小升初奥数等积变形

合集下载

小升初奥赛几何五大模型

小升初奥赛几何五大模型

几何五大模型一、五大模型简介(1)等积变换①、等底等高的两个三角形面积相等②、两个三角形高相等,面积之比等于底之比,如图1③、两个三角形底相等,面积在之比等于高之比,如图2④、在一组平行线之间的等积变形,如图3图1 图2 图3例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

解:S△ADC=12S△ABC=12×24=12S△ADE=12S△ADC=12×12=6;S△DEF=12S△ADE=12×6=3(2)鸟头(共角)定理模型①、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;②、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点S△ABC S△ADE =AB×AC AD×AE例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC 的面积。

解:由题意知:S△ABCS△ADE =AB×ACAD×AE=52×53=256∴S△ABC=256×S△ADE=256×12=50(平方厘米)(3)蝴蝶模型1、梯形中比例关系(“梯形蝴蝶定理”)①S2=S4(梯形两翼相等)②S1:S3:S2:S4=a2:b2:ab:ab③梯形S对应的分数为(a+b)2例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。

解:S△AOB:S△BOC=25:35=5:7S△AOB:S△DOC=AB2:DC2=52:72=25:49∴S△DOC=49又S△AOD=S△BOC=35∴S ABCD=25+35+35+49=144(平方厘米)2、任意四边形中的比例关系(“蝴蝶定理”):①S1:S2=S4:S3或S1×S3=S2×S4②AO:OC=S1:S4=S2:S3=(S1+S2):(S4+S3)例、如图,四边形ABCD的对角线AC、BD交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2,求OC解:AO:OC=S△ABD:S△BCD=1:3OC=2×3=6(4)相似模型1、相似三角形:形状相同,大小不相等的两个三角形相似;2、寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

小学四年级奥数竞赛班作业第43讲:等积变形(一)

小学四年级奥数竞赛班作业第43讲:等积变形(一)

O
P
B
C
12. 如下图,过平行四边形 ABCD 内的一点 P 作边的平行线 EF 、 GH ,若 PBD 的面积为 8 平方分米,求平行四边形 PHCF 的面积比平行四边形 PGAE 的面积大多少平方分米?
AG
D
EP F
BH
C
13. 如图,长方形 ABCD 的面积是 56 平方厘米,点 E 、 F 、 G 分别是长方形 ABCD 边上的 中点, H 为 AD 边上的任意一点,求阴影部分的面积.
6. 因为阴影部分比三角形 EFG 的面积大10 平方厘米,都加上梯形 FGCB 后,根据差不变 性质,所得的两个新图形的面积差不变,即平行四边形 ABCD 比直角三角形 ECB 的面 积大10 平方厘米,所以平行四边形 ABCD 的面积等于108 2 10 50 平方厘米.
7. 题目中出现了两个三角形面积之差 16,若将 AOD 作为公共部分分别加给这两个三角形 后,根据差不变原理可知, AED 的面积比 BAD 的面积小16 平方厘米,而 BAD 正好 是正方形面积的一半即 88 2 32 (平方厘米),从而 AED 的面积为 32 16 16 (平 方厘米).作为梯形的另一部分, EBD 的面积与 BAD 面积相等(同底等高). 可见,梯形的面积=16 32 48 (平方厘米).
3. 根据题意可知, SADF 2SABC ,同理可知 SBDE SCEF 2SABC , 于是 SDEF (1 2 3)S ABC 7S ABC 7 10 70 平方厘米.
4. (4 6 9) 6 2 4 1 (厘米)
5. 连结 CB .三角形 DCB 的面积为 4 4 2 2 6(平方厘米),CD 6 4 2 3(厘米).

六年级下册小升初等积变形人教版人教版

六年级下册小升初等积变形人教版人教版
(2)等高看底:若两个三角形的高相等,其中一个三 S△BCE=S△BAE=60(cm2)
则满足条件的三角形有:
重要 例6:如图,ABFE和CDEF都是长方形,AB的长是4厘米,BC的长是3厘米。
角形的底是另一个三角形的几倍,那么,这个三角形 (1)等底等高的三角形面积相等。
结论 (2)等高看底:若两个三角形的高相等,其中一个三角形的底是另一个三角形的几倍,那么,这个三角形的面积也是另一个三角形面积的几倍。
例5:如图,在直角三角形ABC中,D、E分别是AB、AC的中点,如果△AED的面积是30平方厘米,求△ABC的面积?
S△ACD=S△BCD
S△ABD=S△ACD+S△ABC=b+ b= b
那么图中阴影部分的面积是多少平方厘米?
例3:(平行线间的等积变形)如下图,△ACD和△BCD夹在一组平行线之间,且有公共底边,那么△ACD和△BCD的面积关系是怎样的?为什么?
例5:如图,在直角三角形ABC中,D、E分别是AB、AC的中点,如果△AED的面积是30平方厘米,求△ABC的面积?
S△ABD=S△ACD=25-15=10 S△DFC=2S△DEF=2×24=48(cm2)
的面积也是另一个三角形面积的几倍。
等积变形的几个重要结论:
(3)等底看高:若两个三角形的底相等,其中一个三 同学们,你们能想出什么办法把这块土地分成面积相等的两个三角形吗?开动你们的脑筋吧!
思 例4:如图,在梯形ABCD中共有8个三角形,其中面
维 积相等的三角形有哪几对?

索 根据结论:同底等高的三角形面积相等 A
D
则满足条件的三角形有:
0
△ABD和△ACD
B
C
△ABC和△DBC

小升初数学思维拓展几何图形专项训练专题4-等积变形(位移、割补)

小升初数学思维拓展几何图形专项训练专题4-等积变形(位移、割补)

专题4-等积变形(位移、割补)小升初数学思维拓展几何图形专项训练(知识梳理+典题精讲+专项训练)1、等积变形的主要方法:(1)三角形内等底等高的三角形;(2)平行线内等底等高的三角形;(3)公共部分的传递性;(4)极值原理(变与不变)。

【典例一】如图所示:一块长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路.求小路的占地面积?【分析】无论这曲折小路如何再曲折,都可以将曲折小路分成两类,一类是竖的,一类是横的,可以把竖的往左拼,横的往上拼,如下图则小路面积不难算出,竖的部分14×2,横的部分20×2,计算重叠2×2,则小路面积为(20+14)×2-2×2=64(平方米).【解答】解:小路面积为:(20+14)×2-2×2=64(平方米),答:小路的占地面积64平方米.【点评】利用等积变形、平移知识把曲折的小路拉直,就变成规则的图形包括三部分竖的长方形,横的长方形和重叠的小正方形,进而解答.【典例二】如图,五边形ABCDE是一片荒地的示意图,陈家承包后想将其中的小路E M N---改成直路EG,然后在直路EG,然后在直路EG两旁分别种植不同的蔬菜,并使改道前后路两旁的面积,保持不变,请你左图中画出这条直路.(图中体现画法1)【分析】利用尺规作图做//EN MG,如图根据两条平行线之间的垂线段相等和同底等高的三角形的面积相等,可得S ENG S EMN∆=∆,由此作图即可.【解答】解:画法如图所示,连接EN,过点M作//MG EN,交CB于点G,连接EG,EG即为所求直路的位置.【点评】此题利用两条平行线之间的垂线段相等和同底等高的三角形的面积相等的知识作图.【典例三】A和B都是高度为12厘米的圆柱形容器,底面半径分别是1厘米和2厘米,一水龙头单独向A注水,一分钟可注满.现将两容器在它们的高度的一半出用一根细管连通(连通管的容积忽略不计),仍用该水龙头向A 注水,求(1)2分钟容器A中的水有多高?(2)3分钟时容器A中的水有多高.【分析】已知B容器的底面半径是A容器的2倍,高相等,B容器的容积就是A容器的4倍;因此,单独注满B容器需要4分钟,要把两个容器都注满一共需要145+=(分钟),已知现在两个容器在它们高度一半处用一个细管连通,2分钟后A中的水位是容器高的一半,即1226÷=(厘米)(其余的水流到B容器了);由此可知,用2.5分钟的时间两个容器中的水的高度相等,都是6厘米;以后的时间两个容器中的水位同时上升,用3 2.50.5-=(分钟)分钟注入两个容器的高度加上6厘米即是3分钟后的高度.【解答】解:(1)A 容器的容积是:23.141 3.141 3.14⨯=⨯=(立方厘米),B 容器的容积是:23.142 3.14412.56⨯=⨯=(立方厘米),12.56 3.144÷=,即B 容器的容积是A 容器容积的4倍,因为一水龙头单独向A 注水,一分钟可注满,所以要注满B 容器需要4分钟,因此注满A 、B 两个容器需要145+=(分钟),已知现在两个容器在它们高度一半处用一个细管连通,2分钟后A 中的水位是容器高的一半,即1226÷=(厘米);(2)因为注满A 、B 两个容器需要145+=(分钟),所以52 2.5÷=(分钟)时,A 、B 容器中的水位都是容器高的一半,即6厘米,2.5分钟后两容器中的水位是同时上升的,3分钟后,实际上3 2.50.5-=(分钟)水位是同时上升的,10.5510÷=,112 1.210⨯=(厘米),6 1.27.2+=(厘米);答:2分钟时,容器A 中的高度是6厘米,3分钟时,容器A 中水的高度是7.2厘米.【点评】此题主要考查圆柱的体积(容积)的计算,解答关键是理解现在两个容器在它们高度一半处用一个细管连通,当A 中的水高是容器高的一半时,其余的水流到B 容器了;以后的时间两个容器中的水位同时上升,即注满两容器时间的110乘容器高就是0.5分钟上升的水的高度.一.选择题(共4小题)1.我国古代数学家刘徽利用“出入相补”原理计算平面图形的面积,其原理是:把一个图形分割、移补,而面积保持不变。

小升初平面几何常考五大模型

小升初平面几何常考五大模型

一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2-c( c+4)-2(c+4)+2c+16=16。

1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。

已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。

又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。

小升初分班奥数平面图形面积

小升初分班奥数平面图形面积

小升初奥数几何部分辅导讲义讲义编号:学员编号: 年 级:小六 课时数:3 学员姓名: 辅导科目:奥数 学科教师: 课 题 平面图形面积问题授课时间: 备课时间:教学目标1. 掌握五大模型的特征,会从复杂图形中找出基本模型.2. 灵活运用五大模型求直线型图形的面积和线段长度.教学内容【专题知识点概述】一、等积变换模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;baS 2S 1 DC BA如左图12::S S a b =③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④正方形的面积等于对角线长度平方的一半;⑤三角形面积等于与它等底等高的平行四边形面积的一半;二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵推理过程连接BE ,再利用等积变换模型即可三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”):A BCDOba S 3S 2S 1S 4①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +.四、相似模型相似三角形性质:GF E ABCD (金字塔模型)AB CDEF G(沙漏模型)①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;五、燕尾定理模型 S △ABG :S △AGC =S △BGE :S △EGC =BE :EC ;S △BGA :S △BGC =S △AGF :S △FGC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ; 【习题精讲】【例1】(难度等级 ※※)用四种不同的方法,把任意一个三角形分成四个面积相等的三角形.【例2】(难度等级 ※※)如右图,已知在△ABC 中,BE=3AE ,CD=2AD .若△ADE 的面积为1平方厘米.求三角形ABC 的面积.【例3】(难度等级 ※※)如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.G F E DC B AHGFE D CBA【例4】(难度等级 ※※)如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积.【例5】(难度等级 ※※)(2008年四中考题)如右图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC ∆的面积是 平方厘米.FE DCBA【举一反三】(难度等级 ※※)如右图,在平行四边形ABCD 中,E 、F 分别是AC 、BC 的三等分点,且SABCD=54平方厘米,求S △BEF .【例6】(难度等级 ※※※)图30-10是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?【例7】(难度等级 ※※)如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBA【举一反三】(难度等级 ※※)如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?EDCBA【例8】(难度等级 ※※)如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBA【例9】(难度等级 ※※)如图所示,在平行四边形ABCD 中,E 为AB 的中点,2AF CF =,三角形AFE (图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?EFD CBA【例10】(难度等级 ※※※)已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CBA【例11】(难度等级 ※※※)(2007年”走美”五年级初赛试题)如图所示,正方形ABCD 边长为6厘米,13AE AC =,13CF BC =.三角形DEF 的面积为_______平方厘米.FEDC BA【例12】(难度等级 ※※※)如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?A BCDEF【例13】(难度等级 ※※※)如图所示,已知 1.,2.ABCSAE ED BD DC ===求图中阴影部分的面积.【举一反三】(难度等级 ※※※)下图中阴影部分甲的面积与阴影部分乙的面积哪个大?【例14】(难度等级※※※)右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,问图中阴影部分的面积是多少?【例15】(难度等级※※※)梯形ABCD的上底长为3厘米,下底长为9厘米,而三角形ABO的面积为12平方厘米。

小学奥数~三角形等积变形

小学奥数~三角形等积变形

小学奥数~三角形等积变形
如图一,正方形ABCD和正方形ECGF并排放置,BF与CD相交于点H,连接BD、GD、GH、。

已知AB=4厘米,则阴影部分的面积是多少平方厘米?
题目解析:
连接DF、FC;
因为BD、CF分别为正方形ABCD和正方形ECGF对角线,所以BD//CF;
根据等高模型;
又因为三角形DHG与三角形DHF为同底等高三角形,所以面积相等;
同理,因为BD//CF;三角形BDF与三角形BDC为同底等高三角形,所以面积相等;
所以阴影面积为4×4÷2=8平方厘米。

知识点——三角形等积变形
三角形面积公式:底×高÷2
对于两个三角形,如果它们对应的底和高相等(如同底等高、等底等高),那么它们的面积也相等。

方法:三角形钉住其中两点,构造底边平行线,沿平行线移动另外一点,所得三角形面积相等。

(必要时可构造平行线)。

再战
如下图,有三个正方形并排安置,并且它们的顶点D、G、K三点恰好在同一条直线上,其中正方形GFEB边长是8厘米,那么阴影部分的面积为多少平方厘米?。

小升初数学专题训练 15.等积变形

小升初数学专题训练  15.等积变形

第15讲 等积变形第一部分:知识介绍我们已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积。

如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化。

但是,当三 角形的底和高同时发生变化时,三角形的面积不一定变化。

比如当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样。

这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化。

同时也告诉我们:面积相同三角形有无数多个不同的形状。

在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等。

②若两个三角形的高相等,其中一个三角形的底是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。

若两个三角形的底相等,其中一个三角形的高是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍。

③夹在一组平行线之间的等积变形,如下图,ACD ∆和BCD ∆夹在一组平行线之间,且有公共底边CD 那么ACDBCD S S ∆∆=;反之,如果ACD BCD S S ∆∆=,则可知直线AB 平行于CD 。

在小学的学习中几何是一个很重要的部分,每一个几何图形都非常美妙,几何图形的美妙不仅来源于它的外形,更重要的是在几何模型上出现的那些美妙的规律,下面我们就一起来看看几个美妙的几何模型模型一:任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ⨯=⨯ ②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 模型二:梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =;②221324::::::S S S S a b ab ab =; ③ABCD S 的对应份数为()2a b +.梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果. 模型三:鸟头定理:两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A在ABC ∆中,点E 是AB 上的n 等分点,AE AB n =÷;点F 是AC 上的m 等分点, AF AC m =÷,那么ABCAEFABCS SSn m n m=÷÷=⨯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、学奥数到底有什么用
对目前绝大部分学奥数的孩子和他们的家长来说,那就是通过各种杯赛获奖得到一个上
重点中学试验班的机会,因为现在的升学制度决定了奥数已经成为升学的一个重要手段。

其实我们目前学的某些内容,比如抽屉原理等,可能以后在初中甚至高中的课本里我们都根本
不可能接触到的,但是我们学习的其实是一些思想方法,更具体的说,是培养一种解决问题的能力。

能把小学奥数学好的同学,我相信学习中学的知识的时候,至少在理科方面,那绝对是游刃有余的。

二、怎样学好奥数
学奥数最佳的起步时间应该是三年级,这个时间启蒙教育特别重要,能不能尽快入门,
或者说“开窍“,这是一个很重要的时期。

五年级的时候最好就应该把六年级的内容学的差不
多了.
下面具体谈一下奥数的学习方法学奥数有诀窍吗?根据我学习奥数的经验,答案是没
有。

但如果非要我说一个的话,那就是“做题”。

那么这里就有两个问题了,一是我该做哪些题呢?二是我该做多少,应该怎么做呢?
我们先说一下做哪些题,现在市面上的奥数书种类繁多。

我觉推荐《华罗庚学校数
学课本》,这本书内容不难,适合入门学习。

《华罗庚思维训练导引》是一本分类习
题集,每个专题15个题目,虽然有的题目偏难,但这本书选题都非常有代表性,值
得一做(做三星题目为主)。

除了专题训练外,大量的综合练习也是必不可少的,《小学数学ABC》《小学数学奥林匹克试题详解》和刘京友编写的《题库》这3本书非常好。

通过做综合练习找出自己问题所在,再集中的有针对性的加强这方面的练习,达到差漏补缺的目的。

这就要求我们每次做完题,不会的或者做错的一定要弄明白为
止。

有的同学可能一天做好几套题目,做完了对对答案,每套错的都不多,自我感
觉也不错,做了半天也累了就把书扔下不管了。

这样的学习是没有效果的,因为你
原先会的还是会,不会的那些呢?还是不会!
因此题目不在于你做了多少,关键是你遇到的每一道题目无论你当时是否会做,事后你是否都真正理解了,再遇到类似的题目还会不会做。

如果我真正能做到做一
套题就把里面所有的题目吃透,那么我学习的效果要比刚才提到的一天做好几套但
不注意总结的同学好的多。

其实你好好把题目总结一下花不了太多时间,而且对自己的帮助真的很大。

希望同学们也能做到这点,至少,对于做错的题目一定要引起重视。

每天学习完或者做
完题,自己都问问自己,我今天学到了什么新的方法,我哪个题目思路上有问题以
后要注意的。

总结不光在笔头上,思想上也要经常总结,不能学了半天连自己学会
了什么还有哪些该掌握的没掌握都不清楚。

三角形的等积变形
我们已经掌握了三角形面积的计算公式:
三角形面积=底×高÷2
这个公式告诉我们:三角形面积的大小,取决于三角形底和高的乘积.如果三
角形的底不变,高越大(小),三角形面积也就越大(小).同样若三角形的高不
变,底越大(小),三角形面积也就越大(小).这说明;当三角形的面积变化时,
它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,
三角形的面积不一定变化.比如当高变为原来
角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同
时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.本讲即研究面积相同的三角形的各种形状以及它们之间的关系.
为便于实际问题的研究,我们还会常常用到以下结论:
①等底等高的两个三角形面积相等.
②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行
的直线上,这两个三角形面积相等.
③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三
角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.
,它们所对的顶点同为A点,(也就是它们的高相等)那么这两个三角形的面积相
等.
同时也可以知道△ABC的面积是△ABD或△AEC面积的3倍.
例如在右图中,△ABC与△DBC的底相同(它们的底都是BC),它所对的两个
顶点A、D在与底BC平行的直线上,(也就是它们的高相等),那么这两个三角形
的面积相等.
例如右图中,△ABC与△DBC的底相同(它们的底都是BC),△ABC的高是△DBC 高的2倍(D是AB中点,AB=2BD,有AH=2DE),则△ABC的面积是△DBC面积的2倍.
上述结论,是我们研究三角形等积变形的重要依据.
例1 用三种不同的方法,把任意一个三角形分成四个面积相等的三角形.
方法2:如右图,先将BC二等分,分点D、连结AD,得到两个等积三角形,即
△ABD与△ADC等积.然后取AC、AB中点E、F,并连结DE、DF.以而得到四个等积
三角形,即△ADF、△BDF、△DCE、△ADE等积.。

相关文档
最新文档