fr co e o o ie ma tp o ie e ih f utr n a lc t on So e e e ec n b
c m Io; e s n o p st a dwih p a e O v ls i s i S dWil l t n na a p C cG e h n Yi Ch9 , O h. n W nsa
( . hn hpD v lp n n einC ne , u a 3 0 4 C ia 1 C iaS i e e met dD s e trW h n4 06 , hn ; o a g 2 C l g f hp uligE g er g Ha bnE gn eigU ies y Habn1 0 0 , hn ) . o eeo ib i n n i ei , ri n ter nvri , r i 50 1 C ia l S d n n n t
i f e c d b h l e ly r S n wih p ae s u tr a le d e n d ma e eo e sr s e c e t l t n u n e y t e gu a e ; a d c l t t cu e h s a r a y b e a g d b f r t s r a h s i i . l r e s mi
I tr ly rd s u m ain i h i e s n o a g n e —a e e q a to s te man r a o fd ma e. Ke o d y w r s: c mp ie;s nd c ae;me h ia h r ce it s;e pe me t o ost a wih plt c anc lc a a t rsi c x r i n

夹层结构玻璃钢游艇整船结构强度有限元分析

夹层结构玻璃钢游艇整船结构强度有限元分析

Z ej n 1 0 3 in s h ni g2 0 ,J gu a 2 a
Ab ta t h o e n e uain rvd d b h jrs i lsi c t n sceisfrc mp t g sr c :T e c d sa d rg lt spo ie y te mao hp ca s iai o it o o ui o f o e n
作 用 和 实 用 价 值 同时 所 采 用 的 冲 击 力 和 水 动 力加 载方 法 可 应 用 于其 他 类 型 的高 速 艇 结 构 强 度 的有 限元 分 析 。
关键 字 :玻 璃 钢 ; 层 结 构 ; 构 强 度 ; N Y 夹 结 A SS
中 图分 类 号 : 6 .3, 7 .3 U6 14 U6 49 4 文献 标 志码 : A 文 章 编 号 : 6 3—3 8 17 1 5(2 1 0 0 0) 2—4 5一O 4
h d o y a is a lo b s d t e o m n t lme ta ay i o t e i i rb a so ih s e d y rd n m c ,c n as e u e o p r r f i ee n n lssf ro h rsm l o t fh g p e . f i e a K e r :F y wo ds RP;s n wih sr cu e;sr cu a te gh;ANS a d c tu tr tu tr lsr n t YS
江 苏科 技 大 学 船 舶 与海 洋 工程 学 院 . 苏 镇 江 2 2 0 江 10 3
摘 要 :目前 各 大 船 级社 普 遍 缺乏 新 颖 玻 璃 钢 艇 体 结 构 强 度 的计 算 规 范 , 因此 设 计 者 需 要 直 接 计 算 艇 体 结 构 强 度 在 研 究 玻 璃 钢 游 艇 的基 础 上 . A S S软 件建 立全 船 有 限元 模 型 . 用 层 合 壳 单 元 处 理 复 合 材 料 和 复 合 材 用 N Y 采 料夹 层 结 构 并 计 算 分 析 整 船 结 构 强 度 。 析 中所 采 用 的方 法 对 于 正 确 地 进 行 玻 璃 钢 游 艇 整 船 直 接 计 算 具 有 指 导 分

2019-2-45-多开口甲板板架结构极限承载力实验研究

2019-2-45-多开口甲板板架结构极限承载力实验研究
文献标志码: A DOI: 10.19693/j.issn.1673-3185. 01275
要: [目的]为了研究多开口结构形式对甲板板架结构极限承载能力的影响, [方法]以 2 种不同开口形式
Experimental study on the ultimate bearing capacity of deck grillage structure with multiple openings
2 2 2 2 Zhou Hongchang1, , Kong Xiangshao*1, , Yuan Tian1, , Wu Weiguo1,
frame model with two different opening types was studied experimentally under the uniaxial compression load. This paper identified the stress change pattern of deck grillage with multiple openings,by analyzing the buckling failure mode and ultimate bearing capacity of double-opening deck structure and broadside opening structure in the process of gradual collapse.[Results]The experiment results show that the stress the stress of the middle deck of the opening increases sharply,and the multi-opening structure eventually on the initial axial stiffness of the structure,while the side opening structure has a dominant influence on research methods and results can provide reference for the design of such deck structures. Key words: deck with multiple openings; broadside opening; ultimate bearing capacity; buckling failure
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因素进行较为全面的分析 ; 此外 , 目前各大船级社普
遍 缺乏新 型玻璃 钢艇 体相关 结 构 的强 度 和刚 度计 算 规范 . 故 在进 行 船 体 设计 前 必 须 事 先 计 算 并 校 核 其 结 构强度 , 而这无 疑会 给设 计 者们带 来 额外 的工 作 。
本文 以带 有 大开 口的玻 璃 钢游艇 舷侧 夹层 板 架 结构 作 为研究 对 象 . 并 在 充 分 参 考 已有 研 究 成 果 的
了很 好 的参考 作用 。但是 , 必 须指 出 的是 , 上 述研 究 并没 有对 可能 影 响复合 材料 船体及 相关 构 件 的诸 多
收 稿 日期 :2 0 1 6 . 1 0 . 2 6 基金项 目:浙江省 自然科学基金项 目 ( Y1 4 E 0 9 0 0 3 4 , Y1 3 F 0 2 0 1 4 0 ) ;上海交通大学海洋工程 国家重点实验室开放课题 ( 1 5 1 6 ) ;浙 江省
因素有 以下几 种 : 所 施加 载 荷 的种 类 ( 静压 力 载荷 和 冲击 载荷 ) 及 大小 、 开 口形状 和尺 寸 以及 载荷作 用 的
在对以玻璃钢为代表的复合材料船体及相关构 件 力学 性能 的研 究 上 , 国 内外 专 家 学者 已经 进 行 了

系列 卓有 成效 的研 究 。然 而 , 由 于对 复 合 材 料 船 目前对 复合材 料船 用结 构力 学性 能 的研究 大 多仍 采
夹层板 架结构作 为研 究对象, 对该结构的相 关力 学性 能进行 了有 限元分析 , 并对其位 移 变形 量和应 力分 布情 况进行 了校 核。
按 照此种 方式, 分别计算 了不 同大小的静压力载荷、 不同大小的冲击载荷、 不 同的开 口形状和尺寸 以及不 分析、 比较其计 算结果 , 最终得 出结论 。 关键词 :玻璃钢复合材料 ;力学性能 ;有 限元分析 ;冲击载荷
文的研究 。 可以较为全面地分析上述因素对算 例构
件 的结 构 稳定 性 所 造 成 的影 响 , 并 为今 后 类 似 船 体 的设计 工 作提供 参 考 。
1 船用 F R P夹 层 板 结构 特 性
由于玻 璃 钢材 料 的弹 性 模 量 较 低 , 容 易 发 生 形 变 。因此玻 璃钢 船体 构件 的骨材 需要 设 计成 特 定 的 截 面形 式来 抵 抗 弯 曲变 形 。通 常 情 况 下 , 玻 璃 钢 船
基础 上 。 设 计 了如 下 研 究 方 案 : 首先使用 S O L I D — WO R K S软 件 建 立构 件 的实 体模 型 。 再用 U G N X 软 件建 立游 艇舷 侧 夹 层 板 架 结 构 的 有 限元 模 型 [ 7 ] , 并 进行 相应 的有 限元 计 算 。通 过 查 阅相 关 文 献 , 总 结 出可 能影 响带 有大 开 口的船 用玻 璃钢 夹 层板 结 构 的
体板 架 结构等 进 行 了强度 分 析 , 为之 后 的研 究 起 到
位置 等 。因此 。 在所 建模 型 的基础 上 进行 仿 真计 算 , 分析 上述 因素 对仿 真 算 例 构件 的力 学 性 能 ( 主 要 是 强度 和刚 度 ) 所 造成 的影 响 , 最终 得 出结论 。通 过 本
体 结构 的研究 起 步较 晚 , 并 且相应 理论 还 不完 善 , 故 用有 限元分析法 。 L u o等[ 4 ] 使用 有 限元 软 件 A B A Q U S 对 复合 材料 的压 溃性能 和极 限强度 等 力学 性 能进 行 了研 究 。 并将 仿 真结 果 与 通 过 试 验得 到 的结 果 进 行 了对 比 , 两 种 结 果 吻 合 较 好 。赵 文 龙 和 刘 雪 松 l 6 对玻 璃 钢船体 及 相 关 构件 做 了大 量 的研 究 , 通 过 有 限元 分 析 的方 法 。 对 玻 璃 钢 整 船及 带 有 大 开 口 的船
2 0 1 7年 第 6期
玻 璃 钢 /复 合 材 料

带有 大 开 口的船 用玻 璃 钢夹 层 板 结构 力学 性 能分 析
孔令滨 ,张火明 ,方贵盛 ,田 中仁
( 1 . 中国计量大学浙江省流量计量技术重点实验室 ,杭州 3 1 0 0 1 8 :
2 .浙 江 水 利 水 电 学 院 ,杭 州 3 1 0 0 1 8 )
中 图分 类 号 :T B 3 3 2; U 6 6 1 . 4 3 文 献 标 识 码 :A 文章 编 号 :1 0 0 3 — 0 9 9 9 ( 2 0 1 7 ) 0 6 — 0 0 0 5 — 0 7
作为 一种新 型 复合 材 料 , 玻 璃钢 ( F i b e r g l a s s — R e . i n f o r c e d P l a s t i c s , 简称 “ F R P ” ) 被 广 泛 应 用 于 航 天 航 空、 交 通运 输 、 船 舶 制 造 等 领域 , 现 已成 为 现 代 复合 材料领 域 的研究 热点 之一 [ 1 ] 。玻璃 钢 材料具 有 许 多 传统造 船 材 料 无 法 比拟 的 优 势 。 例如质量 轻、 强 度 大、 耐腐 蚀 性好 、 绝缘 性好 等 ; 此外 , 玻 璃 钢材 料 能够 在确保 系统 的 正 常运 行 和 刚度 要 求 的前 提 下 , 有 效 减轻 系统重 量与 厚度 , 降低 工程 造价 [ 2 ] 。因此 , 从 其 问世 以来就 备受 造船行 业 的关 注 , 现 已成 为世 界 中 、 小 游艇 和高 速船 艇制造 的首选材 料 [ 3 ] 。
摘 要 :玻 璃钢 复合 材料 作 为 一 种 新 型 的 工 业 材 料 , 被 广 泛应 用 于 包括 造 船 行 业 在 内 的 诸 多领 域 当 中。 在 船 体 设 计 时 . 为
了避免 因碰撞 等外力因素造 成船 体损 伤 , 需要事先对其相 关结构 的力学性能进行 数值分析 。以带有 大开口的玻璃钢 游艇 舷侧
相关文档
最新文档