线面平行的常用判断法

合集下载

数学平行线的判定方法

数学平行线的判定方法

数学平行线的判定方法
1.垂直线判定法:
如果两条直线相交的交角为直角(即交角为90度),则这两条直线
是垂直的,不平行。

2.构造平行线判定法:
(1)平行线的定义:若两直线在同一个平面内,且不相交,则这两
条直线是平行的。

(2)构造平行线的方法:在给定的直线外分别作直线与给定直线相交,并且使得交点与给定直线上一定的点连线平行,如果这两条直线相互
平行,则可以判定给定直线与新作的直线平行。

3.同位角判定法:
同位角是指两条直线被一条交线分成的对应角,如果两条直线被一条
平行于它们的直线所截,则对应的同位角相等,从而能判定两条直线平行。

4.内角判定法:
```
a-----b
/
/
c----d
```
若角a等于角d(内角)或角b等于角c(内角),则可以判定两条线段ab和cd平行。

5.倾斜角判定法:
可以通过计算两条直线的倾斜角来判断其是否平行。

若两条直线的倾斜角相等且都不为垂直,那么这两条直线是平行的。

6.向量判定法:
设两条直线分别为l1和l2,分别取l1和l2上的两个点A、B,分别向两个方向生成向量v1和v2、如果v1与v2平行,则可以判定l1和l2平行。

这些方法是数学中常用的平行线判定方法,可以根据具体问题选择合适的方法进行判断。

在判定时需要注意条件的准确性以及合理性,不同判定方法可能在不同情况下适用。

高中数学证明线面平行的方法

高中数学证明线面平行的方法

高中数学证明线面平行的方法在高中数学学习中,证明线面平行是一个常见的问题。

这个问题需要我们运用一定的数学知识和技巧,来证明两条线段或两个平面之间的平行关系。

下面介绍一些证明线面平行的方法:1. 向量法向量法是证明线面平行的常见方法。

我们可以用向量来表示线段和平面的方向,然后通过向量的内积来判断它们是否平行。

具体来说,如果两个向量的内积为0,那么它们就是垂直的;如果内积不为0,那么它们就是平行的。

例如,如果要证明直线AB与平面P平行,则可以假设向量AB和平面P的法向量n不平行。

然后计算向量AB和n的内积,如果结果为0,则AB与P垂直;如果结果不为0,则AB与P平行。

2. 三角形相似法如果两个平行线段或两个平面之间的平行关系不容易用向量法证明,可以使用三角形相似法。

具体来说,我们可以选择一个三角形,在两个平行线段或平面上各取一个点,然后通过证明两个三角形相似来证明它们平行。

例如,如果要证明平面P和平面Q平行,则可以选择一个三角形ABC,在平面P上取点A和B,在平面Q上取点C,然后证明三角形ABC和三角形ACB相似,从而得出平面P和平面Q平行的结论。

3. 平行四边形法平行四边形法是证明线段平行或平面平行的一种简单方法。

具体来说,我们可以找到一个平行四边形,其中两条边分别是要证明平行的线段或平面,然后证明它的另外两条边也平行,从而得出结论。

例如,如果要证明线段AB与线段CD平行,则可以找到一个平行四边形ABCD,其中AB和CD是相邻的两条边,AC和BD是另外两条边,然后证明AC和BD也平行,从而得出线段AB与线段CD平行的结论。

综上所述,证明线面平行的方法有很多种,我们可以根据具体情况选择合适的方法进行证明。

除了上述方法,还有投影法、反证法等方法。

大家可以尝试学习和运用这些方法,提高数学证明的能力。

判断或证明线面平行的或垂直常用方法

判断或证明线面平行的或垂直常用方法

同学们早上先把下面知识点看完然后做后面的四个题。

做完后再看看另一个知识点解析几何常见题型。

都发布在作业里面。

线线平行的证明方法:三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。

判断或证明线面平行的常用方法包括:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).【垂直类证明方法总结】证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90度、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;1..如图,三棱柱ABC−A1B1C1中,侧面BB1C1C是菱形,其对角线的交点为O,且AB=AC1,AB⊥B1C.(1)求证:AO⊥平面BB1C1C;(2)若BB1=2,且∠B1BC=∠B1AC=60°,求三棱锥C1−ABC的体积.2.如图,四棱锥P−ABCD中,平面PDC⊥底面ABCD,△PDC是等边三角形,底面ABCD 为梯形,且∠DAB=60°,AB△CD,DC=AD=2AB=2.(△)证明:BD⊥PC△(△)求A到平面PBD的距离.3.如图,在几何体ABCDEFG中,底面四边形ABCD是边长为4的菱形,AC∩BD=O,∠ABC= 60°,AF//DE//CG,AF⊥平面ABCD,且AF=DE=4,CG=1.(1)证明:平面FBD⊥平面GBD;(2)求三棱锥G−DEF的体积.4.已知数列{a n}的通项公式为a n=n,S n为其前n项和,则数列{a n+1S n S n+1}的前8项和为__________.答案1.(1)∵四边形BB1C1C是菱形,∴B1C⊥BC1,∵AB⊥B1C,AB∩BC1=B,∴B1C⊥平面ABC1,又AO⊂平面ABC1,∴B1C⊥AO.∵AB=AC1,O是BC1的中点,∴AO⊥B1C,∵B1C∩BC1=O,∴AO⊥平面BB1C1C.(2)菱形BB1C1C的边长为2,又∠B1BC=60°,∴ΔBB1C是等边三角形,则B1C=2.由(1)知,AO⊥B1C,又O是B1C的中点,∴AB1=AC,又∠B1AC=60°,∴ΔAB1C是等边三角形,则AC=AB1=B1C=2.在RtΔACO中,AO=√AC2−CO2=√32×2=√3,∴V C1−ABC =V A−BCC1=13SΔBCC1⋅AO=13×12⋅2⋅2⋅sin120°⋅√3=12.(Ⅰ)由余弦定理得BD=√12+22−2×1×2cos60°=√3,∴BD2+AB2=AD2,∴∠ABD=90°,BD⊥AB,∵AB//DC,∴BD⊥DC.又平面PDC⊥底面ABCD,平面PDC∩底面ABCD=DC,BD⊂底面ABCD,∴BD⊥平面PDC,又PC⊂平面PDC,∴BD⊥PC.(Ⅱ)设A到平面PBD的距离为ℎ.取DC中点Q,连结PQ,∵△PDC是等边三角形,∴PQ⊥DC.又平面PDC⊥底面ABCD,平面PDC∩底面ABCD=DC,PQ⊂平面PDC,∴PQ⊥底面ABCD,且PQ=√3,由(Ⅰ)知BD⊥平面PDC,又PD⊂平面PDC,∴BD⊥PD.∴V A−PBD=V P−ABD,即13×12×√3×2×ℎ=13×12×1×√3×√3.解得ℎ=√32.3.(1)因为AF⊥平面ABCD,所以AF⊥BD,又AC⊥BD,AF∩AC=A,所以BD⊥平面AOF,所以BD⊥OF.因为四边形ABCD是边长为4的菱形,∠ABC=60°,所以ΔABC与ΔADC均为等边三角形,AC=4.所以OG2=OC2+GC2=5,OF2=OA2+AF2=20,FG2=AC2+(AF−GC)2=25,则OG2+OF2=FG2,所以OF⊥OG,又BD⊥OF,OG∩BD=O,所以OF⊥平面GBD,又OF⊂平面FBD,所以平面FBD⊥平面GBD.(2)因为GC//DE,DE⊂平面ADEF,GC⊄平面ADEF,所以GC//平面ADEF,所以V G−DEF=V C−DEF,取AD的中点H,连接CH,则CH=√32×4=2√3,CH⊥AD,由AF⊥平面ABCD,所以AF⊥CH,又AF∩AD=A,所以CH⊥平面ADEF.所以V C−DEF=13SΔDEF⋅CH=13×12×4×4×2√3=163√3.即三棱锥G−DEF的体积为163√3.4.由等差数列前n 项和公式可得:S n =n(n+1)2,则S n+1=(n+1)(n+2)2,由数列的通项公式可得:a n+1=n +1,∴a n+1S n S n+1=4n(n+1)(n+2)=2[1n(n+1)−1(n+1)(n+2)],则数列{a n+1Sn S n+1}的前8项和为: 2[(11×2−12×3)+(12×3−13×4)+⋯+(18×9−19×10)]=2×(12−190)=4445.【点睛】本题考查的核心是裂项求和,使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.。

总结证明线面平行的常用方法

总结证明线面平行的常用方法

BC DA 1B 1C 1D 1图2AFE GαabA图1总结证明线面平行的常用方法空间直线与平面平行问题是立体几何的一个重要内容,也是高考考查的重点,下面就常见的线面平行的判定方法介绍如下:方法一、反证法【例1】求证:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(直线与平面平行的判定定理)已知:,,a b a αα⊄⊂∥b ,如图1.求证:a ∥α.【分析】要证明直线与平面平行,可以从直线与平面平行的定义入手,但从定义来看,必须说明直线与平面无公共点,这一点直接说明是困难的,但我们可以借助反正法来证明.【证明】假设直线a 与平面α不平行,又∵a α⊄,∴a A α=.下面只要说明aA α=不可能即可.∵a ∥b ,∴a ,b 可确定一平面,设为β. 又aA α=, ∴,A a A β∈∈.又b ,A αα⊂∈,∴平面α与平面β中含有相同的元素直线b ,以及不在直线b 上的点A, 由公理2的推论知,平面α与平面β重合. ∴a α⊂,这与已知a α⊄相矛盾. ∴a A α=不可能.故a ∥α.方法二、判定定理法【例2】正方体1AC 中,E、G 分别为BC 、11C D 的中点,求证:EG ∥平面11BDD B 【分析】要证明EG ∥平面11BDD B ,根据线面平行的判定定理,需在平面11BDD B 内找到一条与EG 平行的直线,充分借助E、G 为中点的条件.【证明】如图2,取BD 的中点为F,连结EF ,1D F . ∵E为BC 的中点, ∴ EF ∥CD 且12EF CD =又∵G 为11C D 的中点, ∴ 1D G ∥CD 且112D G CD =∴ EF ∥1D G ,且1EF D G =B C DA 1B 1C 1D 1ANME F图3故四边形1EFD G 为平行四边形.∴ 1D F ∥EG又1D F ⊂平面11BDD B ,且EG ⊄平面11BDD B , ∴ EG ∥平面11BDD B 【评注】根据直线与平面平行的判定定理证明直线和平面平行的关键是在平面内找到 一条直线和已知直线平行,常用到中位线定理 、平行四边形的性质、成比例线段、平行转移法、投影法等.具体应用时,应根据题目条件而定.方法三、运用面面平行的性质定理【例3】在正方体1111ABCD A B C D -中,点N 在BD 上,点M 在1B C 上,且CM DN =,求证:MN ∥平面11AA BB .【分析】若过MN 能作一个平面与平面11AA BB 平行,则由面面平行的性质定理,可得MN 与平面11AA BB 平行.【证明】如图3,作MP ∥1BB ,交BC 与点P,联结NP . ∵ MP ∥1BB ,∴1CM CPMB PB=. ∵1BD B C =,DN CM =,∴1B M BN =, ∵1CM DN MB NB =,∴DN CPNB PB= ∴NP ∥CD ∥AB , ∴面MNP ∥面11AA BB . ∴MN ∥平面11AA BB【评注】本题借助于成比例线段,证明一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,得到这两个平面平行,进而得到线面平行,很好地体现了线面、线线、面面平行关系之间的转化思想.。

线面平行的判定

线面平行的判定

线面平行的判定在几何图形中,线面平行是一种常见的概念,它有很多实际应用,如构建建筑物、摆放家具或计算机绘图等等。

学习如何判断两条线或两个面是否平行可以让我们更好地利用几何知识。

线的平行判定一般有以下几种方法:一、线的平行判定1.线的斜率相等:如果两条直线的斜率相等,则它们是平行的,斜率就是斜线的倾斜度,它的定义为:斜线的高度与它的宽度的比值。

2.线的斜率分别为∞和0:果两条线的斜率分别为∞和0(无穷大和零),则它们也是平行的。

3.线的斜率相反:如果两条直线的斜率相反,一条是正斜率,一条是负斜率,则它们也是平行的。

4.线的垂直:如果两条直线垂直,则它们也是平行的。

二、的平行判定1.面的斜率相等:如果两个平面的法向量的斜率相等,则它们是平行的。

2.面的斜率分别为∞和0:果两个平面的斜率分别为∞和0,则它们也是平行的。

3.面的斜率相反:如果两个平面的斜率相反,一条是正斜率,一条是负斜率,则它们也是平行的。

4.面的垂直:如果两个平面垂直,则它们也是平行的。

三、几何概念的交叉判定1.与面的交叉判定:如果一条直线与一个平面都是平行的,则它们是交叉的。

2.与线的交叉判定:如果两条直线都是平行的,则它们是交叉的。

3.与面的交叉判定:如果两个平面都是平行的,则它们是交叉的。

在几何中,判断两条线或两个面是否平行是一种常见的习题,尤其是在处理几何图形及它们间的关系时,通常需要将这类习题解决了才能继续处理更复杂的关系和图形。

此外,有些关于线面平行的概念也有它们的实际应用,如建筑物的设计,家居摆放等。

因此,学习如何判断两条线或两个面是否平行,尤其在几何学上,是很有必要的,有助于我们更好地利用几何知识和应用几何知识。

谈谈证明线面平行问题常用的几种方法

谈谈证明线面平行问题常用的几种方法

证明线面平行的问题侧重于考查同学们的空间想象能力与数学运算能力.根据直线与平面平行的定义可知,要判断直线与平面是否平行,只需判定直线与平面有没有公共点.但由于直线是无限延伸的,平面是无限延展的,因此利用定义法不易快速证明线面平行,需运用转化思想,把线面平行问题转化为线线平行问题、面面平行问题、空间向量之间的位置关系问题,利用线面平行的判定定理、面面平行的性质定理,通过空间向量运算来求解.下面谈一谈证明线面平行的三种方法.一、利用线面平行的判定定理进行证明线面平行的判定定理:如果平面外一条直线与平面内的一条直线平行,那么该直线与该平面平行.利用线面平行的判定定理,可由线线平行推出线面平行.在证明线面平行时,可根据题意和几何图形的特点,添加合适的辅助线,利用中位线的性质、平行四边形的性质寻找或作出平行线,以利用线面平行的判定定理证明线面平行.例1.如图1,在四棱锥P-ABCD中,底面ABCD为平行四边形,O为AC的中点,M为PD的中点,证明:PB//平面ACM.证明:如图1,连接MO,BD.在平行四边形ABCD中,O为AC的中点,∴O为BD的中点,∵M为PD的中点,∴MO为ΔPBD的中位线,∴PB//MO,又PB⊄平面ACM,MO⊂平面ACM,∴PB//平面ACM.想要证明PB//平面ACM,需在平面ACM内找到一条与直线PB平行的直线,于是添加辅助线,作出ΔPBD的中位线MO.由三角形中位线的性质可知MO//PB,即可利用线面平行的判定定理证明线面平行.例2.如图2,四棱锥P-ABCD的底面ABCD为直角梯形,侧棱AP⊥平面ABCD,AB⊥AD,AD=2BC.若点E为棱PD的中点.求证:CE//平面ABP.证明:如图2所示,取PA的中点F,连接BF,EF,在ΔPAD中,点F,E分别是PA,PD的中点,∴EF为ΔPAD的中位线,∴EF//AD,EF=12AD,∵ AD=2 BC,∴AD//BC,BC=12AD,∴EF//BC,EF=BC,∴四边形EFBC是平行四边形,∴CE//BF,∵CE⊄平面ABP,BF⊂平面ABP,∴CE//平面ABP.通过作辅助线构造出平行四边形EFBC,再利用中位线的性质和平四边形的性质即可证明EF//AD、CE//BF.而CE在平面ABP外,BF在平面ABP内,利用线面平行的判定定理,就能证明CE//平面ABP.例3.如图3,S是平行四边形ABCD外一点,M,N分别是SA、BD上的点,且AMSM=BN ND,求证:MN//平面SDC.证明:连接AN,并延长AN延长线交CD于点P,连接SP,∵四边形ABCD是平行四边形,∴AB//PD,∴ΔABN∽ΔPDN,∴BNND=AN NP,又AMMS=AN NP,∴AMAS=AN AP,∴MN//SP,∵MN⊄平面SDC,SP⊂平面SDC,∴MN//平面SDC.通过作辅助线,构造出两个相似三角形ΔABN与ΔPDN,再根据相似三角形的性质可证明MN//SP.而图1图2图346方法集锦图4三、利用空间向量进行证明若几何图形中有两两垂直的三条线,为坐标轴,建立空间直角坐标系,分别求出直线的方向向量和平面的法向量的方向向量与平面的法向量垂直,平面平行.。

线面平行证明的常用方法

线面平行证明的常用方法

线面平行证明的常用方法线面平行的常用证明方法有以下几种:1.直线斜率法:对于一条直线和一个平面,我们可以通过计算直线的斜率和平面的法向量来判断它们是否平行。

如果直线的斜率与平面的法向量垂直,那么它们就是平行的。

举个例子,如果一条直线的斜率为m,并且平面的法向量为N(x,y,z),那么直线和平面平行的条件是m*N=0。

2.距离法:使用距离的概念,我们可以通过计算一条直线到一个平面的距离来判断它们是否平行。

如果直线到平面的距离为0,那么它们就是平行的。

假设直线的方程为ax + by + cz + d = 0,平面的方程为Ax + By + Cz + D = 0,直线上任意一点的坐标为(x₀, y₀, z₀),那么直线到平面的距离可以通过以下公式计算:distance = ,A * x₀ + B * y₀ + C * z₀ + D, / sqrt(A^2 + B^2+ C^2)如果直线到平面的距离为0,那么它们就是平行的。

3.两向量法:我们可以通过计算直线的方向向量和平面的法向量的点积来判断它们是否平行。

如果直线的方向向量与平面的法向量垂直,那么它们就是平行的。

假设直线的方向向量为V(a,b,c),平面的法向量为N(x,y,z),那么直线和平面平行的条件是V·N=a*x+b*y+c*z=0。

4.三点共线法:对于一个包含直线上三个不同点的平面,如果这三个点共线,那么直线和平面是平行的。

假设直线上的三个点为A(x₁,y₁,z₁),B(x₂,y₂,z₂),C(x₃,y₃,z₃),可以计算三个向量AB,AC和平面的法向量N进行叉乘,得到一个新的向量M。

如果M的长度为0,那么直线和平面是平行的。

5.平行线与交线法:如果两个平行的直线分别与一个平面的交线平行,并且交线不在这两条直线上,那么这两条直线和平面是平行的。

假设平行直线的方程为l₁: ax + by + cz + d₁ = 0,l₂: ax + by + cz + d₂ = 0,平面的方程为π: Ax + By + Cz + D = 0。

线面平行证明常用方法

线面平行证明常用方法

精品文档线面平行证明的常用方法方法一:两平行线能确定一个平面,过已知直线的两个端点作两条平 行线使它们与已知平面相交,关键:找平行线,使得所作平面 与已知平面的交线。

(08浙江卷)如图,矩形ABC 丙梯形BEFC 所在平面互相垂直,BE//CF ,.BCF= CEF=90 ,AD= .3,EF=2。

求证:AE//平面 DCF.分析:过点E 作EG//AD 交FC 于G, DG 就是平面AEGD 与平面DCF 的交线,那么只要证明 AE//DG 即可。

证明:过点E 作EG_CF 交CF 于G ,连结DG ,A 可得四边形BCGE 为矩形,又ABCD 为矩形, 所以AD 垄EG ,从而四边形ADGE 为平行四边形故 AE // DG .因为AE 二平面DCF ,DG 二平面DCF , 所以AE //平面DCF . 方法二:直线与直线外一点有且仅有一个平面,关键:找第三个点,使得所作平面与已知平面的交线。

(06北京卷)如图,在底面为平行四边形的四棱锥 P - ABCD 中,AB _ AC , PA _平面ABCD ,且PA -AB ,点E 是PD 的中点.求证:PB//平面AEC .分析:由D 、P 、B 三点的平面与已知平面 AEC 的交线最易找,第三个点选其它的 点均不好找交线.1 \ B ■ , '\ ___' -* 1 G ED证明:连接BD,与AC相交于O,连接EO.••• ABCD是平行四边形,•••O是BD的中点又E是PD的中点•EO// PB.又PB 平面AEC,EO 平面AEC,•PB//平面 AEC. DC方法三:两个平面是平行,其中一个平面内的直线和另一个平面平行关键:作平行平面,使得过所证直线作与已知平面平行的平面(08安徽卷)如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,H 亠一ABC , OA _底面ABCD , OA=2,M为OA的中点,N为BC的中4点,证明:直线MN ||平面OCD分析:M为OA的中点,找OA(或AD)中点,再连线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B C
D
A 1
B 1
C 1
D 1
图2
A
F
E
G
α
a
b
A
图1
线面平行的常用判断法
空间直线与平面平行问题是立体几何的一个重要内容,也是高考考查的重点,下面就常见的线面平行的判定方法介绍如下:
一、反证法
例1求证:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(直线与平面平行的判定定理)
已知:,,a b a αα⊄⊂∥b ,如图1. 求证:a ∥α.
分析:要证明直线与平面平行,可以从直线与平面平行的定义入手,但从定义来看,必须说明直线与平面无公共点,这一点直接说明是困难的,但我们可以借助反正法来证明.
证明:假设直线a 与平面α不平行,又∵a α⊄,∴a A α=.
下面只要说明a
A α=不可能即可.
∵a ∥b ,∴a ,b 可确定一平面,设为β. 又a
A α=, ∴,A a A β∈∈.
又b ,A αα⊂∈,
∴平面α与平面β中含有相同的元素直线b ,以及不在直线b 上的点A, 由公理2的推论知,平面α与平面β重合. ∴a α⊂,这与已知a α⊄相矛盾. ∴a A α=不可能.故a ∥α.
二、判定定理法
例2 正方体1AC 中,E、G 分别为BC 、11C D 的中点,求证:EG ∥平面11BDD B 分析:要证明EG ∥平面11BDD B ,根据线面平行的判定定理,需在平面11BDD B 内找到一条与EG 平行的直线,充分借助E、G 为中点的条件.
证明:如图2,取BD 的中点为F,连结EF ,1D F . ∵E为BC 的中点, ∴ EF ∥CD 且1
2
EF CD =
又∵G 为11C D 的中点, ∴ 1D G ∥CD 且11
2
D G CD =
B C D
A 1
B 1
C 1
D 1
A


E F
图3
∴ EF ∥1D G ,且1EF D G =
故四边形1
EFDG 为平行四边形.∴ 1D F ∥EG 又1D F ⊂平面11BDD B ,且EG ⊄平面11BDD B , ∴ EG ∥平面11BDD B 评注:根据直线与平面平行的判定定理证明直线和平面平行的关键是在平面内找到 一条直线和已知直线平行,常用到中位线定理 、平行四边形的性质、成比例线段、平行转移法、投影法等.具体应用时,应根据题目条件而定.
三、运用面面平行的性质定理
例3 在正方体1111ABCD A BC D -中,点N 在BD 上,点M 在1B C 上,且CM DN =,求证:MN ∥平面11AA BB .
分析:若过MN 能作一个平面与平面11AA BB 平行,则由面面平行的性质定理,可得MN 与平面11AA BB 平行.
证明:如图3,作MP ∥1BB ,交BC 与点P,联结NP . ∵ MP ∥1BB ,∴
1CM CP
MB PB
=
. ∵1BD B C =,DN CM =,
∴1B M BN =, ∵1CM DN
MB NB
=
,∴DN CP NB PB = ∴NP ∥CD ∥AB , ∴面MNP ∥面11AA BB . ∴MN ∥平面11AA BB
评注:本题借助于成比例线段,证明一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行,得到这两个平面平行,进而得到线面平行,很好地体现了线面、线线、面面平行关系之间的转化思想.。

相关文档
最新文档