实际问题与一元二次方程课件

合集下载

人教版九年级上册实际问题与一元二次方程课件

人教版九年级上册实际问题与一元二次方程课件
解:设增长率为x,根据题意,得 20(1+x)2=24.2.
解得x1=-2.1(舍去),x2=0.1=10%. 答:增长率为10%.
注意 增长率不可为负,但可以超过1.
变化率与销售问题
1.某商场第一季度的利润是82.75万元,其中一月份 的利润是25万元,若利润平均每月的增长率为x, 则依题意所列方程为( D ) A.25(1+x)2=82.75 B.25+50x=82.75 C.25+25(1+x)2=82.75 D.25[1+(1+x)+(1+x)2]=82.75
心志要坚,意趣要乐。
器让大自者 己声的个必内闳心.,藏志着已高一者条知意巨必龙每远,。既个是一种玩苦刑具,也的是一固种乐定趣。成本为360元,问这种玩具的销
售单价为多少元时,厂家每天可获利润20 不要志气高大,倒要俯就卑微的人。不要自以为聪明。
燕雀安知鸿鹄之志哉。
000元?
志当存高远。
人不可以有傲气,但不可以无傲骨
思考:什么是下降额? 什么是下降率?
下降额=下降前的量-下降后的量 增长额=增长后的量-增长前的量
解:设甲种药品成本的年平均下降率为x,则一年后甲种 药品成本为5000(1-x)元,两年后甲种药品成本为 5000(1-x)2元,于是有
解方程,得: 5000(1-x)2=3000
x1≈0.225,x2≈1.775 根据问题的实际意义,甲种药品成本的年平均下降率
2有0志00不0元在?年高根,无据志空活问百岁题。 的实际意义,甲产品成本的年平均下降
例:两年前生产1t甲种药品的成本是5000元,生产1t乙种药品的成本是6000元.
率约为30%.
注意 下降率不可为负,且不大于1.
2、为做好延迟开学期间学生的在线学习服务工作, 盐城市教育局推出“中小学延迟开学期间网络课堂”, 为学生提供线上学习,据统计,第一批公益课受益学 生20万人次,第三批公益课受益学生24.2万人次.如 果第二批,第三批公益课受益学生人次的增长率相同, 求这个增长率.

初三上数学课件(人教版)-实际问题与一元二次方程(第一课时)

初三上数学课件(人教版)-实际问题与一元二次方程(第一课时)
1.会根据具体问题(按一定传播速度传播问题、数字问 题和利润问题)中的数量关系列一元二次方程并求解。
2.能根据问题的实际意义,检验所得结果是否合理。 3.进一步掌握列方程解应用题的步骤和关键。
重点:列一元二次方程解决实际问题 . 难点:找出实际问题中的等量关系 .
未知量
间接设
实际意义
问题:有一人患了流感,经过两轮传染后,有121人患了 流感,每轮传染中平均一个人传染了几个人?
B
9
解:设3月份到5月份营业额的月平均增长率为x, 根据题意得,400×(1+10%)(1+x)2=633.6, 解得,x =0.2=20%,x =2.2(不合题意舍去).答:(略)
解:设这个两位数的个位数字为x,
则十位数字为x-2,这个两位数为10(x-2)+x,
依题意得10(x-2)+x=3x(x-2)
分析:设每轮传染中平均一个人传染x个人,
⑴开始有一人患了患流感,第一轮的传染源就是这个
人,他传染了x个人,用代数式表示第一轮后,共有___人
患了流感;第二轮传染中,这些人中每一个人又传染了x人
,用代数式表示
,第二轮后,共有
人患流感

⑵根据等量关系列方程:_______.
⑶解这个方程得:_______.
(2)设未知数(几种设法) .设较小的奇数为x,则另 一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设 较小的奇数为2x-1,则另一个奇数2x+1. 解法二:
设较小的奇数为x-1,则较大的奇数为x+1
据题意,得(x-1)(x+1)=323. 整理后,得x2=324. 解这个方程,得x1=18,x2=-18. 当x=18时,18-1=17,18+1=19.

人教版九年级数学上册21.3 第2课时 实际问题与一元二次方程(2)课件

人教版九年级数学上册21.3 第2课时 实际问题与一元二次方程(2)课件

函数解析式;(2)利用“干果销售量×每
克60元的价格销售,
千克的利润=总利润”建立方程并求解.
为了让顾客得到更大
解:(1)设y关于x的函数解析式为y=kx+b.
的实惠,现决定降价销售,已知这种干果
根据题意,得
销售量y(单位:kg)与每千克降价x(单位:
2k+b=120,解得 k=10,
元)(0<x<20)之间满足一次函数关系,其图
B.2×8(1+x)= 11.52
C.8(1+x)2= 11.52
D.8(1+x2)= 11.52
2.某商品经过两次降价,售价由原来的每件25元降到每件
16元,已知两次降价的百分率相同,则每次降价的百分率
为( A )
A.20%
B.25%
C.30%
D.36%
3.某网络学习平台2020年的新注册用户数为100万,2022 年的新注册用户数为169万,设新注册用户数的年平均增 长率为x(x>0),则x= ___3_0_%___(用百分数表示).
2.直播购物逐渐走进了人们的生活.某电商在平台上对一款成本 价为40元的小商品进行直播销售,如果按每件60元销售,每天 可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日 销售量增加10 件.若日销售利润保持不变,商家想尽快销售完该 款商品,每件售价应定为多少元?
解:设每件售价应定为x元,
(2)由题意,得(60-40-x) (10x+100)=2090.
整理,得x2-10x+9=0.
解得x1=1, x2=9.
隐含价格低这一条件
因为要让顾客得到更大的实惠,所以x=9.
答:商贸公司要想获利2090元,则这种干

《实际问题与一元二次方程》(传播、增长率问题问题)课件

《实际问题与一元二次方程》(传播、增长率问题问题)课件
2.鸡瘟是一种传播速度很快的传染病,一轮传染为一天时间, 红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这 种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传 染健康鸡的只数为( C )传播第三轮后感染的鸡有 2197 只 A.10只 B.11只 C.12只 D.13只
探究2:某种植物的主干长出若干数目的支干, 每个支干又长出同样数目的小分支,主干、 支干、小分支的总数是111.求每个支干长出 多少个小分支.设:每个支干长出x个小分支
每两人赠两次
1个人
赠送(x-1)人
共计 x(x-1)图书
探究一:循环问题
2、在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参
加这次聚会,则列出方程正确的是( B )
A.x(x-1)=10
B. xx 1 10
C. x(x + 1)=10
D. xx2 1 10
2
1个人
3、某商品经过连续两次降价,销售单价由原来的125元降 到80元,则平均每次降价的百分率为____2_0_%__.
小结
本节课我们学习了几种问题: 传播问题、增长率问题 解决问题的步骤: 审、设、列、解、答
探究一:循环问题
1、“山野风”文学社在学校举行的图书共享仪式上互
赠图书,每个同学都把自己的图书向本组其他成员赠送
设每轮传染中平均一个人传染了x个人, 则第一轮的传染源有 1 人,有 x 人被传染,
第二轮的传染源有 x+1 人,有 x(x+1) 人被传染.
1 x 传染源 1人
每人传染x人
传染了
传染后
结果
(x+1)人
传染源
每人传染x人
传染后

人教版九年级上册数学 21.3 实际问题与一元二次方程 课件

人教版九年级上册数学 21.3 实际问题与一元二次方程 课件

4.三个连续偶数,已知最大数与最小数的
平方和比中间一个数的平方大332,求这三 个连续偶数.
1.偶数个连续偶数(或奇数),一般可设中间两个为 (x1)和(x 1). 2.奇数个连续偶数(或奇数,自然数),一般可设中 间一个为x.如三个连续偶数,可设中间一个偶数为x, 则其余两个偶数分别为(x2)和(x+2)又如三个连续自 然数,可设中间一个自然数为x,则其余两个自然数 分别为(x1)和(x 1).
解这个方程得:x1 x2 4
CQ
B
答:当AP 4cm时,四边形面积为16cm2
小结 拓展
回味无穷
• 列方程解应用题的一般步骤是: • 1.审:审清题意:已知什么,求什么?已,未知之间有什么关系? • 2.设:设未知数,语句要完整,有单位(同一)的要注明单位; • 3.列:列代数式,列方程; • 4.解:解所列的方程; • 5.验:是否是所列方程的根;是否符合题意; • 6.答:答案也必需是完事的语句,注明单位且要贴近生活. • 列方程解应用题的关键是: • 找出相等关系. • 关于两次平均增长(降低)率问题的一般关系: • a(1±x)2=A(其中a表示基数,x表表示增长(或降低)率,A表示新数)
数字与方程
实际问题与一元二次方程 (三)
1. 两个数的差等于4,积等于45,求这两个数.
2. 一个两位数,它的十位数字比个位数字小3,而 它的个位数字的平方恰好等于这个两位数.求这 个两位数.
3.有一个两位数,它的十位数字与个位数字的和是5. 把这个两位数的十位数字与个位数字互换后得到 另一个两位数,两个两位数的积为736.求原来的 两位数.
则 x(18 x) 81
化简得,x2 18x 81 0 (x9)2 0 x1 x2 9

九年级上册数学实际问题与一元二次方程课件PPT

九年级上册数学实际问题与一元二次方程课件PPT
分析:此题属于经营问题,若设每件衬衫应降价x元,则每件所得利 润为(40-x)元,但每天多售出2x件,即售出件数为(20+2x)件,因此每天 赢利为(40-x)(20+2x)元,进而可根据题意列出方程求解.
14
教材新知精讲
综合知识拓展
拓展点一 拓展点二 拓展点三 拓展点四 拓展点五
解:(1)设每件衬衫应降价x元, 根据题意得(40-x)(20+2x)=1 200, 整理得2x2-60x+400=0,解得x1=20,x2=10. 因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快, 故每件衬衫应降价20元. 答:每件衬衫应降价20元. (2)设商场平均每天盈利y元, 则y=(20+2x)(40-x)=-2x2+60x+800 =-2(x2-30x-400)=-2[(x-15)2-625] =-2(x-15)2+1 250.
13
教材新知精讲
综合知识拓展
拓展点一 拓展点二 拓展点三 拓展点四 拓展点五
拓展点四列一元二次方程解商品销售问题 例4 (2015·岳池县模拟)某商场销售一批名牌衬衫,平均每天可 售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商 场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元, 商场平均每天可多售出2件; (1)若商场平均每天要盈利1 200元,每件衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天盈利最多?
4x)=
9 1- 25
×20×30,
解得x1=1,x2=9.
∵4×9=36>20,
∴x=9舍去,
∴横彩条的宽度是2 cm,竖彩条的宽度是3 cm.
12
拓展点一 拓展点二 拓展点三 拓展点四 拓展点五

一元二次方程在实际问题中的应用课件

一元二次方程在实际问题中的应用课件
由题可得 ( x + 0.6 + x ) ·( x – 0.4) ÷ 2 = 0.78,
整理:
x²– 0.1x – 0.9 = 0
解方程得:x1 = 1,x2 = -0.9(舍去).
则渠深为 1 – 0.4 = 0.6 m.
2.6.1 一元二次方程在实际问题中的应用(1)
5. 如图,在 Rt△ACB 中,∠C = 90°;AC = 30cm,BC = 21 cm. 动点 P
1m/s. 经过几秒△PCQ 的面积为 Rt△ACB 面积的一半?
2.6.1 一元二次方程在实际问题中的应用(1)
解:设时间为 t 秒,则 Rt△PCQ 两边 PC ,CQ 长分别为 (8 – t )米与 (6
– t )米.
由题可得


(8-t)(6-t)= × ×6×8


整理:t²– 14t + 48 = 24
(4) 列:根据等量关系列出一元二次方程;
(5) 解:求方程的解;
(6) 检:检验解是否符合方程,是否符合实际;
(7) 答:写出答案并作答.
2.6.1 一元二次方程在实际问题中的应用(1)
针 对 训 练
1.《九章算术》“勾股”章有一题:“今有二人同所立、甲行率七,乙
行率三,乙东行,甲南行十步而斜东北与乙会. 问甲乙行各几何.”
解方程得:t1 = 2,t2 =12(舍去).
则经过 2 秒时△PCQ 的面积为 Rt△ACB 面积的一半.
2.6.1 一元二次方程在实际问题中的应用(1)
4. 如图,一条水渠的断面为梯形,已知断面的面积为 0.78m2,上口比渠
底宽 0.6m,渠深比渠底少 0.4m,求渠深.
解:设渠底为 x m,则上口为 (x + 0.6) m,渠深为 (x – 0.4) m,

21-3 实际问题与一元二次方程 课件(共25张PPT)

21-3 实际问题与一元二次方程 课件(共25张PPT)

2
5−1
− 5−1
或x2=
(不合题意,舍去),所以
2
2
小练习
例 4:邻边不等的矩形花圃ABCD,它的一边AD利用已有的围
墙,另外三边所围的栅栏的总长度是6m,若矩形的面积为
1
4m2,则AB的长度是____m(可利用的围墙长度超过6m)。
解析:设垂直墙的篱笆的AB为x,那么平行墙的篱笆BC长为(6-2x),
解方程,得:x1≈0.225,x2≈1.775(不合题意,舍去)。
则根据问题的额实际意义,甲乙两种药品成本的年平均下降率均为22.5%
知识梳理
知识点1:组合计算问题。
常见单循环赛问题,握手问题,签合同问题都有相同的规
1
律 x(x-1),送礼物和复循环赛规律相同,即x(x-1)。
2
例 1:某植物的主干长出若干数目的枝干,每个枝干又长
方程,a(1-x)2=49%a,整理得:x2-2x+0.51=0,解得:x1=1.7(舍去)
或x2=0.3,∴平均每次降价30%。故选D。
知识要点
列方程解应用题的一般步骤:①审题;②设未知数;③列方程;
④解方程;⑤检查作答。
组合计数问题:常见单循环问题,握手问题,签合同问题都有
1
相同的规律 x(x-1),送礼物和复循环赛规律相同,即x(x-1)。
1+x+x(1+x)
人中的每个人又传染了x个人,用代数式表示,第二轮后共有_________
个人患了流感。
列方程1+x+x(1+x)=121,
解方程,得x1=10,x2=-12(不合题意,舍去).
平均一个人传染了10个人。
教学新知
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有多少人患流感 x+1 ? 人患了流感. 第一轮后共有 ________
第二轮的传染源
n 第二轮:这些人中的每个人都又传染了 x人,
2 1+x+x(x+1)=(x+1) 第二轮后共有____________________人患了流感.
(1 x)
列方程得
1+x+x(x+1)=121
x=10;x=-12
列一元二次方程解应用题的
一般步骤:
第一步:审题,明确已知和未知; 第二步:找相等关系; 第三步:设元,列方程,并解方程; 第四步:检验根的合理性; 第五步:作答.
1.某种植物的主干长出若干数目的支干,每个支干 又长出同样数目的小分支,主干,支干和小分支的 总数是91,每个支干长出多少小分支?
解:设每个支干长出x个 小分支,则 1+x+x· x=91 x1=9, x2=-10 (不合题意,舍去)
乙种药品成本的年平均下降额较大,但是年平均下 降额(元)不等于年平均下降率(百分数)
两年前生产1 吨甲种药品的成本是5000元,生产1吨乙种 药品的成本是6000元,随着生产技术的进步,现在生产1 吨甲种药品的成本是3000元,生产1吨乙种药品的成本是 3600元。哪种药品成本的年平均下降率较大? 分析: (2)你是如何理解下降额与下降率的?
第2课时 几何图形与一元二次方程
要设计一本书的封面,封面长27㎝,宽21㎝,正中 央是一个与整个封面长宽比例相同的矩形,如果要使四周 的边衬所占面积是封面面积的四分之一,上、下边衬等宽, 左、右边衬等宽,应如何设计四周边衬的宽度? 分析:这本书的长宽之比是9:7,依题知正中央的矩形两 边之比也为9:7 解法一:设正中央的矩形两边分别为9xcm, 7xcm 3 9x 7x 27 21 依题意得 4 27
两年前生产1 吨甲种药品的成本是5000元,生产1吨乙种 药品的成本是6000元,随着生产技术的进步,现在生产1 吨甲种药品的成本是3000元,生产1吨乙种药品的成本是
3600元。哪种药品成本的年平均下降率较大? 分析: (5)比较两种药品的年平均下降率,你能得出什么结论?
经过计算,成本下降额较大的药品,它的成本下降率不一定较大, 应比较降前及降后的价格成本.下降额表示绝对变化量,成本下降 率表示相对变化量,两者兼顾才能全面比较对象的变化状况。
①成本的年下降额=前一年成本— 本年成本 ②成本的年下降率=(前一年成本— 本年成本)÷前一年成本;
(3)在该题中,若设甲种药品成本的年平均下降率为x, 5000(1-x__ )元,两年后甲种药 那么一年后甲种药品成本为____ 2 5000(1-x) 成本为____ __ 元,于是有等量关系: 5000(1-x)2 _ =3000 。 ___________
20
32
解:设道路宽为
х
m,则草坪的长为
(32 2 х) m,宽为 (20 х)m,由题意得:
(32 2 х)(20 х) 540
探究4
如图4所示,在△ABC中,∠C=90°,AC=6cm, BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度 移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动. (1)如果P、Q同时出发,几秒钟后,可使△PCQ的面 积为8平方厘米? (2)点P、Q在移动过程中,是否存在某一时刻,使得 △PCQ的面积等于△ABC的面积的一半.若存在,求出运 动的时间;若不存在,说明理由.
小 分 支 小 分 支
…… …… 主 干
小 分 支
小 分 支
支干
……
……
x x
x
支干
答:每个支干长出9个小分支.
1
探究2
两年前生产一吨甲种药品的成本是5000 元, 生产一吨乙种药品的成本是6000元,随着生产技 术的进步,现代生产一吨甲种药品的成本是3000 元,生产一吨乙种药品的成本是3600元,哪种药品 成本的年平均下降率较大? 分析 显然乙种药品成本的年平均下降额较大 ,是 分析:: 甲种药品成本的年平均下降额________ 否它的年平均下降率也较大 ?请大家计算看看 . 乙种药品成本的年平均下降额 ________ 显然 ,_______ 种药品成本的年平均下降额较大 . 思考:经过计算,你能得出什么结论?成本下降额 但 :年平均下降额 (元)不等于年平均下降率(百分 较大的药品 ,它的成本下降率一定也较大吗 ? 比 ) 应该怎样全面地比较几个对象的变化状况?
D Q A P B C

2003年我国政府工作报告指出:为解决农民负担 过重问题,在近两年的税费政策改革中,我国政府采取 了一系列政策措施,2001年中央财政用于支持这项改革 试点的资金约为180亿元,预计到2003年将到达304.2亿 元,求2001年到2003年中央财政每年投入支持这项改革 资金的平均增长率? 分析:设这两年的平均增长率为x,
D
Q C
分析:四边形PBCQ的形状是梯形,上下底,高 各是多少?
• 2.如图,在矩形ABCD中,AB=12cm, BC=6cm.点P沿AB边从点A开始向点B以 2cm/s的速度移动,点Q沿DA边从点D开始 向点A以1cm/s的速度移动.如果P、Q同时 出发,用t(s)表示移动的时间(0≤t≤6). 那么当t为何值时,ΔQAP的面积等于8cm2?
40cm 25cm
解:设高为xcm,可列方程为 (40-2x)(25 -2x)=450


解得x1=5, x2=27.5
经检验:x=27.5不符合实际,舍去。
答:纸盒的高为5cm。
在长方形钢片上冲去一个长方形,制成一个四 周宽相等的长方形框。已知长方形钢片的长为30cm,宽 2 为20cm,要使制成的长方形框的面积为400cm ,求这个 长方形框的边宽。 分析: 本题关键是如何用x的代数式表示这个长方形框的面积 解:设长方形框的边宽为xcm,依题意,得
如图,已知A、B、C、D为矩 A 形的四个顶点,AB=16㎝,AD=6㎝,动 P 点P、Q分别从点A、C同时出发,点P 以3㎝/s的速度向点B移动,一直到点 B为止,点Q以2㎝/s的速度向点D移动. B 问:P、Q两点从出发开始几秒时,四边形 PBCQ的面积是33c㎡

D
Q C
A P 问(1)P、Q两点从出发开始几秒时, 四边形PBCQ的面积是33c㎡ B
21.3 实际问题与一元二次方程
列方程解应用题的步骤
1、审,审清题意写出答案
一传十,
十传百,
百传千千万
有一个人患了流感,经过两轮传染后有121人患了 流感,每轮传染中平均一个人传染了几个人?
分析 :设每轮传染中平均一个人传染了 x人 注意 :1,此类问题是传播问题. 2,计算结果要符合问题的实际意义 开始有一人患了流感 , 第一轮的传染源 . x+1 第一轮 :他传染了 x人,第一轮后共有______ 人患了流感. 思考 :如果按照这样的传播速度 ,三轮后
复利公式
a:增长前 x:增长(降低)的百分率 a(1±x)n=b n:期数 b:增长后
类似地 这种增长率的问题在 实际生活普遍存在,有一定的模式
若平均增长(或降低)百分率为x,增长(或 降低)前的是a,增长(或降低)n次后的量是b,则 它们的数量关系可表示为
a(1 x) b
n
a:增长前 x:增长(降低)的百分率 n:期数 b:增长后
(2)设点P出发x秒后,△PCQ的面积等于 △ABC面积的一半.
探究6:读诗词解题:(通过列方程式,算出周瑜
去世时的年龄). 大江东去浪淘尽,千古风流数人物; 而立之年督东吴,早逝英年两位数; 十位恰小个位三,个位平方与寿符; 哪位学子算得快,多少年华属周瑜? 解 设周瑜逝世时的年龄的个位数字为x,则十位数 字为x-3. 则根据题意,得x2=10(x-3)+x,即x2-11x+30=0, 解这个方程,得x=5或x=6. 当x=5时,周瑜的年龄25岁,非而立之年,不合题 意,舍去; 当x=6时,周瑜年龄为36岁,完全符合题意. 答 周瑜去世的年龄为36岁.
1、若设计方案图纸为如图,草坪总面积540m2 长方形面积=长×宽
解:设道路宽为
20
(32 2 х) m,宽为 (20 2 х) m,由
题意得:
х m,则草坪的长为
32
(32 2 х)(20 2 х) 540
解得 (不合题意舍去) х1 1 х2 25
答:道路宽为1米。
2、设计方案图纸为如图,草坪总面积540m2 分析:利用“图形经过平移”,它的面积大小不会
两年前生产1 吨甲种药品的成本是5000元,生产1吨乙种 药品的成本是6000元,随着生产技术的进步,现在生产1 吨甲种药品的成本是3000元,生产1吨乙种药品的成本是 3600元。哪种药品成本的年平均下降率较大? 分析: (4)算一算乙种药品的年平均下降率是多少? 若设乙种药品成本的年平均下降率为y, 6000(1-y) 那么一年后乙种药品成本为____ __元,两年后 2 6000 ( 1-y ) 乙种药 成本为____ __元,于是有等量关系: 2 =3600 6000 ( 1-y ) ___________ _ 。
改变的道理,把纵横两条路平移一下
解:设道路的宽为
x米,根据题意得,
(32 x) (20 x)
(32 x)(20 x) 540
化简,得
解得
1
x 52 x 100 0
2
2
2 0 3 2
x =2, x =50(不合题意舍去)
答:道路宽为2米。
3、设计方案图纸为如图,草坪总面积 540m2
两年前生产1 吨甲种药品的成本是5000元,生产1吨乙种 药品的成本是6000元,随着生产技术的进步,现在生产1 吨甲种药品的成本是3000元,生产1吨乙种药品的成本是
相关文档
最新文档