Development of Electrolytes towards Achieving Safe and High-Performance Energy-Storage Devices
锂电池中固体电解质界面研究进展

物 理 化 学 学 报Acta Phys. -Chim. Sin. 2021, 37 (11), 2010076 (1 of 13)Received: October 30, 2020; Revised: November 15, 2020; Accepted: November 16, 2020; Published online: November 19, 2020. *Correspondingauthor.Email:***************.cn.The project was supported by the Beijing Natural Science Foundation (JQ20004, L182021) and the National Key Research and Development Program of China (2016YFA0202500).北京市自然科学基金(JQ20004, L182021)及国家重点研发计划(2016YFA0202500)资助项目© Editorial office of Acta Physico-Chimica Sinica[Review] doi: 10.3866/PKU.WHXB202010076 Research Progress of Solid Electrolyte Interphase in Lithium BatteriesYi Yang 1,2, Chong Yan 1,2, Jiaqi Huang 1,2,*1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.2 Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.Abstract: Since their commercialization in 1991, lithium-ion batteries (LIBs), one of the greatest inventions in history, have profoundly reshaped lifestyles owing to their high energy density, long lifespan, and reliable and safe operation. The ever-increasing use of portable electronics, electric vehicles, and large-scale energy storage has consistently promoted the development of LIBs with higher energy density, reliable and safe operation, faster charging, and lower cost. To meet these stringent requirements, researchers have developed advanced electrode materials and electrolytes, wherein the electrode materials play a key role in improving the energy density of the battery and electrolytes play an important role in enhancing the cycling stabilityof batteries. In addition, further improvements in the current LIBs and reviving lithium metal batteries have received intensive interest. The electrode/electrolyte interface is formed on the electrode surface during the initial charging/discharging stage, whose ionic conductivity and electronic insulation ensure rapid transport of lithium ions andisolating the unsolicited side reactions caused by electrons, respectively. In a working battery, the stability or properties ofthe interface play a crucial role in maintaining the integrity of the electrode structure, thereby stabilizing the cycling performance and prolonging the service lifespan to meet the sustainable energy demand for the public. Generally, the interface formed on the anode and cathode is called the solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) respectively, and SEI and CEI are collectively known as the electrode electrolyte interphase. Research on SEI has made remarkable progress; however, the structure, component, and accurate regulation strategy of SEI are still at the initial stage due to the stability and complexity of SEI and the limited research methods at the nanoscale. To improve the performance and lifespan of working batteries, the formation, evolution, and modification of the interface should be paid particular attention. Herein, the latest researches focused on the SEI are reviewed, including the formation mechanism, which discusses two key factors affecting the formation of the electrode/electrolyte film, i.e., the ion characteristic adsorption on the electrode surface and the solvated coordinate structure, evolution, and description that contains the interface layer structure, wherein the mosaic model and the layered structure are the two mainstream views of the SEI structure, and the chemical composition of SEI as well as the possible conduction mechanism of lithium ions, including desolvation and subsequent diffusion across the polycrystalline SEI. The regulation strategies of the interface layer are discussed in detail, and the future prospects of SEI are presented.Key Words: Lithium battery; Solid electrolyte interphase; Solvation structure; Formation mechanism;Artificial SEI. All Rights Reserved.锂电池中固体电解质界面研究进展杨毅1,2,闫崇1,2,黄佳琦1,2,*1北京理工大学材料学院,北京 1000812北京理工大学前沿交叉科学研究院,北京 100081摘要:锂离子电池在电子产品和电动汽车等领域已得到广泛应用,同时具有更高比能量的锂离子电池和锂金属电池也在不断研发中。
聚苯胺的制备

随着社会科技的发展,绿色能源成为人类可持续发展的重要条件,而风能、太阳能等非可持性能源的开发和利用面临着间歇性和不稳定性的问题,这就催生了大量的储能装置,其中比较引人注目的包括太阳能电池、锂子电池和超级电容器等。
超级电容器作为一种新型化学储能装置,具有高功率密度、快速充放电、较长循环寿命、较宽工作温度等优秀的性质,目前在储能市场上占有很重要的地位,同时它也广泛应用于军事国防、交通运输等领域。
目前,随着环境保护观念的日益增强,可持续性能源和新型能源的需求不断增加,低排放和零排放的交通工具的应用成为一种大势,电动汽车己成为各国研究的一个焦点。
超级电容器可以取代电动汽车中所使用的电池,超级电容器在混合能源技术汽车领域中所起的作用是十分重要的,据英国《新科学家》杂志报道,由纳米花和纳米草组成的纳米级牧场可以将越来越多的能量贮存在超级电容器中。
随着能源价格的不断上涨,以及欧洲汽车制造商承诺在1995年到2008年之间将汽车CO2的排放量减少25%,这些都促进了混合能源技术的发展,宝马、奔驰和通用汽车公司已经结成了一个全球联盟,共同研发混合能源技术。
2002年1月,我国首台电动汽车样车试制成功,这标志着我国在电动汽车领域处于领先地位。
而今各种能源对环境产生的负面影响很大,因此对绿色电动车辆的推广提出了迫切的要求,一项被称为Loading-leveling(负载平衡)的新技术应运而生,即采用超大容量电容器与传统电源构成的混合系统“Battery-capacitor hybrid”(Capacitor-battery bank) [1]。
目前对超级电容器的研究多集中于开发性能优异的电极材料,通过掺杂与改性,二氧化锰复合导电聚合物以提高二氧化锰的容量[1、2、3]。
生瑜(是这个人吗?)等[4]通过原位聚合法制备了聚苯胺/纳米二氧化锰复合材料,对产物特性进行细致分析。
因导电高分子具有可逆氧化还原性能,通过导电高分子改性,这对于提高二氧化锰的性能和利用率是很有意义的。
nature

本科生科研训练题目高能量密度柔性赝电容器中的二维磷酸氧钒超薄结构(翻译)院系物理科学与技术学院专业物理学基地班年级2012级学生姓名李赫学号**********二0一三年十二月二十日natureCOMMUNICATIONS2013年2月5号收到稿件2013年8月12日接受稿件2013年9月12日发表稿件DOI: 10.1038/ncomms3431高能量密度柔性赝电容器中的二维磷酸氧钒超薄结构二维材料一直以来在柔性薄膜型超级电容器,以及表现有关灵活性,超薄度甚至透明度的强劲优势上都是一个理想的构建平台。
要探索新的具有高电化学活性的二维赝电容材料,我们需要获得具有高能量密度的柔性薄膜超级电容器。
这里我们介绍一个无机石墨烯类似物,a1钒,一种少于6个电子层的磷酸盐超薄纳米片来作为一个有发展前景的材料去构建柔性全固态超薄赝电容器。
这种材料展示了一个在水溶液中氧化还原电位(~1.0V)接近纯水电化学窗口电压(1.23V)的赝电容柔性平面超级电容器。
通过层层组装构建出的柔性薄膜型超级电容器的氧化还原电位高达1.0V,比容量高达8360.5 μF∙cm-2,能量密度达1.7 mWh ∙cm-2,功率密度达5.2 mW∙cm-2。
现在,便携式消费电子产品的需求在快速增长,如柔性显示器,手机和笔记本电脑,极大推动了在全固态下的柔性能源设备的开发。
作为未来一代的储能装置,柔性薄膜型超级电容器在全固态下提供柔韧性,超薄型和透明度的协同效益。
在不同的类型的超级电容器中,与电双层电容器相比,赝电容器因为自身的高活性表面的电极材料可以快速发生的氧化还原反应而具有明显优势。
与锂离子电池相比,它表现出更高的能量密度,以及更高的功率密度。
因此,承载着为实现高性能的柔性薄膜型超级电容器的全固态伟大的承诺(FUSA)与电容行为。
具有赝电容特性的二维(2D)类石墨烯材料代表着一个有前途的方向可以去实现全固态下的高能量密度柔性超级电容器,和潜在的优良的机械柔性。
王朝阳院士团队Sci.Adv.:实现高安全和高性能电池的新方法

王朝阳院士团队Sci.Adv.:实现高安全和高性能电池的新方法第一作者:葛善海博士,助理教授单位:美国宾夕法尼亚州立大学电化学发动机研究中心本文通讯:王朝阳院士,讲席教授背景介绍锂离子电池广泛应用于电动汽车、个人电子设备和储能系统,高安全性、高比能量、高功率性能是我们的永恒追求。
然而,电池材料的反应活性和稳定性通常存在鱼和熊掌的矛盾:采用高活性的电极材料和电解液可以提高电池的功率性能,但却面临安全性和寿命变差的问题,反之亦然。
因此,传统的锂离子电池无法实现高安全和高性能兼得,通常需要在二者之间折衷。
成果简介近日,美国宾夕法尼亚州立大学王朝阳院士团队提出一种同时实现锂离子电池高安全和高比能/功率的(safe,energy-dense battery ,SEB)新概念,核心理念是钝化电池,按需加热使用:在常规电解液中加入少量的添加剂使电池钝化(内阻增加5-10倍),达到极高安全性和高温稳定性;需要输出高功率时以自加热技术使电池迅速升温至高温(60oC)以降低内阻,满足高功率需求。
这种SEB电池(中文简译'硕安电池')采用高稳定性的电极和电解质材料,构造了非常稳定的电极/电解液界面(EEIs),如图1所示的点a 到点b。
与相同温度下的常规电池相比, SEB电池的电荷转移阻抗(Rct)和直流电阻(DCR)都增加数倍。
当SEB电池需要大功率输出时, 使用内置的加热镍箔(全气侯电池, Nature 529, 515–518 (2016))在10-20秒将电池温度提升到所需工作温度,如图1所示的点b到点c。
图1. 高安全-高比能锂离子电池(SEB,硕安电池)与常规锂离子电池(LIB)的比较示意图。
电池的直流电阻随温度的倒数而变化, SEB电池电阻大因此更安全。
SEB电池通过热刺激可以提供与常规锂离子电池同等的功率输出,如点b到点c。
王朝阳团队首先比较了SEB电池与对照组LIB电池的安全性和内在机理。
锂离子电池电解液及功能添加剂的研究进展

锂离子电池电解液及功能添加剂的研究进展何争珍;杨明明【摘要】From two aspects including the composition of electrolytes and the safety performance, research progress of electrolytes for the Li-ion batteries was introduced. From composition aspect of the electrolytes, organic solvents that have high dielectric constant and can form effective SEI on the graphite electrode surface were found out. At the same time, electrolytes that have good conductivity and stable electrochemical characteristics were also found out. Aiming at the electrolyte functional additives, the key research was to find out suitable additives which can improve safety performance of the Li-ion batteries.%从电解液的组成和功能添加剂两大方面,综合阐述了锂离子电池电解液的研究进展.在电解液组成方面,找到具有高的介电常数和能在石墨类电极表面形成有效SEI的有机溶剂,并且找到具有良好电导率、稳定电化学性能的电解质.而电解液功能添加剂方面,重点研究是找到改善电池安全性能的添加剂.【期刊名称】《当代化工》【年(卷),期】2011(040)009【总页数】3页(P928-930)【关键词】锂离子电池;电解液;安全性能;添加剂【作者】何争珍;杨明明【作者单位】成都理工大学材料与化学化工学院,四川成都610059;成都理工大学材料与化学化工学院,四川成都610059【正文语种】中文【中图分类】TM911.3锂离子电池电解液及功能添加剂的研究已经成为当今锂离子电池研究的一个焦点。
高表面能氟化层提高锂金属负极稳定性的研究

高表面能氟化层提高锂金属负极稳定性的研究郭益均,王 龙,郑 敏,张成钰,王 璐(青岛国恩科技股份有限公司Ὃ山东青岛266109)摘要:随着人们日益增长的对高性能可充电电池的迫切需求,需要寻找并开发新的技术来解决锂金属电极稳定性不足的问题。
该研究开发了一种简单的表面氟化工艺,通过利用氟化物[双(2-甲氧基乙基)胺]三氟化硫作为前驱体,在锂金属表面形成均匀和致密的LiF层。
结晶性LiF层提供了必要的化学稳定性和机械强度,减少了锂金属与碳酸盐电解质的腐蚀反应,同时LiF/Li界面的高表面能可以促进锂离子快速且均匀地运输并抑制锂枝晶的生长,使得被保护的锂金属电极(LiF@Li)可以稳定循环900h,极大提升了LiF@Li||LiNi0.8Co0.1Mn0.1O2全电池的循环性能和库伦效率(200个周期后73.9%的容量保持率,平均库伦效率为99.75%)。
关键词:锂金属负极;固态电解质中间相;氟化层;锂电池中图分类号:TM 911;TB 34Study on Improving the Stability of Lithium Metal Anode with High Surface EnergyFluorinated LayerGUO Yi-jun, WANG Long, ZHENG Min, ZHANG Cheng-yu, WANG Lu(Qingdao GuoEn Technology Co., Ltd., Qingdao 266109, Shandong, China)Abstract: With the increasing demand for high performance rechargeable batteries, we need to fi nd and develop new technologies to solve the problem of insuffi cient stability of lithium metal electrodes.Here we developed a simple surface fl uorination process by using fl uoride [bis (2-methoxyethyl) amine] sulfur trifl uoride as a precursor to form uniform and dense LiF layers on lithium metal surfaces. The crystalline LiF layer provides the necessary chemical stability and mechanical strength to reduce the corrosion reaction between lithium metal and carbonate electrolyte, at the same time, the high surface energy of LiF/Li interface can promote the rapid and uniform transport of lithium ions and inhibit the growth of lithium dendrites, allowing the protected lithium metal electrode(LiF@Li) to cycle stably without lithium dendrites for 900 h, greatly enhancing the LiF@Li|| LiNi0.8Co0.1Mn0.1O2full cells cyclingperformance and Coulomb effi ciency (73.9% capacity retention after 200 cycles, with an average Coulomb effi ciency of 99.75%). Key words: lithium metal anode; solid electrode interface; fl uoride-layer; lithium batterie新能源汽车和各种微型智能电器的快速发展,使生活中对于续航时间和快速充电等需求日益苛刻,故寻求一种高能量密度和高功率的可充电电池对于满足我们日常生活的需求势在必行[1-2]。
锂离子电池电解液标准化研究进展

科技创新导报 Science and Technology Innovation Herald 103
科技创新导报 2021 NO.11 Science and Technology Innovation Herald
范围、放电容量、倍率性能、循环和安全性能[4-7]。 1.4 电化学稳定性
锂离子电池电解 液的电化 学 稳 定性 通常用电化 学 窗口来衡 量。电化 学窗口指的是电解 液 发 生氧化 反 应 和 还 原 反 应 的电位 之 差。电化 学 窗口越 宽,表 明电 解 液的电化学稳定性越强。理想的锂离子电池电解液应 该 具 有高的氧化电位和 低的还 原电位。电解 液的电化 学稳定性将直接影响成品电池的充放电容量[8]。 1.5 浸润性
WANG Yuan* TANG Xianwen SHAO Dan CHEN Zhi CHEN Feng (Guangzhou Institute of Energy Testing, Guangzhou, Guangdong Province, 511447 China) Abstract: Electrolyte is one of the key materials for lithium-ion batteries, and its performance directly affects the performance of the f inished battery. The standardization of electrolyte can promote the improvement of electrolyte product quality to a certain extent. This article reviews the factors of electrolyte affecting the performance of f inished batteries, the current status and def iciencies of domestic lithium-ion battery electrolyte standards, and the standardization organization of domestic lithium-ion battery electrolyte. What's more, Suggestions are put forward for the standardization development of lithium-ion battery electrolyte in China. Key Words: Lithium-ion battery; Electrolyte; Standardization; Research progress
用于SO2去极化电解制氢的铂基催化剂

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 S1 期用于SO 2去极化电解制氢的铂基催化剂谢璐垚,陈崧哲,王来军,张平(清华大学核能与新能源技术研究院,北京 100084)摘要:综述了铂基SO 2去极化电解(SDE )阳极催化剂的研究进展。
SDE 阳极反应条件苛刻,铂基催化剂因具备良好的导电性、抗腐蚀性,并能够有效抵抗H 2S 等硫物质的毒化,成为SDE 阳极催化剂的首选。
通过引入Al 、Cr 、Ni 等非贵金属元素,可有效提高铂基催化剂性能并减少Pt 的用量。
在载体方面,综述和讨论了活性炭、石墨、炭黑、石墨烯以及SiC/TiC 等对铂基催化剂性能的影响,此外分析了催化剂制备工艺对催化剂结构参数和性能的影响。
尽管已经取得了很多研究成果,但当前对铂基SDE 阳极催化剂的长期稳定性、多金属催化剂各金属元素间的相互作用等方面的研究尚较少,进一步优化催化剂设计、加强载体筛选及其改性,开发新的制备工艺,提高Pt 利用率及催化剂的活性和稳定性,是未来相关研究的关键所在。
关键词:制氢;混合硫循环;二氧化硫去极化电解;铂基催化剂中图分类号:TQ15 文献标志码:A 文章编号:1000-6613(2023)S1-0299-11Platinum-based catalysts for SO 2 depolarized electrolysisXIE Luyao ,CHEN Songzhe ,WANG Laijun ,ZHANG Ping(Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)Abstract: The research progress of platinum-based SO 2 depolarized electrolysis (SDE) anode catalysts is reviewed in this paper. Because of the outstanding electrical conductivity, corrosion resistance, and effective resistance to H 2S and other sulfur-containing poisonings, platinum-based catalysts are considered as the best choice for SDE anode. By introducing non-precious metal such as Al, Cr and Ni, the performance of platinum-based catalysts can be effectively improved and the amount of Pt can be reduced. In terms of the support, the effects of activated carbon, graphite, carbon black, graphene and SiC/TiC on the properties were reviewed and discussed. In addition, the effects of catalyst preparation technology on the structural parameters and performance of catalysts were also discussed. Although many research results have been achieved, there are still insufficient studies on the long-term stability of platinum-based SDE anode catalysts and the interactions among metal elements in polymetallic catalysts. Further optimization of catalyst design and carrier screening/modification, development of new preparation processes, improvement of Pt utilization and catalyst activity and stability, are the keys of future research.Keywords: hydrogen production; hybrid sulfur cycle; SO 2 depolarized electrolysis; platinum based catalyst综述与专论DOI :10.16085/j.issn.1000-6613.2023-1169收稿日期:2023-07-10;修改稿日期:2023-09-12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DOI:10.1002/celc.201402277DevelopmentofElectrolytestowardsAchievingSafeandHigh-PerformanceEnergy-StorageDevices:AReview
YuWangandWei-HongZhong*[a]
2014Wiley-VCHVerlagGmbH&Co.KGaA,WeinheimChemElectroChem0000,00,1–16&1&Thesearenotthefinalpagenumbers!ÞÞ
CHEMELECTROCHEMREVIEWS1.Introduction1.1.ElectrolytesinLithium-IonBatteriesFromamaterialspointofview,energy-storagedevices(ESDs)arecompositeswithspecialdistributionofconstituents,includ-ingacathodeandananode,asaltsolutionastheelectrolyte,highlyconductivesubstrates(metals)ascurrentcollectors,andotherfunctionaladditives.Thesecomponentsworktogetherinresponsetocharginganddischarging.ThestructuresandthedistributionoftheconstituentsinsideanESD[alithium-ionbattery(LIB),forexample]areillustratedinFigure1a.Specifi-
cally,thecathodeandanodeareelectronicallyinsulated,butconnectedbytheelectrolyte/separator.Onbothsides,theelectrodesareconnectedtothecurrentcollectors.Toachieveahighvolumetriccapacity,theelectrodesaredominatedbyactiveelectrodeparticles(theweightpercentageintheelec-trodesisusuallyabove80%).Asaresult,theparticlesstackwithotheradditives(usually,polymerbinderorconductivefill-ers)andformporouselectrodes.Withsomanycomponentsinside,LIBsarerichininterfaces,asdemonstratedinFigure1b.Theseinterfacesfundamentallycontributetotheoverallper-formancesofLIBs,includingoverallcapacity,energy/powerdensity,cycleperformance,andsoon.Amongtheseinterfaces,
theinterfacebetweentheelectrolyteandtheelectrodesismostimportant,asitcontrolsthedynamicsoflithiumionsinsidethebattery.Moreover,fromthestructuresillustratedinFigure1a,wecanseethattheelectrolyteistheonlycompo-nentthatcontributestoallinterfaces,owingtoitscontinuousdistributioninsidethebattery.
1.2.ElectrolytePropertiesThedesiredelectrolytepropertiesaredeterminedbythework-ingmechanismaswellasthestructureandtypeoftheESD.Anelectrolyte,inanarrowsense,referstoaliquidorsolidso-lutionwiththeabilitytoconductions,butnotelectrons.Inabroadsense,itcanbeamaterialwithion-conductingcom-ponentscompositedofotherfunctionalorstructuralcompo-nents,suchasadditives,[1]structuralenhancements,[2,3]andso
on.Basedonthestatesofmatteratroomtemperature,therearebasicallythreetypesofelectrolytesusedforLIBs,thatis,liquid,solidandgelelectrolytes.Irrespectiveofthestate,theprimaryfunctionofanelectrolyteinaLIBistoefficientlytrans-portLi+betweentwoelectrodeswhilebeingasthinaspossi-
ble.[4]However,itisnotedthat,withthedevelopmentofESDs,
thenumberofdesiredpropertiesandfunctionsofelectrolytesareincreasing.Ingeneral,thesignificantelectrolytepropertiesforvariousLIBscanbesummarizedandarecomparedfordif-ferenttypesofelectrolytesinTable1.ThereareseveralpointstobenotedfromTable1.Firstly,theevaluationofthepropertieslistedinthetableisnotcompre-hensiveandisonlybasedontheauthors’knowledge.Itmainlyrevealstheeffectsofthestatesofmatteronelectrolyteprop-erties.Somespecialelectrolytesarenotincludedinthistable.Forexample,ILEsarenotincludedinthecolumnofliquidelec-trolytesandwillbediscussedindividually.Adetaileddiscussionoftheelectrolytepropertiescanbefoundinthespecificsec-tionforeachtypeofelectrolytes.Secondly,allofthepropertiesarequalitativelycompared,owingtothefactthatsomeelec-trolytepropertiescannotbequantitativelydescribed.Theionicconductivityandcontact/interfacialpropertiesaremostimpor-tantforpracticalapplications.Itisnotedthatthecontact/inter-facialpropertiesofelectrolytesarestronglyaffectedbythestatesofmatter,andthestudyofinterfacialpropertiesisseldomreported.[5]Moreover,onecanfindthatTable1only
summarizesthemostsignificantpropertiesforelectrolytes.Thefundamentalpropertiesaresummarizedforanykindof
Increasinginterestinflexible/wearableelectronics,cleanenergy,electricalvehicles,andsoforthiscallingforadvancedenergy-storagedevices,suchashigh-performancelithium-ionbatteries(LIBs),whichcannotonlystoreenergyefficientlyandsafely,butalsopossessadditionalproperties,suchasgoodme-chanicalpropertiestobeardeformationsoreventobeusedasstructuralcomponents.Theseexpectationsfirstindicatethedi-rections,butalsoraisenewchallengesfortheadvancementofenergymaterials.AsoneofthecriticalcomponentsinLIBs,theelectrolyteconnectingthetwoelectrodesisvitalforachieving
thedesiredperformancesinbatteries.InthisReview,thede-velopmentsofvariousliquidelectrolytes(organic,ionicliquid,andaqueouselectrolytes),solidelectrolytes(solidpolymerandinorganicsolid),aswellasgelelectrolytesisbrieflysummar-izedanddiscussed.Foreachtypeofelectrolyte,thechalleng-ingissuesandpossiblesolutionsarediscussed.Inparticular,safety,ionicconductivity,andcontact/interfaceissuesareem-phasized.Finally,fromacompositepointofview,strategiesforthedevelopmentofhigh-performanceelectrolyteswithall-roundpropertiesareproposed.