河南省河南大学附属中学2014届高三上学期期中考试 数学(文) Word版含答案

合集下载

河南大学附属中学2014届高三上学期期中考试地理

河南大学附属中学2014届高三上学期期中考试地理

河南大学附属中学2014高三上期中考试试卷地理(时间:90分钟,满分:100分)第I卷(选择题)一、单选题(本大题共30小题,每小题 2 分,共60分)读地球表面某区域的经纬网示意图,回答1-3题。

1.M和N两点的实际距离约是A.4 444千米B.3 333千米C.2 222千米D.1 823千米2.若一架飞机从M点起飞,沿最短的航线到达N点,则飞机飞行的方向为A.一直向东B.先东北再东南C.一直向西D.先东南再东北3.与M点关于地心对称的点的坐标为()A.(60°N,80°E) B.(60°S,100°E)C.(30°S,100°E) D.(60°S,80°W)读下面的经纬网图,回答4-5题。

4.甲岛位于乙岛的A.西南方向B.东北方向C.东南方向D.西北方向5.下列说法正确的是A.甲图比例尺比乙图小B.甲岛屿的面积比乙岛大C.甲、乙两岛都在东半球、中纬度D.甲岛南北距离比乙岛短读经纬网图,据此完成6-7题。

6.设A、B两地和A、D两地之间的最短距离分别为S1和S2,则 A.S1=0.5S2B.S1=S2C.S1=4.1S2D.S1=3S27.若A、C两地同时位于晨昏线上,则一年中这种情形会出现A.1次B.2次C.3次D.4次下图中虚线是某岛屿火山喷发后火山灰厚度等值线,a<b<c。

读图,完成8-9题。

8.该火山喷发时最有可能的季节是A.春季B.冬季C.秋季D.夏季9.下列关于该岛屿的叙述,正确的是①终年温和多雨②适宜生产柑橘、葡萄③植被具有耐旱特征④河流水量季节变化小A.②④B.③④C.①④D.②③图中的“蓝月亮”为科学家用计算机模拟出的银河系中一个可能孕育生命的外星天体,据推测它本身不发光,但该天体上光照良好。

据此回答10-11题。

10.“蓝月亮”应属于A.行星 B.恒星 C.彗星D.卫星11.“蓝月亮”上的光照可能来自A.恒星 B.地球C.行星D.太阳亚洲首座MW(兆瓦)级太阳能塔式热发电站即将在北京延庆县(北京市西北)竣工。

2014-2015年河南省名校高三(上)期中数学试卷及参考答案(文科)

2014-2015年河南省名校高三(上)期中数学试卷及参考答案(文科)

2014-2015学年河南省名校高三(上)期中数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题纸的相应位置.1.(5分)在复平面内,复数Z=+i2015对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限2.(5分)已知集合M={x|y=lg},N={y|y=x2+2x+3},则(∁R M)∩N=()A.{x|0<x<1}B.{x|x>1}C.{x|x≥2}D.{x|1<x<2}3.(5分)已知sin2α=﹣,α∈(﹣,0),则sinα+cosα=()A.B.﹣ C.﹣ D.4.(5分)设f(x)是定义在R上的奇函数,当x<0时,f(x)=x﹣e﹣x(e为自然数的底数),则f(ln6)的值为()A.ln6+6 B.ln6﹣6 C.﹣ln6+6 D.﹣ln6﹣65.(5分)已知向量+=(2,﹣8),﹣=(﹣8,16),则与夹角的余弦值为()A.B.C.D.6.(5分)执行如图所示的程序框图,会输出一列数,则这个数列的第3项是()A.870 B.30 C.6 D.37.(5分)函数f(x)=sin(2x+φ)(|φ|<π)的图象向左平移个单位后关于原点对称,则函数f(x)在[0,]上的最小值为()A.﹣B.﹣ C.D.8.(5分)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2 B.C.D.39.(5分)已知数列{a n}为等差数列,{b n}为等比数列,且满足:a1003+a1013=π,b6•b9=2,则tan=()A.1 B.﹣1 C.D.10.(5分)若点M(x,y)为平面区域上的一个动点,则x+2y的最大值是()A.﹣1 B.C.0 D.111.(5分)已知函数f(x)=,若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2014)B.(1,2015)C.(2,2015)D.[2,2015]12.(5分)已知定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(ax+1)≤f(x﹣2)对任意都成立,则实数a的取值范围为()A.[﹣2,0]B.[﹣3,﹣1]C.[﹣5,1]D.[﹣2,1)二、填空题:本大题共4小题,每小题5分,满分20分.请把答案填在答题纸的相应位置.13.(5分)已知tan(θ﹣π)=2,则sin2θ+sinθcosθ﹣2cos2θ+3的值为.14.(5分)设a为g(x)=x3+2x2﹣3x﹣1的极值点,且函数f(x)=,则f()+f()的值等于.15.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最大值时,+﹣的最大值为.16.(5分)设f(x)是定义在R上的偶函数,且对于∀x∈R恒有f(x+1)=f(x ﹣1),已知当X∈[0,1]时,f(x)=()1﹣x,则(1)f(x)的周期是2;(2)f(x)在(1,2)上递减,在(2,3)上递增;(3)f(x)的最大值是1,最小值是0;(4)当x∈(3,4)时,f(x)=()x﹣3其中正确的命题的序号是.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)设函数.(Ⅰ)求f(x)的最大值,并写出使f(x)取最大值是x的集合;(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c.若.求a的最小值.18.(12分)已知数列{a n}的前n项和为S n,S n=2a n﹣2.(1)求数列{a n}的通项公式;(2)设b n=log2a n,c n=,记数列{c n}的前n项和T n,若对n∈N*,T n≤k (n+4)恒成立,求实数k的取值范围.19.(12分)如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,.(1)求证:平面BCF∥面AED;(2)若BF=BD=a,求四棱锥A﹣BDEF的体积.20.(12分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.21.(12分)已知函数f(x)=x2+a(x+lnx),x>0,a∈R是常数.(1)∀a∈R,试证明函数y=f(x)的图象在点(1,f(1))处的切线经过定点;(2)若函数y=f(x)图象上的点都在第一象限,试求常数a的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)选修4﹣1:几何证明选讲如图,已知圆上的,过C点的圆的切线与BA的延长线交于E点.(Ⅰ)证明:∠ACE=∠BCD;(Ⅱ)若BE=9,CD=1,求BC的长.【选修4-4:坐标系与参数方程】23.已知直线l:(t为参数)经过椭圆C:(φ为参数)的右焦点F.(Ⅰ)求m的值;(Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最大值与最小值.【选修4-5:不等式选讲】24.已知函数f(x)=|2x+1|+|2x﹣3|(1)求不等式f(x)≤6的解集;(2)若关于x的不等式f(x)≤|a﹣2|的解集非空,求实数a的取值范围.2014-2015学年河南省名校高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题纸的相应位置.1.(5分)在复平面内,复数Z=+i2015对应的点位于()A.第四象限B.第三象限C.第二象限D.第一象限【解答】解:复数Z=+i2015=﹣i=﹣i=﹣.复数对应点的坐标(),在第四象限.故选:A.2.(5分)已知集合M={x|y=lg},N={y|y=x2+2x+3},则(∁R M)∩N=()A.{x|0<x<1}B.{x|x>1}C.{x|x≥2}D.{x|1<x<2}【解答】解:集合M={x|y=lg},,解得:0<x<1,M={x|0<x<1},∴∁R M={x|x≤0或x≥1}N={y|y=x2+2x+3}={y|y≥2},(∁R M)∩N=[2,+∞)故选:C.3.(5分)已知sin2α=﹣,α∈(﹣,0),则sinα+cosα=()A.B.﹣ C.﹣ D.【解答】解:∵α∈(﹣,0),∴sinα+cosα>0,∴(sinα+cosα)2=1+sin2α=,∴sinα+cosα=,故选:A.4.(5分)设f(x)是定义在R上的奇函数,当x<0时,f(x)=x﹣e﹣x(e为自然数的底数),则f(ln6)的值为()A.ln6+6 B.ln6﹣6 C.﹣ln6+6 D.﹣ln6﹣6【解答】解:∵当x<0时,f (x)=x﹣e﹣x,∴f(﹣ln6)=﹣ln6﹣e ln6=﹣ln6﹣6,又∵f (x)是定义在R上的奇函数,∴f(ln6)=﹣f(﹣ln6)=ln6+6故选:A.5.(5分)已知向量+=(2,﹣8),﹣=(﹣8,16),则与夹角的余弦值为()A.B.C.D.【解答】解:由向量,,得=(﹣3,4),=(5,﹣12),所以||=5,||=13,=﹣63,即与夹角的余弦值cosθ==.故选:B.6.(5分)执行如图所示的程序框图,会输出一列数,则这个数列的第3项是()A.870 B.30 C.6 D.3【解答】解:当N=1时,A=3,故数列的第1项为3,N=2,满足继续循环的条件,A=3×2=6;当N=2时,A=6,故数列的第2项为6,N=3,满足继续循环的条件,A=6×5=30;当N=3时,A=30,故数列的第3项为30,故选:B.7.(5分)函数f(x)=sin(2x+φ)(|φ|<π)的图象向左平移个单位后关于原点对称,则函数f(x)在[0,]上的最小值为()A.﹣B.﹣ C.D.【解答】解:函数f(x)=sin(2x+φ)图象向左平移个单位得,由于函数图象关于原点对称,∴函数为奇函数,又|φ|<π,∴,得,∴,由于,∴0≤2x≤π,∴,当,即x=0时,.故选:A.8.(5分)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2 B.C.D.3【解答】解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.故选:D.9.(5分)已知数列{a n}为等差数列,{b n}为等比数列,且满足:a1003+a1013=π,b6•b9=2,则tan=()A.1 B.﹣1 C.D.【解答】解:数列{a n}为等差数列,{b n}为等比数列,且满足:a1003+a1013=π,b6•b9=2,所以a1+a2015=a1003+a1013=π,b7•b8=b6•b9=2,所以tan=tan=.故选:D.10.(5分)若点M(x,y)为平面区域上的一个动点,则x+2y的最大值是()A.﹣1 B.C.0 D.1【解答】解:由约束条件作出可行域如图,令z=x+2y,化为直线方程的斜截式得:,由图可知,当直线过可行域内的点A(0,)时,直线在y轴上的截距最大,z最大,最大值为z=0+2×=1.故选:D.11.(5分)已知函数f(x)=,若a、b、c互不相等,且f (a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2014)B.(1,2015)C.(2,2015)D.[2,2015]【解答】解:作出函数的图象如图,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log2014x=1,解得x=2014,即x=2014,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c可得1<c<2014,因此可得2<a+b+c<2015,即a+b+c∈(2,2015).故选:C.12.(5分)已知定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(ax+1)≤f(x﹣2)对任意都成立,则实数a的取值范围为()A.[﹣2,0]B.[﹣3,﹣1]C.[﹣5,1]D.[﹣2,1)【解答】解:∵偶函数f(x)在[0,+∞)上是增函数,则f(x)在(﹣∞,0)上是减函数,则f(x﹣2)在区间[,1]上的最小值为f(﹣1)=f(1)若f(ax+1)≤f(x﹣2)对任意都成立,当时,﹣1≤ax+1≤1,即﹣2≤ax≤0恒成立则﹣2≤a≤0故选:A.二、填空题:本大题共4小题,每小题5分,满分20分.请把答案填在答题纸的相应位置.13.(5分)已知tan(θ﹣π)=2,则sin2θ+sinθcosθ﹣2cos2θ+3的值为.【解答】解:∵已知tan(θ﹣π)=2=tanθ,则sin2θ+sinθcosθ﹣2cos2θ+3=+3=+3=+3=,故答案为.14.(5分)设a为g(x)=x3+2x2﹣3x﹣1的极值点,且函数f(x)=,则f()+f()的值等于8.【解答】解:g′(x)=4x2+4x﹣3=(2x﹣1)(2x+3),令g′(x)=0,得x=或x=﹣,由题意可知a=,∴f(x)=,∴f()+f()=+=2+=2+6=8,故答案为:8.15.(5分)设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最大值时,+﹣的最大值为1.【解答】解:由正实数x,y,z满足x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2.∴===1,当且仅当x=2y>0时取等号,此时z=2y2.∴+﹣==≤1,当且仅当y=1时取等号,即+﹣的最大值是1.故答案为1.16.(5分)设f(x)是定义在R上的偶函数,且对于∀x∈R恒有f(x+1)=f(x ﹣1),已知当X∈[0,1]时,f(x)=()1﹣x,则(1)f(x)的周期是2;(2)f(x)在(1,2)上递减,在(2,3)上递增;(3)f(x)的最大值是1,最小值是0;(4)当x∈(3,4)时,f(x)=()x﹣3其中正确的命题的序号是(1)(2)(4).【解答】解:(1)∵对任意的x∈R恒有f(x+1)=f(x﹣1),∴f(x+2)=f[(x+1)﹣1]=f(x),即2是f(x)的周期,(1)正确;(2)∵x∈[0,1]时,f(x)=()1﹣x=2x﹣1为增函数,又f(x)是定义在R上的偶函数,∴f(x)在区间[﹣1,0]上单调递减,又其周期T=2,∴f(x)在(1,2)上递减,在(2,3)上递增,(2)正确;(3)由(2)x∈[0,1]时,f(x)=()1﹣x=2x﹣1为增函数,f(x)在区间[﹣1,0]上单调递减,且其周期为2可知,f(x)max=f(1)=21﹣1=20=1,f(x)min=f(0)=20﹣1=,故(3)错误;(4)当x∈(3,4)时,x﹣4∈(﹣1,0),4﹣x∈(0,1),∴f(4﹣x)=()1﹣(4﹣x)=,又f(x)是周期为2的偶函数,∴f(4﹣x)=f(x)=,(4)正确.综上所述,正确的命题的序号是(1)(2)(4),故答案为:(1)(2)(4).三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(12分)设函数.(Ⅰ)求f(x)的最大值,并写出使f(x)取最大值是x的集合;(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c.若.求a的最小值.【解答】解:(Ⅰ)f(x)=cos(2x﹣)+2cos2x=(cos2xcos+sin2xsin)+(1+cos2x)=cos2x﹣sin2x+1=cos(2x+)+1,(3分)∵﹣1≤cos(2x+)≤1,即cos(2x+)最大值为1,∴f(x)的最大值为2,(4分)要使f(x)取最大值,cos(2x+)=1,即2x+=2kπ(k∈Z),解得:x=kπ﹣(k∈Z),则x的集合为{x|x=kπ﹣(k∈Z)};(6分)(Ⅱ)由题意,f(B+C)=cos[2(B+C)+]+1=,即cos(2π﹣2A+)=,化简得:cos(2A﹣)=,(8分)∵A∈(0,π),∴2A﹣∈(﹣,),则有2A﹣=,即A=,(10分)在△ABC中,b+c=2,cosA=,由余弦定理,a2=b2+c2﹣2bccos=(b+c)2﹣3bc=4﹣3bc,(12分)由b+c=2知:bc≤=1,当且仅当b=c=1时取等号,∴a2≥4﹣3=1,则a取最小值1.(14分)18.(12分)已知数列{a n}的前n项和为S n,S n=2a n﹣2.(1)求数列{a n}的通项公式;(2)设b n=log2a n,c n=,记数列{c n}的前n项和T n,若对n∈N*,T n≤k (n+4)恒成立,求实数k的取值范围.【解答】解:(1)当n=1时,a1=S1=2a1﹣2,解得a1=2.当n≥2时,a n=S n﹣S n﹣1=2a n﹣2﹣(2a n﹣1﹣2)=2a n﹣2a n﹣1,化为a n=2a n﹣1,∴数列{a n}是以2为公比的等比数列,∴.(2)∵b n=log2a n==n,∴c n==.∴数列{c n}的前n项和T n=+…+==.∵对n∈N*,T n≤k(n+4)恒成立,∴,化为=.∵n++5=9,当且仅当n=2时取等号.∴,∴.∴实数k的取值范围是.19.(12分)如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,.(1)求证:平面BCF∥面AED;(2)若BF=BD=a,求四棱锥A﹣BDEF的体积.【解答】(1)证明:∵ABCD是菱形,∴BC∥AD,∵BC⊄面ADE,AD⊂面ADE,∴BC∥面ADE…(3分)∵BDEF是矩形,∴BF∥DE,∵BF⊄面ADE,DE⊂面ADE,∴BF∥面ADE,∵BC⊂面BCF,BF⊂面BCF,BC∩BF=B,∴面BCF∥面ADE…(6分)(2)解:连接AC,AC∩BD=O∵ABCD是菱形,∴AC⊥BD∵ED⊥面ABCD,AC⊂面ABCD,∴ED⊥AC,∵ED,BD⊂面BDEF,ED∩BD=D,∴AO⊥面BDEF,…(10分)∴AO为四棱锥A﹣BDEF的高由ABCD是菱形,,则△ABD为等边三角形,由BF=BD=a,则,∵,∴…(14分)20.(12分)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.【解答】解:(Ⅰ)设椭圆的右焦点为F2(c,0),由|AB|=|F1F2|,可得,化为a2+b2=3c2.又b2=a2﹣c2,∴a2=2c2.∴e=.(Ⅱ)由(Ⅰ)可得b2=c2.因此椭圆方程为.设P(x0,y0),由F1(﹣c,0),B(0,c),可得=(x0+c,y0),=(c,c).∵,∴=c(x0+c)+cy0=0,∴x0+y0+c=0,∵点P在椭圆上,∴.联立,化为=0,∵x0≠0,∴,代入x0+y0+c=0,可得.∴P.设圆心为T(x1,y1),则=﹣,=.∴T,∴圆的半径r==.设直线l的斜率为k,则直线l的方程为:y=kx.∵直线l与圆相切,∴,整理得k2﹣8k+1=0,解得.∴直线l的斜率为.21.(12分)已知函数f(x)=x2+a(x+lnx),x>0,a∈R是常数.(1)∀a∈R,试证明函数y=f(x)的图象在点(1,f(1))处的切线经过定点;(2)若函数y=f(x)图象上的点都在第一象限,试求常数a的取值范围.【解答】(1)证明:f′(x)=…(1分)∴f(1)=1+a,f′(1)=2+2a…(2分),∴函数y=f(x)的图象在点(1,f(1))处的切线为y﹣(1+a)=(2+2a)(x﹣1),即y=(1+a)(2x﹣1)…(4分)∀a∈R,当时,y=(1+a)(2x﹣1)=0,即切线y=(1+a)(2x﹣1)经过定点…(5分)(2)解:a=0时,f(x)=x2,∵x>0,∴点(x,x2)在第一象限…(6分)依题意,f(x)=x2+a(x+lnx)>0…(7分)a>0时,由对数函数性质知,x∈(0,1)时,lnx∈(﹣∞,0),alnx∈(﹣∞,0),从而“∀x>0,f(x)=x2+a(x+lnx)>0”不成立…(8分)a<0时,由f(x)=x2+a(x+lnx)>0得…(9分)设,…(10分)g(x)≥g(1)=﹣1,从而,﹣1<a<0…(13分)综上所述,常数a的取值范围﹣1<a≤0…(14分).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)选修4﹣1:几何证明选讲如图,已知圆上的,过C点的圆的切线与BA的延长线交于E点.(Ⅰ)证明:∠ACE=∠BCD;(Ⅱ)若BE=9,CD=1,求BC的长.【解答】(Ⅰ)证明:∵,∴∠ABC=∠BCD.又∵EC为圆的切线,∴∠ACE=∠ABC,∴∠ACE=∠BCD.(Ⅱ)∵EC为圆的切线,∴∠CDB=∠BCE,由(Ⅰ)可得∠BCD=∠ABC.∴△BEC∽△CBD,∴,∴BC2=CD•EB=1×9=9,解得BC=3.【选修4-4:坐标系与参数方程】23.已知直线l:(t为参数)经过椭圆C:(φ为参数)的右焦点F.(Ⅰ)求m的值;(Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最大值与最小值.【解答】解:(Ⅰ)椭圆的参数方程化为普通方程,得,∴a=5,b=3,c=4,则点F的坐标为(4,0).∵直线l经过点(m,0),∴m=4.…(4分)(Ⅱ)将直线l的参数方程代入椭圆C的普通方程,并整理得:(9cos2α+25sin2α)t2+72tcosα﹣81=0.设点A,B在直线参数方程中对应的参数分别为t1,t2,则|FA|•|FB|=|t1t2|=.…(8分)当sinα=0时,|FA|•|FB|取最大值9;当sinα=±1时,|FA|•|FB|取最小值.…(10分)【选修4-5:不等式选讲】24.已知函数f(x)=|2x+1|+|2x﹣3|(1)求不等式f(x)≤6的解集;(2)若关于x的不等式f(x)≤|a﹣2|的解集非空,求实数a的取值范围.【解答】解:(1)∵函数f(x)=|2x+1|+|2x﹣3|,∴不等式f(x)≤6等价于①,或②,或③.解①求得﹣1≤x <﹣;解②求得﹣≤x ≤;解③求得<x≤2.综合可得,原不等式的解集为[﹣1,2].(2)∵f(x)=|2x+1|+|2x﹣3|≥|2x+1﹣(2x﹣3)|=4,则f(x)的最小值为4.若关于x的不等式f(x)≤|a﹣2|的解集非空,则|a﹣2|≥4,a﹣2≥4,或a ﹣2≤﹣4,求得a≥6,或a≤﹣2,故a的范围为{a|a≥6,或a≤﹣2 }.第21页(共21页)。

河南省河南大学大附属中学2014届高三第三次模拟考试语文试题.doc

河南省河南大学大附属中学2014届高三第三次模拟考试语文试题.doc

河南省河南大学大附属中学2014届高三第三次模拟考试语文试题阅读下面的文字,完成l~3题。

开车会成为穷人的标志吗在狄更斯的《匹克威克外传》风行英伦之时,如果说将来富人多是瘦子,穷人多是胖子,谁都会觉得是异想天开。

如今呢,在发达国家,穷人的肥胖症最为严重。

走进富人区,则苗条的人明显多起来。

可见,未来往往在我们的想象之外。

那么,在现今这个开法拉利炫富的时代,如果说日后开车的多是穷人,富人反而很少开车出行——这种预言,是否会像贫富的胖瘦一样兑现呢?《经济学人》曾提纲挈领地展望了汽车的前程:目前地球上有十亿多辆汽车。

仅2012一年,就增加了6000余万辆新车。

预计到2020年,世界汽车拥有量可能翻一番。

毫无疑问,汽车,是世界经济的命脉。

不过,未来汽车拥有量的增长,将主要集中在发展中国家。

发达国家的汽车拥有量已经到顶,甚至有可能下降。

从总体上看,发达国家的汽车旅行里程在2004年触顶,自2007年经济危机前开始下降。

根据对人口社会学的初步分析,我们能够推断出这些现象是一个长期的趋势,而非一时经济波动所造成的短期失常。

在发达国家,婴儿潮一代的前锋,即1945年出生的人,大部分都开车的。

如今开车的退休老人比任何时代都多。

六十几岁的英国人中,79%有驾照。

美国60—64岁这个年龄层的人中,90%以上开车。

这比任何年龄段的比例都高,这代人是最痴迷汽车的一代。

他们年轻时,汽车象征着自由、财富、美国梦,汽车难以和他们的生命分开。

然而,他们恰恰是正在退场的一代。

新一代的年轻人考驾照的年龄普遍偏晚。

驾照拿得晚的人,一般开车比较少。

英国一项研究显示,快三十岁时领到驾照的,比起年轻十岁就开始开车的人来,开车要少30%。

在德国,年轻的有车家庭在增加,但开车的却少了。

大家买了车,但越来越多的时间是放在那里,偶然才用。

2001—2009年间,美国18—34岁年龄段年收入7万美元以上的阶层,公交使用增长了100%。

当然,网络的流行,也使许多开车出行成为不必要。

河南省焦作市2014届高三上学期期中学业水平测试数学文试题 Word版含答案

河南省焦作市2014届高三上学期期中学业水平测试数学文试题 Word版含答案

焦作市2013~2014学年(上)高三年级期中学业水平测试数学试卷(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.注意事项:1.答题前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和准考证号等写在答题卡的指定区域,并用2B 铅笔把准考证号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.3.所有试题考生必须在答题卡上作答,在试题卷上作答无效.第Ⅰ卷(选择题,共60分)一、选择题:本题共12个小题。

每小题5分.共60分.在每小题给出的四个选项中。

只有一项是符合题目要求的. 1.若集合A ={x ||x |≤1},B ={x |2x>0},A ∩B =A .B .{x |0≤x ≤1}C .{x |-1≤x ≤1}D .{x |0<x ≤1} 2.若复数1i i2-的实部与虚部分别为a ,b ,则ab 等于 A .2i B .2 C .-2 D .-2i 3.设abc >0,二次函数f (x )=a 2x +bx +c 的图象可能是4.已知等比数列{n a }满足a 1+a 2=3,a 2+a 3=6,则a 3a 5 A .4 B .8 C .64 D .1285.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3 B .5cm 3C .6cm 3D .7cm 36.与直线x -y -4=0和圆22x y ++2x -2y =0都相切的半径最小的圆的方程是A .22(1)(1)2x y +++= B .22(1)(1)4x y +++= C .22(1)(1)2x y -++= D .22(1)(1)4x y -++=7.把函数y =sin (x +6π)图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为 A .x =-2π B .x =-4π C .x =8π D .x =4π8.如果执行右面的框图,输入N =5,则输出的数等于A .54 B .45C .65D .569.已知函数y =xa2-(a >0,a ≠1)图象恒过定点A ,若点A 在直线mx +2ny -2=0上(mn >0),则11m n+的 最小值为A .2B .3C .4D .510.棱长都相等的三棱锥(正四面体)ABCD 中,AO ⊥平面BCD ,垂足为O ,设M 是线段AO 上一点,且∠BMC 是直角,则AMMO的值为 A .1 B .12 C .13 D .1411.已知点P 是双曲线2221x a b2y -=(a >0,b >0)右支上一点,F 1,F 2分别是双曲线的左、右焦点,点M 为△PF 1F 2的内心,若1MPF S ∆=2MPF S ∆+1212MF F S ∆成立,则双曲线的离心率为A .2B .52C .3D .412.定义:若数列{n a }对任意的正整数n ,都有|1n a +|+|n a |=d (d 为常数),则称{n a }为“绝对和数列”,d 叫做“绝对公和”,已知“绝对和数列” {n a }中,a 1=2,“绝对公和”d =2,则其前2014项和S 2014的最小值为A .-2010B .-2009C .-2006D .-2011第Ⅱ卷(非选择题,共90分)二、填空题:本题共4个小题.每小题5分,共20分.13.已知函数f (x )=3,02,0x x x x ⎧⎨⎩log >≤, 则f (f (19))__________.14.△ABC 中,BC =4,B =3π且△ABC 面积为,则角C 大小为__________. 15.下列三种说法①命题“存在x ∈R ,使得2x +1>3x ”的否定是“对任意x ∈R ,2x +1≤3x ”; ②设p ,q 是简单命题,若“p 或q ”为假命题,则“p ⌝且q ⌝”为真命题; ③已知任意非零实数x ,有x ()f x '>f (x ),则f (2)<2f (1)成立,其中正确说法的序号是____________.(把你认为正确说法的序号都填上)16.已知点P (x ,y )在由不等式组301010x x x ⎧⎪⎨⎪⎩+y -≤-y -≤-≥确定的平面区域内,O 为坐标原点,点A (-1,2),则|OP uu u r|·cos ∠AOP 的最大值是______________.三、解答题:解答应写出文字说明,证明过程或演算步骤 17.(本小题满分12分)已知向量a r =(cos2x ,sin2x ),b r1),函数f (x )=a r ·b r +m .(Ⅰ)求f (x )的最小正周期; (Ⅱ)当x ∈[0,2π]时,f (x )的最小值为5,求m 的值. 18.(本小题满分12分)如图所示,矩形ABCD 中,AC ∩BD =G ,AD ⊥平面ABE , AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE . (Ⅰ)求证:AE ⊥平面BCE ; (Ⅱ)求三棱锥C -BGF 的体积. 19.(本小题满分12分)某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样了n 人,回答问题统计结果如图表所示:(Ⅰ)分别求出a ,b ,x ,y 的值;(Ⅱ)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?(Ⅲ)在(Ⅱ)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的2人中至少有一个第2组的人的概率.20.(本小题满分12分)设A 是抛物线y =a 2x (a >0)准线上任意一点,过A 点作抛物线的切线l 1,l 2,切点为P ,Q .(1)证明:直线PQ 过定点;(2)设PQ 中点为M ,求|AM |最小值. 21.(本小题满分12分)已知函数f (x )=3213x ax bx +-(a ,b ∈R ). (Ⅰ)若y =f (x )图象上(1,-113)处的切线的斜率为-4,求y =f (x )的极大值.(Ⅱ)y =f (x )在区间[-1,2]上是单调递减函数,求a +b 的最小值.请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 经过⊙O 上的点C ,并且OA =OB ,CA =CB ,⊙O 交直线OB 于E 、D ,连结EC 、CD . (Ⅰ)求证:直线AB 是⊙O 的切线; (Ⅱ)若tan ∠CED =12,⊙O 的半径为3,求OA 的 长.23.(本小题满分10分)选修4—4:坐标系与参数方程已知直线l的参数方程是22x y ⎧⎪⎪⎨⎪⎪⎩+(t 是参数),圆C 的极坐标方程为ρ=2cos (θ+4π). (Ⅰ)求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值.24.(本小题满分10分)选修4—5:不等式选讲 设函数f (x )=|x -a |+2x ,其中a >0.(1)当a =2时,求不等式f (x )≥2x +1的解集;(2)若x ∈(-2,+∞)时,恒有f (x )>0,求a 的取值范围.焦作市2013~2014学年(上) 期中高三年级学业水平测试数学答案(文)一、选择题CBDC ACAD CAAA二、填空题 13、41 14、6π15、①② 16、553三、解答题:解答应写出文字说明,证明过程或演算步骤。

河南省实验中学2014届高三第二次模拟考试 数学(文) Word版含答案

河南省实验中学2014届高三第二次模拟考试 数学(文) Word版含答案

4545输出河南省实验中学2014届高三二测模拟卷数学(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合P={3,4,5},Q={6,7},定义},|),{(*Q b P a b a Q P ∈∈=,则Q P *的子集个数为A .7B .12C .32D .642.已知复数2ii ia b -=+(a ,b ∈R ,i 为虚数单位),则2a b -= A. 1 B. 2 C. 3 D.4 3. “p 或q ”为真命题是“p 且q ”为真命题的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 4.一个几何体的三视图如图所示,则该几何体的体积是A .6B .8C .10D .125.已知数阵⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛333231232221131211aa aa a aa a a 中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若822=a ,则这9个数的和为A .16B .32C .36D .72 6.如图所示的程序框图,它的输出结果是A .3B .4C .5D .67.已知三个数2,m ,8构成一个等比数列,则圆锥曲线2212x y m +=的离心率为A .B. C.或 D8.若0≥a ,0≥b ,且当⎪⎩⎪⎨⎧≤+≥≥100y x y x 时,恒有≤+by ax 1,则以b a ,为坐标的点),(b a P 所形成的平面区域的面积是 A .21 B .4π C .1 D .2π 9.在平行四边形ABCD 中,1,60AD BAD =∠=,E 为CD 的中点.若12AD BE ⋅=, 则AB 的长为A.12 B.1 C .32D .2 10.过抛物线)0(22>=p px y 的焦点F ,斜率为34的直线交抛物线于A ,B 两点,若)1(>=λλFB AF ,则λ的值为A .5B .4C .34 D .25 11.已知函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -,且当2x ≠时,其导函数()f x '满足()2()xf x f x ''>,若24a <<,则有A. 2(2)(3)(l o g)af f fa << B. 2(3)(log )(2)a f f a f << C. 2(l o g )(3)(2)af a f f<< D. 2(log )(2)(3)a f a f f << 12.函数[]11,0,2()1(2),(2,)2x x f x f x x ⎧--∈⎪=⎨-∈+∞⎪⎩,则下列说法中正确命题的个数是①函数()ln(1)y f x x =-+有3个零点; ②若0x >时,函数()k f x x ≤恒成立,则实数k 的取值范围是3,2⎡⎫+∞⎪⎢⎣⎭; ③函数()f x 的极大值中一定存在最小值,④)(),2(2)(N k k x f x f k ∈+=,对于一切[)0,x ∈+∞恒成立.A .1B .2C .3D .4二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题纸的相应位置. 13.若非零向量b a ,满足||||b a =,0)2(=⋅+b b a ,则与的夹角为______.14.函数()sin cos f x x x =+,在各项均为正数的数列{}n a 中对任意的*n N ∈都有()()n n f a x f a x +=-成立,则数列{}n a 的通项公式可以为(写一个你认为正确的)______15.将一颗骰子先后投掷两次分别得到点数b a 、,则直线0=+by ax 与圆2)2(22=+-y x 有公共点的概率为_______.16.已知四棱柱1111D C B A ABCD -中,侧棱⊥1AA 底面ABCD ,且21=AA ,底面ABCD 的边长均大于2,且︒=∠45DAB ,点P 在底面ABCD 内运动,且在AB ,AD 上的射影分别为M ,N ,若|PA|=2,则三棱锥MN D P 1-体积的最大值为______.三、解答题:本大题共6个小题,共70分.解答应写文字说明、证明过程或演算步骤17.(本小题满分12分)在ABC ∆中,已知角A 、B 、C 所对的边分别为a 、b 、c ,直线1:10l ax y ++=与直线()222:40l b c bc x ay +-++=互相平行(其中4a ≠).(I )求角A 的值, (II )若22,,sin cos 2232A C B B ππ+⎡⎫∈+⎪⎢⎣⎭求的取值范围.18.(本小题满分12分) 从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(Ⅰ)求第七组的频率; (Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm 以上(含180cm )的人数;(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,x y ,事件=E {5x y -≤},事件F ={15->x y },求()P E F .19.(本题满分12分)如图,四边形ABCD 中,AB ⊥AD ,AD ∥BC ,AD =6,BC =4,AB =2,E 、F 分别在BC 、AD 上,EF ∥AB .现将四边形ABEF 沿EF 折起,使得平面ABEF ⊥平面EFDC .(Ⅰ) 当1BE =,是否在折叠后的AD 上存在一点P ,且AP PD λ=,使得CP ∥平面ABEF ?若存在,求出λ的值;若不存在,说明理由;(Ⅱ) 设BE =x ,问当x 为何值时,三棱锥A -CDF 的体积有最大值?并求出这个最大值.20.(本小题满分12分)已知函数xe xf =)(,若函数)(xg 满足)()(x g x f ≥恒成立,则称)(x g 为函数)(x f 的下界函数.(1)若函数kx x g =)(是)(x f 的下界函数,求实数k 的取值范围;A B C D EFE F A B CD(2)证明:对任意的2≤m ,函数x m x h ln )(+=都是)(x f 的下界函数.21.(本小题满分12分)已知2212221x y F F a b +=、是椭圆的左、右焦点,O 为坐标原点,点P ⎛- ⎝⎭在椭圆上,线段PF 2与y 轴的交点M 满足20PM F M +=; (I )求椭圆的标准方程;(II )O 是以12F F 为直径的圆,一直线:l y kx m =+与相切,并与椭圆交于不同的两点A 、B.当23,34OA OB AOB λλ⋅=≤≤∆且满足时,求面积S 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分。

河南省河南大学附属中学2014届高三上学期期中考试 政治 (附答案)

河南省河南大学附属中学2014届高三上学期期中考试 政治 (附答案)

河南省河南大学附属中学2014届高三上学期期中考试试卷政治(时间:90 分钟,满分:100分)注:本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

第I卷请在答题卡上作答,第II卷写在答题卷上。

第I卷一、单选题。

(本大题共24小题,每小题2分,共48分)2013年夏,浙江卫视播出的《中国好声音》席卷荧屏,让所有与其相关的团体赚得钵满盆满。

据此回答下列问题。

1.《中国好声音》学员的出场费总价达到250万元,250万元是货币在执行A.价值尺度职能 B.贮藏手段职能C.世界货币职能D.流通手段职能2.《中国好声音》的全球巡演,歌迷可以买票观看,聆听好声音。

按消费目的来看,这种消费属于A.劳务消费B.享受资料消费C.钱货两清消费D.发展资料消费3.2012年11月12日天猫宣布:其双十一促销的支付宝总销售额191亿,同比增260%.其中天猫132亿,淘宝59亿。

网上购物①丰富了商品交换的形式和手段②方便了消费者购物并减少了现金使用③减少了流通中的货币量④网购中货币的本质发生了变化A.①②B.②④C.①③D.②③4.近年,网上悄然兴起一种新的经济现象——以年轻人为主要人群的“换客”时尚一族。

“换客”崇尚“需求决定价值”的交换法则,将自己的闲置物品发布到相关网站,以此交换自己所需求的物品。

既享受返璞归真“以物换物”的乐趣,又是一种物尽其用低碳环保的生活方式。

下列对“换客”这种流行方式理解错误的是①是一种商品流通②可以使商品的使用价值最大化③是一种勤俭节约、绿色消费行为④属于求异心理引发的消费A.①③B.①④C.②③D.③④5.假设2011年甲国W商品的价值用该国货币表示为240元,出口到乙国,用乙国货币表示为600元。

2012年甲国生产W商品的部门劳动生产率提高20%,且甲国通货膨胀率为25%。

若2012年甲乙两国汇率不变,不考虑其他因素,则W商品用乙国货币表示为A.615 元B. 625元C. 635 元D.645元6.读下图。

河南大学附属中学2014届高三上学期期中考试数学(文)

河南大学附属中学2014届高三上学期期中考试数学(文)

河南大学附属中学2014届高三上学期期中考试试卷数学(文)(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.设集合{}3213A x x =-≤-≤,集合B 是函数()lg 1y x =-的定义域;则A B ( )A .()1,2B .[]1,2C .[)1,2D .(]1,22.若f (x )是偶函数,且当[)0,+x ∈∞时,f (x ) = x -1,则f (x -1) < 0的解集是( )A .{x |-1 < x < 0}B .{x | x < 0或1< x < 2}C .{x | 0 < x < 2}D .{x | 1 < x < 2}3.设向量,a b 满足1a b ==,12a b ⋅=-,则2a b +=( )A B C D4.函数sin(2)3y x π=+图象的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=5.下列函数中,既是偶函数,又在区间()1,2内是增函数的为( ) A .cos 2y x = B .2log ||y x = C 。

2x xe e -+-D .31y x =+ 6..函数21ln 2y x x =-的单调递减区间为 ( ) A .(]1,1-B .(0,1]C .[1,+∞)D .(0,+∞)7.函数()cos 2f x x x = 在区间[]0,2π上的零点个数为 ( )A .2B .3C .4D .58.设函数221(1)()22(1)x x f x x x x +≥⎧=⎨--<⎩,若0()1f x >,则0x 的取值范围是 ( )A .(,1)(1,)-∞-+∞B .[)(,1)1,-∞-+∞C .(,3)(1,)-∞-+∞D .[)(,3)1,-∞-+∞9.O 是ABC ∆所在平面内的一点,且满足()(2)0OB OC OB OC OA -⋅+-=, 则ABC ∆的形状一定为( )A .正三角形B .直角三角形C .等腰三角形D .斜三角形10.不等式2(2)2(2)40a x a x -+--<的解集为R ,则实数a 的取值范围是( ) A .(2,2)- B.(]2,2- C. (],2-∞ D. [)2,2-11.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和是( ) A.130 B.170 C.210 D.260 12.在锐角三角形中,a 、b 、c 分别是内角A 、B 、C 的对边,设B=2A ,则ab的取值范围是( )A .B .)2 C.D .(0,2) 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.曲线(3ln 1)y x x =+在点(1,1)处的切线方程为____________________.15.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n= 时, S n 取得最大值 16.已知函数211x y x -=-的图像与函数y kx =的图像恰有两个交点,则实数k 的取值范围是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分) 设{}{}25,121A x x B x m x m =-≤≤=+≤≤-若B A ⊆,求实数m 的取值范围。

[套卷]河南省中原名校2014届高三上学期期中联考试卷 数学(文) Word版含答案

[套卷]河南省中原名校2014届高三上学期期中联考试卷 数学(文) Word版含答案

河南省中原名校2014届高三上学期期中联考试卷数学(文)试题(考试时间:120分钟 试卷满分:150分)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若1zi+=1-i ,则复数z 的共轭复数为 ( ) A .0 B .1 C .2 D .-2 2.已知集合A ={x |2x =1},B ={0},则A ∪B 的子集的个数为 ( ) A .3 B .4 C .7 D .8 3.如下图,在矩形ABCD 中,点E 为边CD 上任意一点,现有质地均匀的粒子散落在矩形ABCD 内,则粒子落在 △ABE 内的概率等于( )A .14 B .13 C .12 D .234.若幂函数f (x12),则函数g (x )=xe f (x )的单调递减区间为 ( )A .(-∞,0)B .(-∞,-2)C .(-2,-1)D .(-2,0)5.已知公差不为0的等差数列{n a }满足a 1,a 3,a 4成等比数列,n S 为{n a }的前n 项和,则3253s s s s --的值为 ( ) A .2 B .3 C .15D .不存在 6.要得到函数f (x )=2sinx 的图像,只需把函数y-cosx 的图像 ( ) A .向左平移3π的单位 B .向右平移3π个单位 C .向左平移6π的单位 D .向右平移6π个单位7.满足不等式组102401x y x y ⎧⎪⎨⎪⎩-+>+y -<≥-的区域内整点个数为 ( )A .7B .8C .11D .128.已知非零向量a 和b 满足a ⊥(a -b ),b ⊥(2a -b ),则a 与b的夹角为( )A .4π B .34π C .6π D .56π9.执行下面的框图,若输出结果为1,则可输入的实数x 值的个数为( )A .1B .2C .3D .410.椭圆222x +y =1上的点到直线2x -y =7距离最近的点的坐标为( )A .(-43,13) B .(43,-13) C .(-43,173) D .(43,-173)11.在△ABC 中,“sinA >cosB ”是“△ABC 是锐角三角形”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分又不必要条件12.已知函数f (x )=2121x x -+, 对任意m ∈[-3,3],不等式f (mx -1)+f (2x )<0恒成立,则实数x 的取值范围为 ( ) A .(-1,15) B .(-2,23) C .(-2,13) D .(-2,15) 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题每题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省河南大学附属中学2014届高三上学期期中考试试卷 数学(文)(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.设集合{}3213A x x =-≤-≤,集合B 是函数()lg 1y x =-的定义域;则A B ( )A .()1,2B .[]1,2C .[)1,2D .(]1,22.若f (x )是偶函数,且当[)0,+x ∈∞时,f (x ) = x -1,则f (x -1) < 0的解集是( )A .{x |-1 < x < 0}B .{x | x < 0或1< x < 2}C .{x | 0 < x < 2}D .{x | 1 < x < 2}3.设向量,a b 满足1a b ==,12a b ⋅=-,则2a b +=( )A B C D 4.函数sin(2)3y x π=+图象的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=5.下列函数中,既是偶函数,又在区间()1,2内是增函数的为( ) A .cos 2y x = B .2log ||y x =C 。

2x xe e -+-D .31y x =+ 6..函数21ln 2y x x =-的单调递减区间为 ( ) A .(]1,1-B .(0,1]C .[1,+∞)D .(0,+∞)7.函数()cos2f x x x = 在区间[]0,2π上的零点个数为 ( )A .2B .3C .4D .58.设函数221(1)()22(1)x x f x x x x +≥⎧=⎨--<⎩,若0()1f x >,则0x 的取值范围是( )A .(,1)(1,)-∞-+∞B .[)(,1)1,-∞-+∞C .(,3)(1,)-∞-+∞D .[)(,3)1,-∞-+∞9.O 是ABC ∆所在平面内的一点,且满足()(2)0OB OC OB OC OA -⋅+-=, 则ABC ∆的形状一定为( )A .正三角形B .直角三角形C .等腰三角形D .斜三角形10.不等式2(2)2(2)40a x a x -+--<的解集为R ,则实数a 的取值范围是( ) A .(2,2)- B.(]2,2- C. (],2-∞ D. [)2,2-11.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和是( ) A.130 B.170 C.210 D.260 12.在锐角三角形中,a 、b 、c 分别是内角A 、B 、C 的对边,设B=2A ,则ab的取值范围是( )A .32⎛⎝⎭B .) C.D .(0,2)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.曲线(3ln 1)y x x =+在点(1,1)处的切线方程为____________________.15.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n= 时, S n 取得最大值 16.已知函数211x y x -=-的图像与函数y kx =的图像恰有两个交点,则实数k 的取值范围是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分) 设{}{}25,121A x x B x m x m =-≤≤=+≤≤-若B A ⊆,求实数m 的取值范围。

已知函数()()lg 1f x x =+.(1)若()()0121f x f x <--<,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数()[]()1,2y g x x =∈的反函数.19.(本小题满分12分)已知向量3(sin ,)2a x =,(cos ,1)b x =- (1)当向量a 与向量b 共线时,求tan x 的值;(2)求函数()2()f x a b b =+⋅的最大值,并求函数取得最大值时的x 的值. 20.(本小题满分12分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知()cos cos 1,2A C B a c -+==,求ABC ∆的内角C . 21.(本小题满分12分)已知数列{}n a 的各项为正数,其前n 项和21()2n n n a s +=满足s 设()10n nb a n N =-∈(1)求证:数列{}n a 是等差数列,并求{}n a 的通项公式; (2)设数列{}n b 的前n 项和为n T ,求n T 的最大值。

已知2()ln ,()3f x x x g x x ax ==-+-(1)求函数()f x 在[],2(0)t t t +>上的最小值;(2)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围; (3)证明:对一切(0,)x ∈+∞,都有ln x >12x e ex-成立.河南省河南大学附属中学2014届高三上学期期中考试试卷 数学(文)答案一、选择题DCBD BBDB CBCA 二、填空题13.4330x y --= 14.2log 3x = 15.1213或 16.()()0,11,2三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17..解;1:当∅≠B 时,由A B ⊆得:⎪⎩⎪⎨⎧≤--≥+-≤+51221121m m m m 解得32≤≤m ----- 6分2:当∅=B 时,121->+m m ,解得2<m ----- 11分 综上所述,实数m 的取值范围是:3≤m 。

---- 12分 18.(本小题满分12分)[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x因为01>+x ,所以1010221+<-<+x x x ,3132<<-x . 由⎩⎨⎧<<-<<-313211x x 得3132<<-x (2)当x [1,2]时,2-x [0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==由单调性可得]2lg ,0[∈y .因为y x 103-=,所以所求反函数是x y 103-=,]2lg ,0[∈x19. (本小题满分12分)【答案】 (1)与 共线,∴3cos sin 02x x +=,∴3tan 2x =-. (2))21,cos (sin x x +=+ ,1()2()2(sin cos ,)(cos ,1)2f x a b b x x x =+⋅=+⋅-22sin cos2cos1sin2cos2 x x x x x =+-=+)4xπ=+,∴函数()f x的最大值为,22(Z),42x k kπππ+=+∈得8x kππ=+函数取得最大值时8x kππ=+20.(本小题满分12分)【解析】由()A B C B A Cππ++=⇔=-+,由正弦定理及2a c=可得sin2sinA C=所以cos()cos cos()cos(())cos()cos()A CB AC A C A C A Cπ-+=-+-+=--+ cos cos sin sin cos cos sin sin2sin sinA C A C A C A C A C=+-+=故由cos()cos1A C B-+=与sin2sinA C=可得22sin sin14sin1A C C=⇒=而C为三角形的内角且2a c c=>,故2Cπ<<,所以1sin2C=,故6Cπ=. 21.(本小题满分12分)解:(1)当n=1时,21111()2aa S+==,11a∴=当n≥2时,221111()()22n nn n na aa S S--++=-=-,即:2211220n n n na a a a-----=22112121n n n na a a a--∴-+=++,221(1)(1)n na a-∴-=+,111n na a-∴-=+12n na a-∴-=,所以{}na是等差数列,21na n=-(2)10211n nb a n=-=-+,19b=,12n nb b--=-,{}nb∴是等差数列21()102nnn b bT n n+∴==-+,当n=5时,2max510525nT=-+⨯=22.(本小题共12分)(1)()ln1f x x'=+,当(0,),∈<0,()f x单调递减,当1(,)xe∈+∞,()f x'>0,()f x单调递增.①0<t<t+2<1e,t无解;②0<t <1e <t+2,即0<t <1e 时,min 11()()f x f e e ==-; ③1t e ≤<t+2,即1t e ≥时,()f x 在[],2t t +上单调递增,min ()()ln f x f t t t ==; <t <1e所以min1,0()1ln ,e f x t t t e ⎧-⎪⎪=⎨⎪≥⎪⎩. (2)22ln 3x x x ax ≥-+-,则32ln a x x x ≤++,设3()2ln (h x x x xx =++>0),则2(3)(1)()x x h x x +-'=,(0,1),()x h x '∈<0,()h x 单调递减,(1,),()x h x '∈+∞>0,()h x 单调递增,所以min ()(1)4,h x h ==因为对一切(0,),2()()x f x g x ∈+∞≥恒成立,所以min ()4a h x ≤=; (3)问题等价于证明ln x x >2((0,))xx x e e -∈+∞,由(1)可知()ln ((0,))f x x x x =∈+∞的最小值是1e -,当且仅当1x e =时取到,设2()((0,))x x m x x e e =-∈+∞,则1()xx m x e -'=,易得max 1()(1)m x m e ==-,当且仅当1x =时取到,从而对一切(0,)x ∈+∞,都有ln x >12x e ex -成立.。

相关文档
最新文档