11-4工程光学课件
合集下载
《工程光学与技术》课件

智能制造
智能制造需要高精度、高效率的光学检测和测量技术,工程光学将大有可为。
医疗健康
光学成像、光谱分析等技术将为医疗健康领域带来更多创新。
THANK YOU
感谢各位观看
《工程光学与技术》ppt课件
目录
• 工程光学概述 • 光学基础知识 • 工程光学技术 • 现代光学技术 • 工程光学实验 • 工程光学前沿与展望
01
工程光学概述
光学的基本概念
光的本质
光是一种电磁波,具有波粒二象性。
光的传播
光在真空中沿直线传播,在其他介质中传播方向会发生改变。
光的反射、折射和散射
04
现代光学技术
非线性光学
非线性光学效应
非线性光学效应是光与物质相互作用时产生的非线性现象,如倍频 、和频、差频等。
非线性光学材料
非线性光学材料是实现非线性光学效应的关键,如晶体、玻璃、聚 合物等。
非线性光学应用
非线性光学在激光技术、光电子学、光通信等领域有广泛的应用,如 光参量振荡器、光倍频器等。
光子学与光子技术
ቤተ መጻሕፍቲ ባይዱ光子学基本概念
光子学是研究光子的产生、传播、相互作用和应 用的科学。
光子器件
光子器件是实现光子技术的关键,如激光器、光 放大器、光调制器等。
光子技术的应用
光子技术在通信、信息处理、传感等领域有广泛 的应用,如光纤通信、光计算等。
光学信息存储与处理
01
光学信息存储
光学信息存储是利用光的干涉、 衍射等光学效应实现信息的存储 和读取。
工程光学的研究内容
光学系统设计
研究光学系统的基本理论和设 计方法,涉及光学仪器、摄影
镜头、显微镜等。
光学材料与制造
智能制造需要高精度、高效率的光学检测和测量技术,工程光学将大有可为。
医疗健康
光学成像、光谱分析等技术将为医疗健康领域带来更多创新。
THANK YOU
感谢各位观看
《工程光学与技术》ppt课件
目录
• 工程光学概述 • 光学基础知识 • 工程光学技术 • 现代光学技术 • 工程光学实验 • 工程光学前沿与展望
01
工程光学概述
光学的基本概念
光的本质
光是一种电磁波,具有波粒二象性。
光的传播
光在真空中沿直线传播,在其他介质中传播方向会发生改变。
光的反射、折射和散射
04
现代光学技术
非线性光学
非线性光学效应
非线性光学效应是光与物质相互作用时产生的非线性现象,如倍频 、和频、差频等。
非线性光学材料
非线性光学材料是实现非线性光学效应的关键,如晶体、玻璃、聚 合物等。
非线性光学应用
非线性光学在激光技术、光电子学、光通信等领域有广泛的应用,如 光参量振荡器、光倍频器等。
光子学与光子技术
ቤተ መጻሕፍቲ ባይዱ光子学基本概念
光子学是研究光子的产生、传播、相互作用和应 用的科学。
光子器件
光子器件是实现光子技术的关键,如激光器、光 放大器、光调制器等。
光子技术的应用
光子技术在通信、信息处理、传感等领域有广泛 的应用,如光纤通信、光计算等。
光学信息存储与处理
01
光学信息存储
光学信息存储是利用光的干涉、 衍射等光学效应实现信息的存储 和读取。
工程光学的研究内容
光学系统设计
研究光学系统的基本理论和设 计方法,涉及光学仪器、摄影
镜头、显微镜等。
光学材料与制造
第二版工程光学分解课件

详细描述:当光从光密介质射向光疏介质时,如 果入射角大于临界角,光波将被完全反射回原介 质,不进入光疏介质,这种现象称为全反射。全 反射是光的波动性的一种表现。
02
光学系统与元件
透镜与光学镜头
透镜的分类
光学镜头的应用
根据透镜的形状和焦距,透镜可以分 为球面透镜、非球面透镜、双凸透镜 、双凹透镜和凸凹透镜等。
折反镜由反射镜和折射镜 组成,通过改变光路,将 光线聚焦在一点上。
折反镜的应用
在望远镜、显微镜和照相 机等光学仪器中广泛应用 ,用于改变光路和聚焦光 线。
滤光片与分光仪
滤光片的分类
根据滤光片的透过光谱, 滤光片可以分为可见光滤 光片、红外滤光片、紫外 滤光片等。
分光仪的结构
分光仪由棱镜或光栅等分 光元件和探测器组成,可 以将光谱分成不同的波段 。
非线性光学材料
研究和发展新型非线性光学材料,如有机晶体、 无机晶体、光折变晶体等,以提高非线性光学效 应的转换效率。
非线性光学应用
非线性光学在光通信、光信息处理、光计算等领 域有广泛应用,如光参量振荡、倍频、和频等。
光子学与光子技术
光子学基础
01
研究光子的产生、传播、相互作用等基本规律,以及光子与物
在摄影、摄像、显微镜、望远镜等领 域广泛应用,用于聚焦光线、改变光 路等。
光学镜头的基本参数
包括焦距、光圈、视场角、相对孔径 等,这些参数决定了镜头的光学性能 和使用范围。
反射镜与折反镜
01
02
03
反射镜的分类
根据反射面的形状,反射 镜可以分为平面反射镜、 凹面反射镜和凸面反射镜 等。
折反镜的结构
质的相互作用机制。
光子器件
02
02
光学系统与元件
透镜与光学镜头
透镜的分类
光学镜头的应用
根据透镜的形状和焦距,透镜可以分 为球面透镜、非球面透镜、双凸透镜 、双凹透镜和凸凹透镜等。
折反镜由反射镜和折射镜 组成,通过改变光路,将 光线聚焦在一点上。
折反镜的应用
在望远镜、显微镜和照相 机等光学仪器中广泛应用 ,用于改变光路和聚焦光 线。
滤光片与分光仪
滤光片的分类
根据滤光片的透过光谱, 滤光片可以分为可见光滤 光片、红外滤光片、紫外 滤光片等。
分光仪的结构
分光仪由棱镜或光栅等分 光元件和探测器组成,可 以将光谱分成不同的波段 。
非线性光学材料
研究和发展新型非线性光学材料,如有机晶体、 无机晶体、光折变晶体等,以提高非线性光学效 应的转换效率。
非线性光学应用
非线性光学在光通信、光信息处理、光计算等领 域有广泛应用,如光参量振荡、倍频、和频等。
光子学与光子技术
光子学基础
01
研究光子的产生、传播、相互作用等基本规律,以及光子与物
在摄影、摄像、显微镜、望远镜等领 域广泛应用,用于聚焦光线、改变光 路等。
光学镜头的基本参数
包括焦距、光圈、视场角、相对孔径 等,这些参数决定了镜头的光学性能 和使用范围。
反射镜与折反镜
01
02
03
反射镜的分类
根据反射面的形状,反射 镜可以分为平面反射镜、 凹面反射镜和凸面反射镜 等。
折反镜的结构
质的相互作用机制。
光子器件
02
《工程光学教学课件》像差理论64页PPT

Applied Optics
子午弧矢光束结构(续)
Applied Optics
子午弧矢光束结构(续)
Applied Optics
子午弧矢光束结构(续)
Applied Optics
彗差是轴外物点发出宽光束通过光学系统后, 并不会聚一点,相对于主光线而是呈彗星状图 形的一种失对称的像差
彗差通常用子午面上和弧矢面上对称于主光线 的各对光线,经系统后的交点相对于主光线的 偏离来度,分别称为子午彗差和弧矢彗差
单正透镜会产生负值球差,也被称为球差校正不足或 欠校正 单负透镜会产生正值球差,也被称为球差校正过头
或过校正 如果将正负透镜组合起来,能否使球差得到校正? 这种组合光组被称为消球差光组
Applied Optics
光学系统中对某一给定孔径 的光线达到δL’ =0的系统称 为消球差系统
单透镜的球差与焦距、相对孔 径、透镜的形状及折射率有关。
Applied Optics
位置色差的性质类似于球差 光学系统只能对一个孔径的光线进行校正色差 一般情况下对0.7孔径的光线校正位置色差
l'0 .7 F C l'0 .7 F l'0 .7 C 0
随着接收器的不同,应取接近接收器有效波段边缘 的波长进行校色差
Applied Optics
(2)倍率色差(垂轴色差) 光学材料对不同色光的折射率不同,对于光学系统 对不同色光就有不同的焦距 x' 不同色光的焦距不等时,其放大率也不等
6、色差 白光是由各种不同波长的单色光所组成的 复色光成像时,由于不同色光而引起的像差称为色差 色差分为:位置色差和倍率色差 (1)位置色差(轴向色差、纵向色差) 白色光中波长愈短折射率愈大
Applied Optics
子午弧矢光束结构(续)
Applied Optics
子午弧矢光束结构(续)
Applied Optics
子午弧矢光束结构(续)
Applied Optics
彗差是轴外物点发出宽光束通过光学系统后, 并不会聚一点,相对于主光线而是呈彗星状图 形的一种失对称的像差
彗差通常用子午面上和弧矢面上对称于主光线 的各对光线,经系统后的交点相对于主光线的 偏离来度,分别称为子午彗差和弧矢彗差
单正透镜会产生负值球差,也被称为球差校正不足或 欠校正 单负透镜会产生正值球差,也被称为球差校正过头
或过校正 如果将正负透镜组合起来,能否使球差得到校正? 这种组合光组被称为消球差光组
Applied Optics
光学系统中对某一给定孔径 的光线达到δL’ =0的系统称 为消球差系统
单透镜的球差与焦距、相对孔 径、透镜的形状及折射率有关。
Applied Optics
位置色差的性质类似于球差 光学系统只能对一个孔径的光线进行校正色差 一般情况下对0.7孔径的光线校正位置色差
l'0 .7 F C l'0 .7 F l'0 .7 C 0
随着接收器的不同,应取接近接收器有效波段边缘 的波长进行校色差
Applied Optics
(2)倍率色差(垂轴色差) 光学材料对不同色光的折射率不同,对于光学系统 对不同色光就有不同的焦距 x' 不同色光的焦距不等时,其放大率也不等
6、色差 白光是由各种不同波长的单色光所组成的 复色光成像时,由于不同色光而引起的像差称为色差 色差分为:位置色差和倍率色差 (1)位置色差(轴向色差、纵向色差) 白色光中波长愈短折射率愈大
Applied Optics
工程光学课件第01章

波面:发光点发出的光波向四周传播时, 某一时刻其振动位相相同的点所构成的 面称为波阵面,简称波面。光的传播即 为光波波阵面的传播。 光束:几何波面与几何光线的关系:在 各项同性介质中,波面上某点的法线即 代表了该点处光的传播方向,即光沿着 波面法线方向传播,因此,波面法线即 为光线。与波面对应的所有光线的集合, 称为光束。
时,可以全反射传送,
i i0
时,光线将会透过内壁进入包层
26
定义 na sin i0 为光纤的数值孔径
够传送的光能越多。
i0
越大,可以进入光纤的光能就越多,也就是光纤能
这意味着光信号越容易耦合入光纤。
27
三、费马原理
费马原理与几何光学的基本定律一样,也是描 述光线传播规律的基本理论。 它以光程的观点描述光传播的规律,涵盖了光 的直线传播和光的折、反射规律,具有更普遍 的意义。 根据物理学,光在介质中走过的几何路程与该 介质折射率的乘积定义为光程。设介质的折射 率为n,光在介质中走过的几何路程为l,则光程 s表示为
同心光束:通常波面可分为平面波、
球面波和任意曲面波。与平面波对应的光
束成为平行光束,与球面波对应的光束称
为同心光束。
平行光束与同心光束
平面波面
球形波面
同心光束
平行光束
各类光束及对应的波面
返回
折射率:折射率是表征透明介质光学 性质的重要参数。我们知道,各种波长的 光在介质中的传播速度会减慢。介质的折 射率正是用来描述介质中光速减慢程度的 物理量,即:
c n v
这就是折射率的定义。
10
二、几何光学的基本定律
几何光学的基本定律决定了光线在一般 情况下的传播方式,也是我们研究光学 系统成像规律以及进行光学系统设计的 理论依据。 几何光学的基本定律有三大定律:
《工程光学》课件

光学信号处理原理
光学信号处理概述 简要介绍了光学信号处理的基本 概念和原理,包括光波的干涉、 衍射、傅里叶变换等方面的知识 。
全息术与光学信息处理 简要介绍了全息术的基本原理和 应用,以及光学信息处理技术的 发展和应用前景。
干涉测量技术 详细介绍了干涉测量技术的基本 原理和应用,包括干涉仪的结构 和工作原理、干涉图样的分析和 解释等方面的知识。
的发展提供了新的机遇和挑战。
工程光学在各领域的应用
能源领域
太阳能利用、激光焊接、激光切割等 。
通信领域
光纤通信、光网络技术等。
环境监测领域
光谱分析、大气污染监测等。
生物医学领域
医学成像、光谱诊断、激光医疗等。
CHAPTER 02
工程光学基础知识
光的本质与传播
光的本质
光是一种电磁波,具有波粒二象性。 其电磁场振动方向与传播方向垂直, 表现出横波的特征。
显微镜
介绍了显微镜的基本原理和结构,包括透射光显微镜和反 射光显微镜等类型,以及显微镜的性能参数和选择方法。
激光器
简要介绍了激光器的基本原理和结构,包括气体激光器、 固体激光器、光纤激光器等类型,以及激光器的性能参数 和应用领域。
光学系统设计原理
光学系统设计基础
介绍了光学系统设计的基本概念和原则, 包括光学材料、光学镀膜、光学元件加工
光学信息处理实验
研究光学信息处理技术,如傅里叶 变换、光学图像处理等,掌握光学 信息处理系统的基本构成和操作方 法。
光学系统设计与制造实践
光学系统设计实践
通过实践了解光学系统设计的基本原理和方法,掌握光学设 计软件的使用技巧,熟悉光学元件的选择和加工工艺。
光学制造工艺实践
大学工程光学课件

光学微纳加工技术
通过微纳加工技术制造微小尺度的光学元件 ,实现高精度、高效率的光学系统。
光学传感技术
利用光学原理对物理量进行测量,具有高精 度、高灵敏度的特点。
工程光学发展趋势预测与展望
集成化与智能化
多学科交叉融会
随着微纳加工技术的发展,工程光学将更 加重视元件的集成化和智能化,提高系统 的性能和效率。
光的本质与传播特性
光的本质
光是一种电磁波,具有波粒二象 性。其波动性质表现为光的干涉 、衍射等现象,粒子性质则体现 为光电效应等。
光的传播特性
光在均匀介质中沿直线传播,遇 到不同介质界面时会产生反射、 折射等现象。
光的反射、折射与干涉
光的反射
光在遇到物体表面时,会改变传 播方向并返回原介质的现象。反 射过程中遵循反射定律,即入射
工程光学在各领域的应用
航空领域
用于飞机导航、着 陆系统、气象观测 等。
能源领域
用于太阳能电池板 、风力发电叶片的 检测与设计等。
国防领域
用于制造精确的武 器瞄准系统、夜视 仪等。
航天领域
用于卫星通讯、空 间探测、天文观测 等。
通讯领域
用于光纤通讯、光 交换、光网络等。
CHAPTER 02
光学基础知识
光的吸取、散射与色散
01 02
光的吸取
光在传播过程中被物质吸取转化为热能或其他情势能量的现象。不同物 质对不同波长光的吸取程度不同,因此可以利用这一特性进行光谱分析 等。
光的散射
光在传播过程中遇到微小颗粒时,产生散射的现象。散射程度与颗粒大 小和入射光的波长有关,可以利用这一现象进行大气污染检测等。
感谢您的观看
大、缩小、旋转等功能。
工程光学-第4章-PPT精选文档103页

23.11.2019
13
P
AP
I1 I’1 O1
O 2 I2 I2’
qN
q
M
P
两平面镜角度有q变化时,出射方向改变2q
23.11.2019
14
P
AP
I1 I’1 O1
O 2 I2 I2’
qN
q
M
P
当双平面镜绕棱线P旋转时,只要保持θ角不变,则出 射光线的方向不变。出射光线发生平移。
23.11.2019
23.11.2019
25
(三)三次反射棱镜:三个反射面,成镜像 斯密特棱镜,折叠光路,使仪器紧凑
23.11.2019
26
§4-3 屋脊面和屋脊棱镜
如果在不改变光轴方向和主截面内成像 方向的条件下需要得到物体的一致像而又不 想增加反射棱镜时,怎么办?
可用交线位于光轴面内的两个相互垂直的 反射面来取代其中的一个反射面,使垂直于 主截面内的坐标被这两个相互垂直的反射面 依次反射而改变方向,从而得到物体的一致 像。
称为平行平面板。
用棱镜来代替平面镜,就相当于在光学系统 中多加了一块平行平面板。
如标尺、刻有标志的分划板、补偿板、滤光 镜、保护玻璃等等
下面讨论光线经过平行平面板的折射情况 假定平行平面板位于空气中
23.11.2019
52
应用折射定律
siIn1nsiIn1'
nsiIn 2siIn 2'
又: AB d
co s I1'
23.11.2019
54
Z d sinI1 I1'
c os I1 '
d 1
工程光学讲稿(平面)(完整)课件

详细描述
折射望远镜使用透镜作为主反射镜,能够观测可见光波段的天体。反射望远镜使用凹面反射镜作为主反射镜,能够观测红外线和射电波段的天体。射电望远镜则专门用于观测射电波段的天体。
01
02
03
04
总结词
摄影镜头是一种光学仪器,用于拍摄照片或录制视频。
总结词
摄影镜头的种类繁多,根据用途和功能可分为多种类型,如定焦镜头、变焦镜头、鱼眼镜头等。
光的衍射
平面镜与透镜
平面镜是反射面为平面的镜子,具有反射光线的能力,且入射角等于反射角。
用于日常生活、光学仪器和科学实验中,如化妆镜、眼镜、显微镜、望远镜等。
平面镜的用途
平面镜的性质
中间厚边缘薄的透镜,具有汇聚光线的能力,可以用于制作放大镜、显微镜、望远镜等。
凸透镜Βιβλιοθήκη 凹透镜透镜的焦距中间薄边缘厚的透镜,具有发散光线的能力,可以用于制作近视眼镜、散光眼镜等。
光学仪器在科研领域的应用也十分广泛,主要用于物理、化学、生物等学科的研究。例如,利用光谱仪研究物质的结构和性质,使用干涉仪测量微小距离和角度,以及通过光学仪器观测天体和微观粒子等。
科研中常用的光学仪器还包括分光仪、干涉仪、光谱分析仪等,这些仪器在推动学科发展和科技进步方面发挥着重要作用。
光的干涉与衍射实验
通过双缝干涉实验,观察光波的干涉现象,了解干涉的条件和特点。
双缝干涉实验是研究光波干涉现象的基础实验之一。在实验中,通过调整光源、双缝和屏幕的距离,观察到明暗相间的干涉条纹。通过测量干涉条纹的间距和双缝的间距,可以计算出光波的波长。
通过圆孔衍射实验,观察光波的衍射现象,了解衍射的条件和特点。
工程光学应用
光学仪器在工业中应用广泛,主要用于检测、测量和控制等方面。例如,利用光学显微镜对产品表面进行微观检测,使用激光测量仪对生产线上的产品进行高精度测量,以及通过光束控制系统实现自动化生产。
折射望远镜使用透镜作为主反射镜,能够观测可见光波段的天体。反射望远镜使用凹面反射镜作为主反射镜,能够观测红外线和射电波段的天体。射电望远镜则专门用于观测射电波段的天体。
01
02
03
04
总结词
摄影镜头是一种光学仪器,用于拍摄照片或录制视频。
总结词
摄影镜头的种类繁多,根据用途和功能可分为多种类型,如定焦镜头、变焦镜头、鱼眼镜头等。
光的衍射
平面镜与透镜
平面镜是反射面为平面的镜子,具有反射光线的能力,且入射角等于反射角。
用于日常生活、光学仪器和科学实验中,如化妆镜、眼镜、显微镜、望远镜等。
平面镜的用途
平面镜的性质
中间厚边缘薄的透镜,具有汇聚光线的能力,可以用于制作放大镜、显微镜、望远镜等。
凸透镜Βιβλιοθήκη 凹透镜透镜的焦距中间薄边缘厚的透镜,具有发散光线的能力,可以用于制作近视眼镜、散光眼镜等。
光学仪器在科研领域的应用也十分广泛,主要用于物理、化学、生物等学科的研究。例如,利用光谱仪研究物质的结构和性质,使用干涉仪测量微小距离和角度,以及通过光学仪器观测天体和微观粒子等。
科研中常用的光学仪器还包括分光仪、干涉仪、光谱分析仪等,这些仪器在推动学科发展和科技进步方面发挥着重要作用。
光的干涉与衍射实验
通过双缝干涉实验,观察光波的干涉现象,了解干涉的条件和特点。
双缝干涉实验是研究光波干涉现象的基础实验之一。在实验中,通过调整光源、双缝和屏幕的距离,观察到明暗相间的干涉条纹。通过测量干涉条纹的间距和双缝的间距,可以计算出光波的波长。
通过圆孔衍射实验,观察光波的衍射现象,了解衍射的条件和特点。
工程光学应用
光学仪器在工业中应用广泛,主要用于检测、测量和控制等方面。例如,利用光学显微镜对产品表面进行微观检测,使用激光测量仪对生产线上的产品进行高精度测量,以及通过光束控制系统实现自动化生产。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下一节 18
2)光源与楔板位置不同时的定域面位置
S P P P a) b) c) S S
图11-16 用扩展光源时楔行平板产生的定域条纹 a)定域面在板上方 b) 定域面在板内 c) 定域面在板下方
10
3)楔板的角度越小,定域面离板越远,当平 行时,定域面在无限远处; 4)在实际工作中,不一定为0,干涉条纹不 只局限于定域面上,而是在定域面前后一定
第四节 平板的双光束干涉
分光性质:振幅分割 工作原理: 两个干涉的点源: 两个反射面对S点 的象S1和S2
S
P
M1 n M2
S1 S2
1
一、干涉条纹的定域 1.条纹定域:能够得到清晰干涉条纹的区域。
非定域条纹:在空间任何区域都能得到的干涉条纹。 定域条纹:只在空间某些确定的区域产生的干涉条纹。
2.平板干涉的优点,取 =0 ,用面光源。
n'
1
AN AC sin1 2htg 2 sin1 n sin1 n sin 2
2
n
3
phase change
1
n'
2
No phase change
n
1 sin 2 2 sin 2 2 2nh 2nh 2nh cos 2 cos 2 cos 2
n e f d1 f 2 2n h si n1 注意e与 si n1的关系
中央条纹宽,边缘条纹窄。
e
(5)反射光条纹和透射光条纹互补
f
9
二、楔形平板干涉 (等厚干涉 Interference of equal thickness)
1、定域面的位置和定域 深度
1)定域面的位置由=0确定
对于折射率均匀的楔形平板,条纹平行于楔棱
14
h (2) 两条纹间厚度的变化
m 2 2nh m 即 h m 2n 相邻条纹m 1 h 2n =2nh
15
a
若平板锲角为 a时 : a h e 2ne 如果条纹的横向偏移量 为e, 则对应的 m为: m e e 此时高度变化为: H
垂直入射时: 2nh
2
3、实验装置: 透镜L2的作用,在成象面上观 察。
1 1 1 图中: l l f
l'
l
13
4、条纹分布及性质 注意条纹是由 h 决定的, 分析条纹从 h 入手。
(1) 亮条纹: =2nh
2
m
暗条纹: =2nh
m 1 2 2
e
2n e
e
16
应用实例
用劈形膜干涉方法可检验工 件表面的平整度。图为工件 表面不平整时的干涉条纹。
17
Home Work (11-4)
1. An oil film (n=1.47, thickness 0.12m) rests
on a pool of water. If light strikes the film at
2nh cos 2 2 或: 2nh n 2 n2 sin 2 1
2
4
Since the interval between the two surfaces may be an actual plate or film, or it may be a gap between plates. We have four possibilities, as the following.
S
P
n
M1 M2
S1 S2
点光源产生的非定域干涉 2
二、平行平板 (Plane-Parallel Plates) 干涉 (等倾干涉 Interference of equal inclination)
双光束干涉: I I1 I 2 2 I1 I 2 cos k
1.光程差计算
n AB BC nAN 其中: AB BC h cos 2
(4)条纹间隔 2 d 2nh sin 2 d 2 dm 相邻条纹 dm m 1, 则有: d 2 =2nh cos 2
m
光程与条纹级数
2nh n sin2 n cos1d1 n cos2 d2 cos1 cos2 1 n d2 d1 n n 所以: d1 2n2 h si n1
an angle of 60o, what is the wavelength reflected in the first order? 2. When examining the surface of a polished workpiece in thallium light (535nm) , some scratch marks are seen where the fringes are distorted by 4/10 the distance between fringes. How deep are the scratches? P244 8&11
范围内可以看到干涉条纹,这个区域称为定
域深度。 5)条纹观察:定域面随系统不同而不同。由 于人眼有自动调焦功能,观察比仪器方便。
11
2、光程差计算
n( AB BC ) n' CP n' AP
S β =0
n' n n'
θ
1
P A C B
2
θ
图11-18 楔形平板的干涉
12
垂直入射时,光程差是厚 用平行平板公式近似: 度 h 的函数,在同一厚度 的位置形成同一级条纹。 2nh cos 2 2
2nh cos 2
2
2nh cos 2
2
No
No
No
No
2nh cos 2
2nh cos 2
5
2.平板干涉装置 注意:采用扩展光源,条纹域 在无穷远。 条纹成象在透镜的焦平面上。
6
3、条纹分析(Fringes of equal inclination)
( )随1变化,条纹是 1的函数, 1 只要1 相同, 相同,为一条干 涉条纹,称为等倾干涉 。 干涉条纹为同心圆环。
(2)光程差在1=0时最大, 最大干涉级在中心。 中心=2nh
2
mo (光程差与条纹级数)
7
(3)条纹的角半径 1N
1 n 1N N 1 q n' h 说明平板厚度 h越大,条纹角半径越小 ,条纹越密。