数学人教版八年级上册等角三角形的性质

合集下载

人教版八年级上册数学13.3.2等边三角形等边三角形的性质和判定教案设计

人教版八年级上册数学13.3.2等边三角形等边三角形的性质和判定教案设计

13. 3.2等边三角形教案(第一课时)教学目标:1、理解和掌握等边三角形的性质与判定。

2、能够用等边三角形的性质解决相应的数学问题。

学习重点:等边三角形的性质与判定学习难点:等边三角形的性质与判定的应用。

教学设计:一、知识回顾等腰三角形的性质(板书)1、(等腰三角形的两个底角相等。

)等边对等角2、(等腰三角形的顶角平分线、底边上的中线、底边上的高相互合。

)三线合一3、等腰三角形是轴对称图形,(对称轴是底边上的中线或顶角平分线、底边上的高所在的直线。

)等腰三角形的判定:1、定义(有两边相等的三角形是等腰三角形)。

2、(如果一个三角形有两个内角相等,那么这两个角所对的两条边也相等。

)等角对等边二、新课学习教材79页——80页13.3.2等边三角形(板书)本节课主要学习等边三角形的性质与判定。

1、等边三角形的定义:等边三角形是三边都相等的特殊的等腰三角形。

即(板书)底≠腰的等腰三角形等腰三角形{底=腰的等腰三角形(即等边三角形)2、等边三角形的性质:(板书)(1)学生自主探究79页“思考”中第一个问题师:利用等腰三角形的性质很容易得到等边三角形的性质:如图,如果AB=AC=BC,则∵AB=AC∴∠B=∠C又∵AC=BC∴∠B=∠A∴∠A=∠B=∠C进一步分析还可以得:∵∠A+∠B+∠C=180°∴∠A=∠B=∠C=60°归纳:等边三角形的三个内角都相等,并且每一个内角都等于60°。

(板书)(2)完成教材80页第1题,并得出轴对称及三线合一的性质。

3、等边三角形的判定①定义:三边相等==>等边三角形②等边三角形的三个内角都相等。

反过来三个角都相等的三角形一定是等边三角形吗?即:三角相等==>三边相等?学生探究。

可分组讨论(教材79页“思考”第二问题)学生代表发言:如图:如果∠A=∠B=∠C,则∵∠B=∠C∴AB=AC又∵∠A=∠B∴AC=BCAB=AC=BC即△ABC是等边三角形。

八年级数学人教版(上册)第1课时等边三角形的性质与判定

八年级数学人教版(上册)第1课时等边三角形的性质与判定

C
∴ △ADE 是等边三角形.
侵权必究
讲授新课
变式3 上题中,若将条件DE∥BC改为AD=AE,
△ADE还是等边三角形吗?试说明理由. A
证明:∵ △ABC是等边三角形,
∴ ∠A= ∠B= ∠C.
D
E
∵ AD=AE,
B
C
∴ ∠ADE= ∠B, ∠ AED= ∠C.
∴ ∠A= ∠ADE= ∠ AED.
等边三角形 三条边都相等的三角形 是等边三角形
三个角都相等的三角形 是等边三角形
小明等认边为三还角有形第的三种判方定法方“法两:条边相等且有一个角是60°的三角 形也是等有边一三个角角形”是,60你°同的意等吗腰?三角形是等边三角形.
侵权必究
讲授新课
归纳总结
等边三角形的判定方法:
三边都相等的三角形是等边三角形.
A.①②③ B.①②④
C.①③
D.①②③④
侵权必究
当堂练习
6.如图,点A,B,C在一条直线上,△ABD,
△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于
点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①
△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;
④MB平分∠AMC,其中结论正确的有( D )
A.1个 B.2个
C.3个
D.4个
侵权必究
当堂练习
7.如图,在△ABC中,∠ACB=90°,∠CAB=30°, 以AB为边在△ABC外作等边△ABD,E是AB的中点, 连接CE并延长交AD于F.求证:△AEF≌△BEC.
证明:∵△ABD是等边三角形, ∴∠DAB=60°, ∵∠CAB=30°,∠ACB=90°, ∴∠EBC=180°-90°-30°=60°, ∴∠FAE=∠EBC. ∵E为AB的中点, ∴AE=BE. 又∵ ∠AEF=∠BEC, ∴△AEF≌△BEC(ASA).

八年级上册数学等边三角形

八年级上册数学等边三角形

八年级上册数学等边三角形一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系4.轴对称的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点(x, y)关于x轴对称的点的坐标为______.点(x, y)关于y轴对称的点的坐标为______.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)五、(等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。

2、等边三角形的判定:①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

人教版八年级数学上册课件 第十三章 轴对称 等腰三角形 等边三角形 第1课时 等边三角形的性质与判定

人教版八年级数学上册课件 第十三章 轴对称 等腰三角形 等边三角形 第1课时 等边三角形的性质与判定

27 2
(cm)
17.(14分)(原创题)已知△ABC是等边三角形,点D是直线BC上一点, 以AD为一边在AD的右侧作等边三角形ADE.
(1)如图①,点D在线段BC上移动时,求证:CE+CD=AB; (2)如图②,点D在线段BC的延长线上移动时,那么: ①线段CE,CD,AB之间有怎样的数量关系?请加以证明; ②∠DCE的度数为___6_0_°___; (3)如图③,点D在线段BC的反向延长线上移动时,∠DCE的大小是否 发生变化?线段CE,CD,AB之间又有怎样的数量关系?请直接写出结 论.
2.(3分)如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,
则∠ADB的度数为( ) D
A.25°
B.60°
C.85°
D.95°
3.(3分)如图,已知△ABC是等边三角形,点B,C,D,E在同一直线 上,且CG=CD,DF=DE,则∠E=___1_5_°___.
4 . (3 分 ) 如 图 , 在 等 边 三 角 形 ABC 中 , CD⊥AB 于 点 D , 过 点 D 作 DE∥BC交AC于点E,若△ABC的边长为2,则△ADE的周长是__3__.
∠E,∴DB=DE
6.(3分)下列四个说法中,正确的有( D ) ①三个角都相等的三角形是等边三角形;②有两个角等于60°的三角形 是等边三角形;③有一个角是60°的等腰三角形是等边三角形;④有两个 角相等的等腰三角形是等边三角形. A.0个 B.1个 C.2个 D.3个
7.(3分)等腰三角形补充下列条件后,仍不一定成为等边三角形的是 ( C)
14.(台州中考)如图,等边三角形纸片ABC的边长为6,E,F是边BC 上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪 下的△DEF的周长是___6_.

13.3.2 等边三角形第1课时 等边三角形的性质与判定 课件 人教版八年级数学上册

13.3.2 等边三角形第1课时  等边三角形的性质与判定  课件   人教版八年级数学上册

(B )
A. 75°
B. 80°
C. 70°
D. 85°
7. 如图,△ABC是等边三角形,点B,C,D,E在同一条直线上,且CG
=CD,DF=DE,则∠E=___1_5_°___.
第6题
第7题
8
8. 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等 边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P, BE与CD交于点Q,连接PQ.有下列结论:① AD=BE;② PQ∥AE;③ AP=BQ;④ DE=DP;⑤ ∠AOB=60°.其中,恒成立的有 __①__②__③__⑤____(填序号).
2. 如图,△ABC是等边三角形,BC=BD,∠BAD=20°,则∠BCD的度 数为( A ) A. 50° B. 55° C. 60° D. 65°
3. 如图,△ABC和△BDE都是等边三角形.若∠ABE=40°,则∠CBD 的度数为___4_0_°___.
第2题
第3题
5
4. 如图,△ABC为等边三角形,点D,E分别在边BC,AC上,且AE=CD, AD与BE相交于点F. (1) 求证:△ABE≌△CAD; (2) 求∠BFD的度数. 第4题
13.3 等腰三角形
1
13.3.2 等边三角形
2
第1课时 等边三角形的性质与判定
3
1. 等边三角形是__三__边____都相等的特殊的等腰三角形. 2. 等边三角形的性质:(1) 等边三角形是____轴____对称图形,且有
__3____条对称轴,对称轴是_各__边__上__的__中__线__(_各__角__的__平__分__线__、__各__边__上__ __的__高__)_所__在__的__直__线___________________________________________; (2) 等边三角形的三个内角都__相__等____,并且每一个角都等于

八年级数学上册13.3.2 第1课时 等边三角形的性质与判定

八年级数学上册13.3.2 第1课时 等边三角形的性质与判定

边三角形,求∠AEB的大小.
解: ∵△OAB和△OCD是两个 C
E
B
全等的等边三角形.
F
∴AO=BO,CO=DO, ∠AOB=∠COD=60°.
∵ A、O、D三点共线,
D
O
A
∴ ∠DBO=∠CAO. 设OB与EA相交于点F,
∴ ∠DOB=∠COA=120°,∵ ∠EFB=∠AFO,
∴ △COA
∴ ∠AEB=∠AOB=60°.
针对训练: 如图,等边△ABC中,D、E、F分 别是各边上的一点,且AD=BE=CF. 求证:△DEF是等边三角形. 证明:∵△ABC为等边三角形,且
AD=BE=CF ∴AF=BD=CE,∠A=∠B=∠C=60°, ∴△ADF≌△BED≌△CFE(SAS), ∴DF=ED=EF, ∴△DEF是等边三角形.
第十三章 轴对称
13.3.2 等边三角形
第1课时 等边三角形的性质与判定
导入新课
问题引入
小明想制作一个三角形的相框,他有四根木条长 度分别为10cm,10cm,10cm,6cm,你能帮他设 计出几种形状的三角形?
一般三角形
等腰三角形
等边三角形
在等腰三角形中,有一种特殊的情况,就是底与 腰相等,即三角形的三边相等,我们把三条边都 相等的三角形叫作等边三角形.
图①
(2)△CEF是等边三角形. 证明:∵∠ACE=∠FCM=60°, ∴∠ECF=60°. ∵△ACN≌△MCB, ∴∠CAE=∠CMB. ∵AC=MC, ∴△ACE≌△MCF(ASA), ∴CE=CF. ∴△CEF是等边三角形.
图②
课堂小结
特殊性
定义
底=腰
等边 三角形
特殊性 性质

八年级上册数学-等边三角形

八年级上册数学-等边三角形

A第17讲 等边三角形【板块一】 等边三角形的性质方法技巧(1)运用等边三角形角的数量特征和边的相等关系解题.(2)共顶点的两个等边三角形(也称手拉手图形)组成的图中,必定有全等三角形.题型利一 与等边三角形有关的角度的计算.【例1】如图,△ABC 是等边三角形,CD ⊥BC ,CD =BC ,求∠DAC 和∠ADB 的度数.AD题型二 共顶点的等边三角形(手拉手图形)【例2】如图,点D 是等边△ABC 的边AB 上一点,以CD 为一边,向上作等边△EDC ,连接AE . (1)求证:△DBC ≌△EAC; (2)求证:AE ∥BC .B【例3】如图,△ABC 和△CDE 都是等边三角形,点E 在BC 上,AE 的延长线交BD 于点F . (1)求证:AE =BD ; (2)求∠AFB 的度数; (3)求证:CF 平分∠AFD ;(4)直接写出EF ,DF ,CF 之间的数量关系.题型三 平面直角坐标系中的等边三角形【例4】如图,,点A (-2,0),B (2,0),C (6,0),D 为y 轴正半轴上一点,且∠ODB =30°,延长DB 至E ,使BE =BD ,点P 为x 轴正半轴上一动点(点P 在点C 的右边),点M 在EP 上,且∠EMA =60°,AM 交BE 于点N .(1)求证:BE =BC ;(2)求证:∠ANB =∠EPC ;(3)当点P 运动时,求BP -BN 的值.针对练习11.如图,等边△ABC 中,点D ,E 分别在边AB ,BC上,把△BDE 沿直线DE 翻折,使点B 落在点B’处,D EDB ’,EB ’分别交AC 于点F ,G ,若∠ADF =80°,求∠EGC 的度数.B'B2.如图,△ABD 和△ACE 都是等边三角形, DC 于BE 交于点M . (1)求证:BE =CD ;(2)求∠AMD 的度数.3.如图1,等边△ABC 中,点D 是AB 上一点,以CD为一边,向上作等边△EDC ,向下作等边△DCF ,连接AE ,BF . (1)求证:AB =AE +BF ;(2)当点D 在BA 延长线上时,如图2,若AE =10,BF =4,求AC 的长.B图1 图24.已知点D ,E 分别是等边△ABC 的边BC ,AB 上的点,∠ADE =60°. (1)如图1,当点D 是BC 的中点时,求证:AE =3BE ; (2)如图2,当点M 在AC 上,满足∠ADM =60°,求证:BE =CM ;(3)如图3,过C 作CF ∥AB 交ED 延长线于点F ,探究线段BE ,CF ,CD 之间的数量关系,并给出证明.BCBCBC图1 图2 图35.在平面直角坐标系中,已知点A 在y 轴的正半轴上,点B 在第二象限,AO =a ,AB =b ,BO 与x 轴正方向的夹角150°,且220a -b a-b . ⑴判断△ABO 的形状;⑵如图1,若BC ⊥BO ,BC =BO ,点D 为CO 的中点,AC 、BD 交于点E ,求证:AE = BE +CE ;图 1⑶如图2,若点E 为y 轴的正半轴上一动点,以BE 为边作等边△BEG ,延长GA 交x 轴于点P ,AP 与AO 之间有何数量关系?试证明你的结论.图 26.△ABC 为等边三角形,BC 交y 轴于点D ,A (a ,0),B (b ,0),且a ,b 满足230a+ . (1)如图1,求点A ,B 的坐标及CD 的长;图 1(2)如图2,P是AB的延长线上一点,点E是CP右侧一点,CP=PE,且∠CPE=60°,连接EB,求证:直线EB必过点D关于x轴对称的对称点;E(3)如图3,若点M在CA的延长线上,点N在AB的延长线上,且∠CMD=∠DNA,求AN-AM的值.【板块二】60°角的用法◆方法技巧◆合理利用60°角构造等边三角形得到相等线段,再进行推理.题型一过60°角一边上一点作平行线构造等边三角形.方法技巧:过60°角一边上一点,作平行线构造等边三角形,转化边与角.【例5】如图,△ABC是等边三角形,点D是AC的中点,点E,F分别在BC,AB的延长线上,∠EDF=120°.(1)求证:DE=DF;(2)若AB=5,求CE-BF的值.A题型二 在60°角的两边上截取两条相等线段构造等边三角形 方法技巧:在60°角的边上截取两条相等线段后构成等边三角形,然后产生新的全等三角形,从而找到解决问题的突破口.【例6】如图,△ABC 为等边三角形,∠ADB =60°. (1)如图1,当∠DAB =90°时,直接写出DA ,DC ,DB 之间的数量关系_______;图 1ABCD(2)如图2,当∠DAB ≠90°时,①中的关系式是否成立?说明理由.图 1ABCD题型三 利用60°角的一边上的点向另一边做垂线构造30°,60°,90°的直角三角形 方法技巧:利用30角所对的直角边等于斜边的一半,作高. 【例7】如图,在△ABC 中,∠B =60°,∠C =45°,AB =2,BC =1 ,求△ABC 的面积.ABC題型四 利用60°角延长构造等边三角形方法技巧;向外延长60”角的一边,在外部构造等边三角形.【例8】已知点D ,点E 分別等边△ABC 边BC ,AC 上的点,CD =AE ,AD 与BE 交于点F .(1)如图1,求∠AFE 的度数;图 1BCAD(2)点G 边AC 中点,∠BFG =120° ,如图2,求证:AF =2FG .图 2BCAD针对练习21.如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D ,连接PD ,如果PO =PD ,求AP 的长.ABCP2.如图.在等边△ABC 中,∠ABC 与∠ACB 的平分线相交于点O ,且OD ∥AB ,OE ∥AC . (1)试判定△ODE 的形状,并说明你的理由;(2)线段BD ,DE ,EC 三者有什么关系?请说明理由.E DBCA3.点D 为BC 上任一点,∠ADE =60°,边ED 与∠ACB 外角的平分线交于点E ,求证:AD =DE ;BCAD4.已知△ABC 是边长为5的等边三角形.(1)如图1,若点P 是BC 上一点,过点C ,点P 分别作AB ,AC 的平行线,两线相交于点Q ,连接BQ ,AP 的延长线交BQ 于点D .试问:线段AD ,BD ,CD 之间是否存在某种确定的数量关系?若存在,请写出它们之间数量关系并证明你的结论;若不存在,说明理由;图 1QBCA(2)如图2,若点P 是BC 延长线上一点,连接AP ,以AP 为边作等边△APE (点E 、点A 在直线BC 同侧),连接CE 交AP 于点F ,求CE -CP 的值.图 2BCDE5.如图,在△ABC 中,∠BAC =60°,以BC 为边在△ABC 的同侧作等边△DBC ,BD ,AC 相交于点E ,连结AD .(1)如图1,若A 2ACAB,求证:△ABC ≌△ADC图 1CAD(2)如图2,若3AC AB,求ABAD的值. 图 2CAD6.如图1,△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE =BD ,连接CE 、DE . ⑴求证:EC =ED ;图 1BDE⑵如图2,EO ⊥CD 于点O ,点N 在EO 上,△DNM 为等边三角形,CM 交EO 于F ,若FO =1,求FM -FN 的值.图 1BDE[板块三) 30°角的用法方法技巧构造30°角的直角三角形,算边长与面积.题型一 已知30°角连线巧得隐直角.【例9】如图,在△ABC 中,AB =AC ,∠C =30°,AB 的垂直平分线交AB 于点D ,交BC 于点E ,试探究BE 与CE 之间的数量关系.BC题型二 利用30°作高构造直角三角形.【例10】如图,CD 是△ABC 的中线,CD ⊥CB ,∠ACD =30°,求证:AC =2BC.DABC题型三 已知30°和90°角补形构造直角三角形 【例11】如图,四边形ABCD 中,∠C =30°,∠B =90°,∠ADC =120°,若AB =2,CD =8,求AD 的长.ACBD题型四 利用底角为15°的等腰三角形构造30°角的直角三角形 【例12】如图,∠AOC =15°,OC 平分∠AOB ,点P 为OC 上一点,PD /∥OA 交OB 于点D ,PE ⊥OA 于点E ,若OD =4cm ,求PE 的长.EOA题型五 利用150°构造30°角的直角三角形【例13】如图,在△ABC 中,AB =AC ,点D 为BC 上一点,以AD 为腰作等腰△ADE ,且AD =AE ,∠BAC =∠DAE =30°,连接CE ,若BD =2,CD =5,求△DCE 的面积.BCADE题型六30°直角三角形斜边上的高方法技巧:30°角的直角三角形斜边上的高中,有3个30°的直角三角形,选取最小的和最大的两个直角三角形进行计算.【例14】如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D ,∠A =30°,AD =6,求BC 的长.DABC针对练习31.某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米的售价为a 元,求购买这种草皮至少需要多少元?BCA2.在△ABC 中,∠B =30°,AB =AC =8,P 为BC 上一点,求AP 的最小值.ABCP3.如图,在等边△ABC 中,点D 为AC 上一点,CD =CE ,∠ACE =60°. (1)求证:△BCD ≌△ACE ;图1EBCA(2)延长BD 交AE 于点F ,连接CF ,若AF =CF ,猜想线段BF ,AF 的数量美系,并证明你的猜想.图 2BCAE4.如图,在△ABC 中,∠BAC =90°,点D 为三角形内一点,且AB =AC =BD ,∠ABD =30°.求证:AD =CD ,AB C。

人教版八年级数学上册等边三角形

人教版八年级数学上册等边三角形

反过来怎么样——逆向思维
命题:在直角三角形中, 如果一条直角边等于斜边 的一半,那么它所对的锐角等于300.是真命题吗? 如果是,请你证明它.
已知:如图,在△ABC中,∠ACB=900,BC= 1 AB.
求证:∠A=300.
2
A
B
C
反过来怎么样——逆向思维
证明:如图, 延长BC至D,使CD=BC,连接AD.
概念 性 质
等 有二 腰 条边 三 角 相等 形
等 有三 边 条边 三 角 轴一条 1、等边对等角 2、三线合一 3、对称轴三条
判定
1、定义 2等角对等边
1定义 2两个角是600 3等腰三角形有一个 600
我能行 3
将两个含有板有30°的三角尺如图摆放在 一起,你能借助这个图形,找到Rt△ABC的直
A 300
C
这是一个通过线段之间的关系来判定 一个角的具体度数(300)的根据之一.
比一比:看 谁 算 的 快
1.如图:在Rt△ABC中 ∠A=300,AB+BC=12cm 则AB=__8___cm B
300


2.如图:△ABC是等边三角形,
A
AD⊥BC,DE⊥AB,若AB=8cm,
BD=4_c_m_, BE=_2__c_ m E
∴∠A=300(直角三角形两锐角互余).
回顾反思 4
几何的三种语言
定理:在直角三角形中, 如果一条直角边等于 斜边的一半,那么它所对的锐角等于300.
在△ABC中
∵∠ACB=900,BC=AB/2(已知),
∴∠A=300(在直角三角形中,如果一条直
B
′ 角边等于斜边的一半,那么它所对的锐角
等于300).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等腰三角形》教学设计
三河市第四中学
一、教学分析
1.教学内容分析
(1)义务教育课程标准实验教科书八年级上册教材第十二章第三节《等腰三角形》。

(2)等腰三角形是一种特殊的三角形,它除了具有一般三角形的所有性质外,还有许
多特殊的性质。

由于它的这些特殊性质,使它比一般的的三角形应用更广泛。

等腰三角形的这些性质和它是轴对称图形有关,利用它的轴对称,可以得到“等边对等角”
“三线合一”等性质,他们是证明线段和角相等又一重要依据。

(3)本节内容学习是在认识了轴对称以及了解了全等三角形的判定的基础上进行的。

主要学习等腰三角形的“等边对等角”和“等腰三角形的三线合一”的性质。

它既是前面知识的深化和应用,又是今后学习线段的垂直平分线定理的预备知识,还是证明线段、角相等及两直线互相垂直的重要依据,因此本节课具有承上启下的重要作用。

2.教学对象分析
本课的教学对象是八年级学生,授课班级为平行班,学生基础参差不齐,教学中应给予充分思考的时间,谨防填塞式教学。

可以充分发挥小组交流合作的优势,兼顾效率和平衡。

在前面的章节里,同学们已经学习了一些简单的平面几何图形、会用符号表示推理证明,初步形成了空间观念,具备一定的生活经验和数学活动经验,善于合作交流学习所得。

由于学生刚开始学习用符号表示推理,教科书也控制了证明的难度,但现对于上一章的内容,推理的依据多了,应用也更为广泛了,图形、题目的复杂程度也增加了,因此会使一些学生感到无处下手,这是这节教学的一个难点。

要克服这一难点,关键是要加强对问题分析的教学,帮助学生理清思路。

教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。

3.教学环境分析
选择多媒体环境、多媒体课件片断,辅助难点突破。

学生自带剪刀,圆规,直尺等工具、纸片
二、教学目标
1.知识与技能:
理解和掌握等腰三角形的性质,会应用等腰三角形的性质计算、证明。

2.过程与方法:
①、经历等腰三角形性质的探究,学生通过实践、操作、观察、猜想、论证,发展了
合情推理的能力和演绎推理的能力,同时增强了语言表达能力。

②、在应用等腰三角形性质的过程中,培养了学生应用数学的意识。

3.情感、态度与价值观:
在活动中,体会数学的对称美,体验团队精神,培养学生自主探究,合作交流的意识,提高学习的兴趣。

三、教学重点、难点
重点:等腰三角形的性质的理解及其应用。

难点:等腰三角形性质的证明及其具体应用。

四、教学过程
(一)教学流程图
(二)教学环节设计
一、创设情境,导入新知:
活动1:观察实际生活中的图片,让学生明确知识来源于生活,激发学生的学习兴
趣,导入新课。

多媒体先展示生活中的等腰三角形,再给出课本P 49 “探究”,如图(1)
D
C B
A C B
图(1) 图(2)
学生活动:通过剪纸,发现△ABC 的特点:AB=AC
师在此基础上给出等腰三角形概念,引导学生回顾等腰三角形的相关概念,如:腰、底角、顶角等,如图(2):△ABC 中,若AB=AC ,则△ABC 是等腰三角形,AB 、AC
是腰、BC 是底边、∠A 是顶角,∠B 和∠C 是底角.导入课题——等腰三角形性质.
规范书写,概括等腰三角形, 培养学生文字语言、图形语言和符号语言的转化能力.
【设计意图】:“兴趣是学生获取知识、拓展眼界、丰富心理活动的最主要的推
动力”。

从一开始的图片欣赏再提供给学生动手操作的空间和时间,然后呈现多媒体动
态的演示画面,让他们在无意中,了解等腰三角形的一些概念。

一方面调动了学生的
主观能动性、激发了其好奇心和求知欲,另一方面为进一步探究等腰三角形性质作好
充分准备。

二、实验探究,获取新知:
活动2:通过多媒体演示,学生进一步操作、观察得出猜想
课件展示思考题:
1、上面剪出的等腰三角形是轴对称图形吗?
2、把剪出的等腰三角形ABC 沿折痕对折,令折痕为AD 找出其中重合的线段和角,并
填写下表。

3、由这些重合的线段和角,你能联想到什么,譬如:AD 是怎样的一条线段呢?
4、由问题3你能发现等腰三角形有哪些性质呢?说说你的猜想。

多媒体反复动态展示折纸的过程
教师逐个出示问题,引导学生自主探究、交流,关注学生的参与程度以及语言表达是
否准确,并给予及时评价。

学生活动:在教师的引导下,折纸观察,逐个解决问题1、2,对于问题3、4,学生独立
思考后,分组讨论交流,达成共识。

重点板书:
∠B=∠C
底角相等 猜想1
BD=DC AD 是BC 边(底)的中线 ∠BAD=∠CAD AD 是∠BAC (顶角)的角平分线 猜想2
∠ADB=∠ADC =900 AD 是BC 边(底)上的高线
性质1、等腰三角形的两个底角相等 “等边对等角”
性质2、等腰三角形顶角平分线、底边上的中线、底边上的高相互重合 “三线合一”
【设计意图】:动态的事物比静态的事物更能引起学生的注意力,更能调动学生的
学习动机,在实物抽象出等腰三角形的性质特征这一教学环节中,学生面向静止呆板的
文本中难以体会这些性质,通过学生的动手操作及多媒体展示克服了这一缺陷.让学生
在自主探究,教师引导的过程中,归纳出等腰三角形的两条性质,不但让学生清晰地建立
起知识体系,而且培养了学生自主探究学习的品质.
活动3:推理论证,形成性质
提问:
1、将“猜想1”写成符号语言表示的形式。

2、如何证明两个角相等呢?
学生活动:在教师引导下画图,写出已知、求证、证明。

由问题2的提示和前面的活动,
得出:添加辅助线的方法。

师生共同完成证明,师板书。

3、猜想2中,你是如何理解这三条线段重合的?
4、【我是小翻译】请将等腰三角形性质的文字语言“翻译”符号语言。

5、类比性质1的证明,完成性质2的证明,描述等腰三角形的对称轴。

学生活动,完成上述思考,在回答基础上,3名代表分别完成证明。

师、生共评:
1)形成性质1、2,概述:等边对等角,三线合一
2)在性质1、2的证明中,体会这种添加辅助线的方法,通过尝试,发现“三种”添加
方法的不同,操作性不同,难易复杂程度不同。

3)强调性质1、2是证明线段、角相等和垂直关系的重要依据。

【设计意图】:培养学生的语言转换能力,增强理性认识、体验性质的正确性,提高演绎推
理能力,同时为后续的学习积累数学经验.
三、例、练巩固,应用新知:
活动4:性质1的应用,课件展示例1:
活动5:习题练习
1、等腰三角形已知顶角为50°,其余两个角分别为 。

2、等腰三角形已知底角为50,其余两个角分别为 。

变式训练:
3、等腰三角形中有一角为400,则其它两角为 。

4、等腰三角形中有一角为1000,则其它两角为 。

学生活动:完成练习,师关注学生分类情况,考虑问题是否全面。

活动6:出示问题:等腰三角形底边中点到两腰的距离相等吗?
如图:△ABC 是等腰三角形,点D 是底边BC 的中点,DE ⊥ AB , DF ⊥ AC ,求证:DE=DF 学生独立完成解答,学生代表板演。

师引导学生交流、评价,关注解题思路的多样性(利用全等、轴对称、性质2)通过比较,体会性质2应用的简洁性,提倡“学以致用”学生在认真审题基础上,结合性质进行分析,
寻求 解决问题途径,在组内交流讨论。

师作适当点拨,如方程思想的运用。

学生口述解答过程,师板演,规范解题过程。

学生练习:P51 -3
【设计意图】:在新大纲中明确规定:应使学生“初步学会应用所学知识、方法解决简单的实际问题”。

所以,例、练巩固是学生学习过程中的重要环节。

多媒体技术有针对性的练习的最大成功之处在于化学习被动为主动,化抽象为具体。

通过一系列习题层层深入,轻松培养学生正确应用所学知识的能力,增强应用意识,激发参与意识,巩固所学性质。

同时也及时为教师提供了学生评价和反馈信息的方法与途径。

四、归纳小结,内化新知:
1)通过本节课的学习,你对等腰三角形有哪些新的认识?
2)在这节课的学习中,你获得了哪些学习的方法和思想?
【设计意图】:总结回顾学习内容,帮助学生归纳。

五、布置作业:
(分层布置作业,补充题有兴趣的同学试一试)
1)相关的习题
2)补充探究题:
类比等腰三角形性质的探究过程,思考若将活动5中的DE、DF改成角平分线、中线呢?
【设计意图】:巩固学生所学内容,总结反思,通过课后独立思考,自我评价学习效果。

六、心得与体会
学生畅所欲言,谈谈本节课我们主要研究了什么内容?你有哪些收获,
【设计意图】:(让学生按上述的模式进行小结,通过对本节课的回顾,增强学生对等腰三角形的理解和对轴对称图形的理解,培养学生“学习——总结——学习——反思”的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。

)。

相关文档
最新文档