高等数学 上册 习题答案

合集下载

高等数学习题及解答(1)

高等数学习题及解答(1)

一般班高数作业(上)第一章 函数1、试判断以下每对函数是不是同样的函数,并说明原因: (2) y sin(arcsin x) 与(6) yarctan(tan x) 与 y x ;(4)y x ;(8)y x 与 y x2;y f ( x) 与 xf ( y) 。

解:判断两个函数的定义域和对应法例能否同样。

(2) y sin(arcsin x) 定义域不一样,所以两个函数不一样;(4) y x 2x ,两个函数同样;(6) y arctan(tan x) 定义域不一样,所以两个函数不一样;(8) yf (x) 与 xf ( y) 定义域和对应法例都同样,所以两个函数同样。

2、求以下函数的定义域,并用区间表示:x 211(2) yx;(7) y ex x;(3) y 2 xarcsinln 1x解:(2) x [ 2,0) ;(3) x [1 e 2 ,0) (0,1 e 2 ] ;(7) x(0, e)(e,) 。

1 。

1 ln xf (x)x 2 1, x 03、设 1x 2, x ,求 f ( x) f ( x) 。

解:按 x 0 , x 0 , x 0 时,分别计算得, f (x)0 x 0f ( x)x 。

2 04、议论以下函数的单一性(指出其单增区间和单减区间) :(2) y4xx2;(4) y x x 。

解:(2) y 4xx24 ( x 2) 2单增区间为 [0,2] ,单减区间为 [ 2,4] 。

(4) yx x2x x 0) 。

0 x ,定义域为实数集,单减区间为 ( ,5、议论以下函数的奇偶性:(2)f ( x) x x2 1 tanx ;(3)f (x) ln( x2 1 x);(6) f ( x) cosln x ;1 x, x 0 (7) f (x)x, x 0。

1解:(2)奇函数;(3)奇函数;( 6)非奇非偶函数;( 7)偶函数。

6、求以下函数的反函数及反函数的定义域:2x), D f ( ,0) ;() f ( x) 2x 1, 0 x 1()。

大学高等数学上习题(附答案)

大学高等数学上习题(附答案)

《高数》习题1(上)一.选择题1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭10.设()f x 为连续函数,则()102f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.()21ln dxx x =+⎰.三.计算 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分xxe dx -⎰四.应用题(每题10分,共20分)1.求曲线22y x =和直线4y x =-所围图形的面积.《高数》习题1参考答案一.选择题1.B 4.C 7.D 10.C 二.填空题 1.2- 2.33- 3.arctan ln x c + 三.计算题 1①2e ②162.11xy x y '=+- 3. ()1x ex C --++四.应用题1. 18S =《高数》习题2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰③2xx e dx ⎰四.应用题(每题10分,共20分)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》习题2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=-3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》习题3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.《高数》习题3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰《高数》习题4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 9、⎰=+101dx e e xx( ). A 、21ln e + B 、22ln e + C 、31ln e + D 、221ln e +二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0 三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 四、1、38;《高数》习题5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e xcos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分⎰e edx x 1ln ;四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.参考答案一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e - ; 四、1、 29;。

高等数学上册教材习题答案

高等数学上册教材习题答案

高等数学上册教材习题答案第一章函数与极限1.1 函数的概念题目1:已知函数f(x) = 2x + 1,求f(3)的值。

解答:将x = 3代入函数f(x) = 2x + 1中,得:f(3) = 2(3) + 1 = 6 + 1 = 7。

题目2:设函数g(x) = x^3 - 2x^2 + x + 3,求g(-1)的值。

解答:将x = -1代入函数g(x) = x^3 - 2x^2 + x + 3中,得:g(-1) = (-1)^3 - 2(-1)^2 + (-1) + 3 = -1 - 2 + (-1) + 3 = -1。

1.2 例题解答题目1:设函数f(x) = 3x^2 - 2x + 1,求f(2)的值。

解答:将x = 2代入函数f(x) = 3x^2 - 2x + 1中,得:f(2) = 3(2)^2 - 2(2) + 1 = 3(4) - 4 + 1 = 12 - 4 + 1 = 9。

题目2:已知函数g(x) = 4x - 3,求g(0)的值。

解答:将x = 0代入函数g(x) = 4x - 3中,得:g(0) = 4(0) - 3 = -3。

1.3 习题答案题目1:设函数f(x) = x^3 + 2x^2 - x,求f(1)的值。

解答:将x = 1代入函数f(x) = x^3 + 2x^2 - x中,得:f(1) = (1)^3 + 2(1)^2 - 1 = 1 + 2 - 1 = 2。

题目2:已知函数g(x) = 2x - 1,求g(-2)的值。

解答:将x = -2代入函数g(x) = 2x - 1中,得:g(-2) = 2(-2) - 1 = -4 - 1 = -5。

第二章一元函数微分学2.1 导数的概念题目1:函数f(x) = x^2 + 3x,求f'(2)的值。

解答:对函数f(x) = x^2 + 3x求导数,得到f'(x) = 2x + 3。

将x = 2代入f'(x) = 2x + 3中,得:f'(2) = 2(2) + 3 = 4 + 3 = 7。

高等数学上数学试题及答案

高等数学上数学试题及答案

高等数学上数学试题及答案一、选择题(每题5分,共20分)1. 极限的定义中,若函数f(x)在点x=a处的极限存在,则对于任意的正数ε,都存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。

则以下哪个选项是正确的?A. ε和δ可以互换B. δ依赖于ε和函数f(x)C. δ依赖于ε和aD. ε依赖于δ和函数f(x)答案:B2. 函数f(x)=x^2在区间[0,1]上的定积分表示的是?A. 曲线y=x^2与x轴围成的面积B. 曲线y=x^2与y轴围成的面积C. 曲线y=x^2与x轴围成的体积D. 曲线y=x^2与y轴围成的体积答案:A3. 以下哪个函数是偶函数?A. f(x)=x^3B. f(x)=x^2C. f(x)=x^2+1D. f(x)=x^3-1答案:B4. 函数f(x)=sin(x)的导数是?A. cos(x)B. -sin(x)C. tan(x)D. -cos(x)答案:A二、填空题(每题5分,共20分)1. 函数f(x)=x^3-3x+2的导数是_________。

答案:3x^2-32. 函数f(x)=e^x的不定积分是_________。

答案:e^x+C3. 函数f(x)=ln(x)的导数是_________。

答案:1/x4. 函数f(x)=x^2+2x+1的极值点是_________。

答案:x=-1三、解答题(每题15分,共30分)1. 计算定积分∫[0,1] (2x+1)dx,并说明其几何意义。

解:∫[0,1] (2x+1)dx = [x^2+x] | [0,1] = (1^2+1) - (0^2+0) = 2几何意义:表示曲线y=2x+1与x轴在区间[0,1]上的面积。

2. 求函数f(x)=x^3-6x^2+9x+1在区间[0,3]上的单调区间。

解:首先求导数f'(x)=3x^2-12x+9,令f'(x)=0,解得x=1或x=3。

在区间[0,1)上,f'(x)>0,函数单调递增;在区间(1,3]上,f'(x)<0,函数单调递减。

高数上册全部答案

高数上册全部答案

第1页/共8页第一章 函数、极限与连续1.1 映射与函数1. (1))(x f 与 )(x h 相同; )(x g 与)(),(x h x f 不同. (2))(x f 与 )(x ψ相同相同)(x ϕ与)(),(x x f ψ不同. (3) )(x f 与 )(x g 相同. 2. (1) [ππ)(12,2+n n ],,2,1,0 =n (2) 21≤a 时[]a a −1,;21>a 为空集. 3. (1)3arctan 213arctan 21xy y x ==;(2)xx y y y x −=−=1ln 1ln; 5.(2),224,216==−)()(πϕπϕ02=)(ϕ. 6. (1)奇 , (2)奇 , (3) 偶. 7..22332+∞<<−h r r h h hr ,)(π1.2 数列的极限1.(1)3⎯⎯→⎯∞→n n x .(2).0⎯⎯→⎯∞→n n x(3)无极限. (4) 无极限. 1.3 函数的极限2. (1) 极限不存在. (2) 极限不存在. (3),2arctan π−⎯⎯→⎯−∞→x x∞→x 时,x arctan 的极限不存在. (4),11⎯⎯→⎯++∞→−x x e ∞→x 时,x e −+1的极限不存在. (5) 极限不存在. 1.4 无穷小与无穷大3.无界,非无穷大. 1.5 极限运算法则1. 2; 2. 0; 3. -1/5; 4. -1; 5. 2x ;6. 2; 7. 0; 1.6 极限存在准则 两个重要极限1.(1) e1; (2) a ; (3) 0 ; (4) x ; (5) 1; (6)2−e ; (7) 1−e ; (8) 3; (9) e . 2. 2 ; 3. 0 1.7 无穷小的比较1. (1)x x ~arctan . (2)e a =时等价; e a ≠时同阶. (3) 同阶. (4) 同阶. 2 (1)6=n ; (2) 1=n ; (3) 8=n . 1.8 函数的连续性与间断点1.(1)2=x ,第一类可去,补充定义-4; 3=x ,第二类无穷. (2),,20ππ+==k x x 第一类可去, 分别补充定义1,0; )(0≠=k k x π为第二类无穷. (3) 0x =第一类跳跃第一类跳跃 (4)0x =第二类无穷第二类无穷2. ),),(,),(,(∞+−−∞−1122.3112∞⎯⎯→⎯−⎯⎯→⎯→−→x x x f x f )(,)(3.)()(,)(0100100f f f =−=+=−, ,0=x 第一类跳跃.4.1±=x ,第一类跳跃.1.9 连续函数的运算与初等函数的连续性1..34==b a ,2. (1)112ln ++e ; (2) 0 ; (3) 1/2 ; (4)-1/56 ; (5) 1/2 ;(6) 0 ; (7) 2−e ; (8) 0 ; (9) ;x sin − (10) 1−e . 第二章 导数与微分 2.1 导数概念1、(1)-20 (2)12、(1)(0)f ′ (2)0()f x ′−(3)02()f x ′3、2,-14、1,1y x y x −=−=−2.2 函数的求导法则1、(1)′=++y x xln ln 2222 (2)′=−+⋅y x x x x x 332155222cos sin sec () (3)2-1(1)y x x =+(4)2cos sin x x x y x −= (5)(2)(3)(1)(3)y x x x x =−−+−−(1)(2)x x +−−(6)21cos sin (1cos )x xy x ++=+ (7)()22224sin1cos (1)x x x y x x ⎡⎤++⎣⎦=+(8)x x chx shx e y x tan sec )(3−+=′ 2、(1)-2 (2)2(1)42π+ 3.(1)38(25)y x =+(2)3sin(43)y x =− (3)22xy a x−=− (4)2sin 4y x =(5)2sec (12)y x x =−−(6)()arctan 21x e y x x =+ (7)211y x=+(8)12(1)y x x =− (9)sec y x =(10)csc y x =(11)()11sin cos sin sin cos n n n n y n x x x x x x −−=+(12)211y x =−− (13)()1ln ln ln y x x x =(14)′=++−y x x x xx xx 3222212123ln ()ln cos4.22()()()()()()f x f xg x g x f x g x ′′++5.445(3),5x x −6.(1)()-241xy exx =−++(2)-24()t ty e e =+或21(ch) (3)24arctan 24xy x =+ (4)arcsin 2x y =(5)4218x x x x y x x x x x x+++=+++ 7.122.3 高阶导数1. (1)214-x (2)()23222aa x −− (3)232(1)x y x −=+2.(1)!n (2) ().xx n e +(3)-1-12sin(2).2n n y x π=+3. (1)4cos xe x −(2)21225(sin 250cos 2sin 2)2x x x x x −++5022.4隐函数及由参数方程所确定的函数的导数1 (1)22.ay x y ax −− (2)′=++−+y y x x y x x y sin cos()cos cos()2.(1)222.y x y −(2)22.e3.sin 11cot 2(1)x xx x x e e x x e ⎡⎤−+−⎢⎥−⎣⎦24.(1)cos sin 1sin cos θθθθθθ−−− (2)sin cos cos sin t t t t +−5.(1)231t t +− (2)1()f t ′′2.5函数的微分1 (1)22)sin 2).xxx e x e dx ++(((2)231(1)dx x + (3)2ln 1)1x dx x −−−((4)42.1xdx x −+2.dx3.提示:利用()(0)(0)f x f f x ′≈+第三章 微分中值定理与导数的应用3.1 微分中值定理1.提示:首先验证函数满足Lagrange 定理的条件,并可求得63(1,2)3ξ−=∈, 使(2)(1)()21f f f ξ−′=−.2.11ln()xe x x θ−=3.方程()0f x ′=有且仅有三个实根,它们分别在区间(0,1),(1,2),(2,3)内.4.提示:利用反证法.5.提示:作辅助函数()x ϕ=(1)10xx e −+>,利用Lagrange 中值定理.3.2 洛必达法则1.32 2. 12 3. 3. 11 4. 12 5. 5. 1 6. 1 6. 0 0 7. 528. 8. 1 1 9. ∞ 10. 13.3 泰勒公式 1.21()ln 2()()244f x x x ππ=−−−−− 232sec tan ()34x πξξ−− ,ξ在,4x π之间.2.2311()2!(1)!xn n xe x x x x o x n =+++++− 3.4 函数的单调性与曲线的凹凸性2. 1(,),(1,)2−∞+∞单调增加,1(,1)2上单调减少.3.2(,),(,)3a a −∞+∞单调增,2(,)3a a 上单调减.4.22[,]33−单调增, 2(,]3−∞−,2[,)3+∞单调减.7. 凸区间(,1]−∞,凹区间[1,)+∞, 拐点11(1,)9−3.5 函数的极值与最大值最小值1.2[1,]e 单调增,(0,1],2[,)e +∞单调减,极小值(1)0f =,极大值224()f e e=2.2,05x x ==3. 极大值213xy ==,极小值312.5x y ==.4. 3,0,1a b c =−==5. 0()f x 是极小值是极小值6.最大值为2,最小值为 -2.7.最小值212x y =−=8.0163x =, max 16()151.73S =9.422,33h R r R == 3.7 曲率1. 曲率2K =,曲率半径12ρ=. 2. 2x π=处曲率最大,为1.高等数学期中自测试题一、DDCDD二、1、[1,2] 2、1/2 3、-14、(1)(1)(0)(0)f f f f ′′>−>5、1t =三、1、(22)n n πππ+,(012)n =±± ,,,2lim ln sin 0x x π→=2、1/43、04、36、(]0−∞,单调减,[)0+∞,单调增单调增五、提示:利用反证法,由零点定理推出矛盾。

高等数学上册试题及参考答案3篇

高等数学上册试题及参考答案3篇

高等数学上册试题及参考答案高等数学上册试题及参考答案第一篇:微积分1.已知函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$,求$f'(x)$和$f''(x)$。

参考答案:首先,根据对数函数的导数公式$[\lnf(x)]'=\frac{f'(x)}{f(x)}$,我们可以得到$f'(x)$的计算式为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}+x}\cdot\frac{\fra c{1}{2}\cdot2x}{\sqrt{(1+x^2)}}+\frac{1}{\sqrt{(1+x^2)}+x}$$ 将上式整理化简,得到:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$接下来,我们需要求$f''(x)$。

由于$f'(x)$是由$f(x)$求导得到的,因此$f''(x)$可以通过对$f'(x)$求导得到,即:$$f''(x)=\frac{d}{dx}\left[\frac{1}{\sqrt{(1+x^2) }\cdot(\sqrt{(1+x^2)}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}\r ight]$$通过链式法则和乘法法则,我们得到:$$f''(x)=\frac{-(1+x^2)^{-\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)-\frac{1}{2}(1+x^2)^{-\frac{1}{2}}\cdot\frac{2x}{\sqrt{(1+x^2)}}\cdot(\sqrt{ (1+x^2)}+x)^2}{(\sqrt{(1+x^2)}+x)^2}$$将上式整理化简,得到:$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $因此,函数$f(x)=\ln{(\sqrt{(1+x^2)}+x)}$的导数$f'(x)$和二阶导数$f''(x)$分别为:$$f'(x)=\frac{1}{\sqrt{(1+x^2)}\cdot(\sqrt{(1+x^2 )}+x)}+\frac{1}{\sqrt{(1+x^2)}+x}$$$$f''(x)=\frac{-1-2x^2}{(1+x^2)^{\frac{3}{2}}\cdot(\sqrt{(1+x^2)}+x)^2}$ $2.计算二重积分$\iint_D(x^2+y^2)*e^{-x^2-y^2}d\sigma$,其中$D$是圆域$x^2+y^2\leqslant 1$。

高等数学上册习题册答案

高等数学上册习题册答案

高等数学上册习题册答案高等数学是大学中的一门重要课程,它对于培养学生的数学思维能力和解决实际问题的能力起着重要的作用。

而习题册作为高等数学学习的重要辅助材料,对于巩固和提高学生的数学水平至关重要。

在这篇文章中,我将为大家提供高等数学上册习题册的一些答案,帮助大家更好地学习和掌握这门课程。

第一章:极限与连续1. 求函数f(x) = 3x^2 + 2x - 1的极限。

解:我们可以通过直接代入法求得极限。

当x趋近于任意实数时,函数f(x)的极限为无穷大。

2. 求函数f(x) = (x^2 - 4)/(x - 2)的极限。

解:我们可以通过化简的方法求得极限。

将分子进行因式分解,得到f(x) = (x + 2),所以当x趋近于2时,函数f(x)的极限为4。

第二章:导数与微分1. 求函数f(x) = 2x^3 - 3x^2 + 4x - 1的导数。

解:我们可以通过求导的方法求得导数。

对于函数f(x) = 2x^3 - 3x^2 + 4x - 1,它的导数为f'(x) = 6x^2 - 6x + 4。

2. 求函数f(x) = e^x * sin(x)的导数。

解:我们可以利用链式法则求得导数。

对于函数f(x) = e^x * sin(x),它的导数为f'(x) = e^x * sin(x) + e^x * cos(x)。

第三章:微分中值定理与导数的应用1. 求函数f(x) = x^3在区间[0, 1]上的极大值和极小值。

解:我们可以通过求导和二阶导数的方法求得极值。

首先,求得f'(x) = 3x^2,然后求得f''(x) = 6x。

对于区间[0, 1],当x = 0时,f''(x) = 0,所以函数f(x)在x= 0处取得极小值;当x = 1时,f''(x) = 6,所以函数f(x)在x = 1处取得极大值。

2. 求函数f(x) = x^2在点x = 2处的切线方程。

《高等数学》 详细上册答案(一--七)

《高等数学》 详细上册答案(一--七)

2014届高联高级钻石卡基础阶段学习计划《高等数学》上册(一----七)第一单元、函数极限连续使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版;同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点:1.函数的概念及表示方法;2.函数的有界性、单调性、周期性和奇偶性;3.复合函数、分段函数、反函数及隐函数的概念;4.基本初等函数的性质及其图形;5.极限及左右极限的概念,极限存在与左右极限之间的关系;6.极限的性质及四则运算法则;7.极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8.无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限;9.函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10.连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.天数学习时间学习章节学习知识点习题章节必做题目巩固习题(选做)备注第一天2h第1章第1节映射与函数函数的概念函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数初等函数具体概念和形式,函数关系的建立习题1-14(3) (6)(8),5(3)★,9(2),15(4)★,17★4(4)(7),5(1),7(2),15(1)本节有两部分内容考研不要求,不必学习:1. “二、映射”;2. 本节最后——双曲函数和反双曲函数第二天3h1章第2节数列的极限数列极限的定义数列极限的性质(唯一性、有界性、保号性)习题1-21(2) (5)(8)★3(1)1. 大家要理解数列极限的定义中各个符号的含义与数列极限的几何意义;2. 对于用数列极限的定义证明,看懂即可。

第1章第3节函数的极限函数极限的概念函数的左极限、右极限与极限的存在性函数极限的基本性质(唯一性、局部有界性、局部保号性、不等式性质,函数极限与数列极限的关系等)习题1-32,4★3,1. 大家要理解函数极限的定义中各个符号的含义与函数极限的几何意义;2. 对于用函数极限的定义证明,看懂即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档