中考数学复习:二次函数中矩形存在性
中考数学总复习《二次函数中的角度问题存在性问题》专题训练-附答案

中考数学总复习《二次函数中的角度问题存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,抛物线与x 轴相交于原点和点()4,0A ,在第一象限内与直线y x =交于点B ()5,5,抛物线的顶点为C 点.(1)求抛物线的解析式和顶点C 的坐标;(2)点()3,M m 在抛物线上,连接MO MB ,,求MOB △的面积;(3)抛物线上是否存在点D ,使得DOB OBC ∠=∠?若存在,求出所有点D 的坐标;若不存在,请说明理由. 2.综合与探究如图,已知抛物线238y x bx c =-++与x 轴相交于()4,0A -,B 两点(点A 在点B 的左侧),与y 轴相交于点()0,3C ,连接AC .(1)求该抛物线的解析式及对称轴;(2)若过点B 的直线与抛物线相交于另一点D ,当ABD BAC ∠=∠时,求直线的解析式; (3)在(2)的条件下,当点D 在x 轴下方时,连接AD ,此时在y 轴左侧的抛物线上存在点P ,使23BDP ABD S S =△△,请直接写出所有符合条件的点P 的坐标.3.如图,抛物线2y ax bx c =++与x 轴交于点A 、B ,与y 轴交于点()0,2C -,2OC OA =和1tan 2ABC ∠=.直线l :()0y kx n k =+>与抛物线交于M ,N 两点(点M 在点N 的左边).(1)求抛物线的解析式,并写出顶点坐标;(2)当直线l BC ∥时,若MON △的面积被y 轴分成的两个三角形的面积比为1:4时,求n 的值; (3)当0n =时,试在抛物线上找一定点P ,使得90MPN ∠=︒,求P 点坐标以及点P 到MN 的最大距离. 4.如图①,抛物线2y ax bx =+的顶点为()2,4D -.(1)求抛物线的解析式;(2)连接OD ,P 为x 轴上的动点,当AOD ∠与PDO ∠互余时,求点P 的坐标;(3)如图①,点M ,N 都在抛物线上,点M 位于第四象限,点N 位于第二象限,连接MN 分别交x 轴,y 轴于点E ,F ,连接OM ON 、,求证:若NOF MOE ∠=∠,则直线MN 经过一定点.5.如图,在平面直角坐标系中,抛物线2=23y x x --交x 轴于A B 、两点(点A 在点B 的左边),交y 轴于点C .(1)直接写出、、A B C 三点的坐标;(2)若抛物线上有一点,45D ACD ∠=︒,求点D 的坐标.(3)如图2,点P 是第一象限抛物线上一点,过点P 的直线(0)y mx n n =+<与抛物线交于另一点Q ,连接AP AQ 、,分别交y 轴于M N 、两点,若2OM ON ⋅=,探究,m n 之间的数量关系,并说明理由.6.如图,顶点坐标为(3,4)的抛物线2y ax bx c =++交x 轴于A ,B 两点,交y 轴于点()0,5C -.(1)求a ,b 的值;(2)已知点M 在射线CB 上,直线AM 与抛物线2y ax bx c =++的另一公共点是点P .①抛物线上是否存在点P ,满足:2:1=AM MP ,如果存在,求出点P 的横坐标;如果不存在,请说明理由; ①连接AC ,当直线AM 与直线BC 的夹角等于ACB ∠的2倍时,请直接写出点M 的坐标.7.如图,已知(2,0),(3,0)A B -,抛物线24y ax bx =++经过A 、B 两点,交y 轴于点C .点P 是第一象限内抛物线上的一点,点P 的横坐标为m .过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q .过点P 作PN BC ⊥,垂足为点N .(1)求抛物线的函数表达式;(2)请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)连接PC ,在第一象限的抛物线上是否存在点P ,使得290BCO PCN ∠+∠=︒?若存在,请直接写出m 的值;若不存在,请说明理由.8.如图1,已知抛物线233y ax bx =++,与x 轴交于点()2,0A -,点()6,0B 与y 轴交于点C ,抛物线的顶点为M ,其对称轴与x 轴交于Q 点.(1)抛物线解析式为______,顶点M 的坐标为______; (2)判断MAB 的形状,并说明理曲;(3)如图2,点P 是线段MQ 上的一个动点(点P 与点M 、点Q 不重合),连结PA 和PB ,过点B 作BD AP ⊥,射线BD 交射线AP 于点D ,交抛物线于点E ;过点E 作EF AB ⊥,垂足为点F ,EF 交射线BP 于点G . ①当ABD ①EBF 时,请求出此时点P 的坐标; ①当135APB ∠=︒时,请你直接写出BFEG的值. 9.如图1,二次函数y =ax 2+bx +c 的图象交x 轴于点A (﹣1,0),B (3,0),交y 轴于点C (0,﹣3),直线l 经过点B .(1)求二次函数的表达式和顶点D 的坐标; (2)如图2,当直线l 过点D 时,求①BCD 的面积;(3)如图3,直线l 与抛物线有另一个交点E ,且点E 使得①BAC ﹣①CBE >45°,求点E 的横坐标m 的取值范围;(4)如图4,动点F 在直线l 上,作①CFG =45°,FG 与线段AB 交于点G ,连接CG ,当①ABC 与①CFG 相似,且S △CFG 最小时,在直线l 上是否存在一点H ,使得①FHG =45°存在,请求出点H 的坐标;若不存在,请说明理由.10.如图,已知抛物线2y ax bx c =++经过(1,0),(2,0),(0,2)A B C -三点,点D 在该抛物线的对称轴l 上.(1)求抛物线的表达式;(2)若DA DC =,求ADC ∠的度数及点D 的坐标;(3)若在(2)的条件下,点P 在该抛物线上,当PBC DAB ∠=∠时,请直接给出点P 的坐标. 11.如图,抛物线2y ax bx c =++经过()1,0A -,()3,0B 且与y 轴交于点()0,3C -.(1)求抛物线的函数表达式;(2)若点P 是x 轴的正半轴上一点1tan 3APC ∠=,求点P 的坐标;(3)当点P 是抛物线上第一象限上的点1tan 3APC ∠=,直接写出点P 的坐标为______.12.如图,平面直角坐标系中,抛物线24y x nx =-++过点()4,0A -,与y 轴交于点N ,与x 轴正半轴交于点B .直线l 过定点A .(1)求抛物线解析式;(2)连接AN ,BN ,直线l 交抛物线于另一点M ,当①MAN =①BNO 时,求点M 的坐标;(3)过点(),1T t -的任意直线EF (不与y 轴平行)与抛物线交于点E 、F ,直线BE 、BF 分别交y 轴于点P 、Q ,是否存在t 的值使得OP 与OQ 的积为定值?若存在,求t 的值,若不存在,请说明理由.13.抛物线y =ax 2+c (a <0)与x 轴交于A 、B 两点,顶点为C ,点P 在抛物线上,且位于x 轴上方.(1)如图1,若P (1,2),A (-3,0). ①求该抛物线的解析式;①若D 是抛物线上异于点P 一点,满足①DPO =①POB ,求点D 的坐标; (2)如图2,已知直线P A 、PB 与y 轴分别交于E 、F 两点.当点P 运动时,OE OFOC+是否为定值?若是,试求出该定值;若不是,请说明理由.14.如图1,直线y =ax ²+4ax +c 与x 轴交于点A (-6,0)和点B ,与y 轴交于点C ,且OC =3OB(1)直接写出抛物线的解析式及直线AC 的解析式;(2)抛物线的顶点为D ,F 为抛物线在第四象限的一点,直线AF 解析式为123y x =--,求①CAF -①CAD 的度数.(3)如图2,若点P 是抛物线上的一个动点,作PQ ①y 轴垂足为点Q ,直线PQ 交直线AC 于E ,再过点E 作x 轴的垂线垂足为R ,线段QR 最短时,点P 的坐标及QR 的最短长度.15.如图,在平面直角坐标系中,抛物线22y ax bx =++与x 轴交于1,0A ,()4,0B 两点,与y 轴交于点C .直线l :2y kx =+过点C .(1)求抛物线的解析式;(2)当直线l 经过点B 时,取线段BC 的中点M ,作直线l 的平行线,恰好与抛物线有一个交点P 时,判断以点P ,O ,M ,B 为顶点的四边形是什么特殊的平行四边形,并说明理由;(3)在直线l 上是否存在唯一一点Q ,使得90AQB ∠=︒?若存在,请求出此时l 的解析式;若不存在,请说明理由.参考答案:1.(1)24y x x =- ()2,4 (2)15(3)点D 的坐标为(7,21)或1313,39⎛⎫⎪⎝⎭;2.(1)233384y x x =--+,对称轴为直线=1x -(2)3342y x =-+或3342y x =-;(3)322222⎛⎫--- ⎪ ⎪⎝⎭,或12362262⎛⎫+--- ⎪ ⎪⎝⎭, 3.(1)213222y x x =-- (2)149n =(3)()3,2P - 134.(1)24y x x =-(2)()20,或()20-,5.(1)()1,0A -,()3,0B 和()0,3C - (2)()4,5D (3)23n m =-6.(1)-1;6 (2)①存在,5172+或5332+或5332-;①1317,66⎛⎫- ⎪⎝⎭;237,66⎛⎫- ⎪⎝⎭7.(1)222433y x x =-++(2)22655PN m m =-+,当32m =时,有最大值910(3)存在 74m =8.(1)233334y x x =-++和()2,43; (2)①MAB 为等边三角形 (3)①432,3⎛⎫ ⎪ ⎪⎝⎭;①12BF EG =.9.(1)二次函数的表达式为y =x 2﹣2x ﹣3,顶点D 的坐标为(1,﹣4) (2)2(3)﹣23<m <2(4)存在,点H 的坐标为:(65,185)或(95,185)10.(1)22y x x =-++(2)90ADC ∠=︒,点D 的坐标为11,22⎛⎫⎪⎝⎭(3)点P 的坐标为()1,2或15,24⎛⎫- ⎪⎝⎭11.(1)2=23y x x -- (2)点P 的坐标为()9,0 (3)点P 的坐标为()4,512.(1)234y x x =--+ (2)250,39⎛⎫- ⎪⎝⎭或266,525⎛⎫ ⎪⎝⎭(3)存在,4t =-13.(1)①21944y x =-+;①(-1,2)或(133,229-)(2)OE OFOC+是定值,定值为2.14.(1)抛物线的解析式为y =-12x ²-2x +6,直线BC 的解析式为y =x +6 (2)45°(3)点P 的坐标为(-2+10,3)或(-2-10,3),QR 的最短长度为3215.(1)215222y x x =-+;(2)菱形;(3)存在,122y x =-+或53224y x -+=+或53224y x --=+.。
二次函数专题复习

(5) y=2x2向左平移2个单位,再向下平移3个单位得到
函数解析式是 y=2(x+2)2-3。
(6)已知二次函数y=x2-4x-5 , 求下列问题
△PAB,求P的坐标;
(4)第(3)题改为在直线y= -x+3上是否存在 点坐P标,;使若S不△PA存C=在,12说S明△P理AB?由若。存答在案,一求样出吗点?P的
P
y
(0,3) C
A
Q
o
y
(0,3) CP
B(3,0) A
x
oQ
(B 3,0) x
再见
得的图象解析式是 y=3x2
。
4、已知二次函数y=a(x-h)2+k的图象过原点, 最小值是-8,且形状与抛物线y=0.5x2-3x-5的形
状相同,其解析式为 y=0.5(x-16。)2-8
5、若x为任意实数,则二次函数y=x2+2x+3的函
数值y的取值范围是 y≥2 。
6、抛物线y=2x2-4x-1是由抛物线y=2x2-bx+c向
1.已知一个二次函数的图象经过点 (0,0),(1,﹣3),(2,﹣8)。
2.已知二次函数的图象的顶点坐标为 (-2,-3),且图象过点(-3,-2)。
3.已知二次函数的图象的对称轴是直线x=3, 并且经过点(6,0),和(2,12)
4.矩形的周长为60,长为x,面积为y,则y关于
x的函数关系式
。
如何判别a、b、c、b2-4ac,2a+b,a+b+c的符 号
【中考数学几何模型】第二十二节:二次函数特殊平行四边形存在性问题

中考数学几何模型第二十二节:二次函数特殊平行四边形存在性问题422.二次函数正方形存在性问题(初三)在平面直角坐标系中,抛物线y =―13x 2+bx +c 交x 轴于A(―3,0),B(4,0)两点,交y 轴于点C .(1)求抛物线的表达式,(2)如图,直线y =34x +94与抛物线交于A,D 两点,与直线BC 交于点E .若M(m,0)是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当点F 在直线AD 上方的抛物线上,且S △EFG =59S △OFG 时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.423.二次函数面积最大值矩形存在性问题(初三)如图,在平面直角坐标系中,抛物线y =ax 2+2x +c(a ≠0)与x 轴交于点A 、B ,与y 轴交于点C ,连接BC,OA =1,对称轴为直线x =2,点D 为此拋物线的顶点.(1)求抛物线的解析式(2)抛物线上C 、D 两点之间的距离是_______(3)点E 是第一象限内抛物线上的动点,连接BE 和CE ,求△BCE 面积的最大值;(4)点P 在抛物线对称轴上,平面内存在点Q ,使以点B 、C 、P 、Q 为顶点的四边形为矩形,请直接写出点Q 的坐标.424.二次函数线段最大值相等角矩形存在性问题(初三)如图,抛物线y=ax2+bx+c与x轴交于点A(―1,0),点B(―3,0),且0O=OC.(1)求抛物线的解析式(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.①求DE的最大值②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.425.二次函数菱形存在性三角形相似存在性问题(初三)如图,已知直线y=―2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x 轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=―2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.426.二次函数菱形存在性问题(初三)如图,抛物线y=x2+2x―8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求A,B,C三点的坐标(2)连接AC,直线x=m(―4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)点M在y轴上,点N在直线AC上,点P为拋物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.427.二次函数菱形存在性问题三角形面积相等问题(初三)x2+2x―6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.如图,抛物线y=12(1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线1,交线段AC于点D.①试探究:在直线1上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;②设抛物线的对称轴与直线1交于点M,与直线AC交于点N.当S△DWN=S△AOC时,请直接写出DM的长.428.二次函数三角形面积最大值菱形存在性问题(初三)如图,在平面直角坐标系中,Rt△ABC的边BC在x轴上,∠ABC=90∘,以A为顶点的抛物线y=―x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.(1)求抛物线解析式;(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB 交AC于点D,过点D平行于y轴的直线1交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大?最大值是多少?(3)若点M是平面内的任意一点,在x轴上方是否存在点P,使得以点P,M,EC为顶点的四边形是菱形,若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.429.二次函数菱形存在性问题(初三)已知抛物线F:y=x2+bx+c的图象经过坐标原点0,且与x轴另一交点为(―33,0).(1)求抛物线F的解析式.x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2―y1的(2)如图1,直线1:y=33值(用含m的式子表示);,设点A′是点A关于原点0的对称点,如图2.(3)在(2)中,若m=43①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.430.二次函数线段最大值菱形存在性问题(初三)如图,二次函数y =x 2+bx +c 的图象交x 轴于点A(―3,0),B(1,0),交y 轴于点C .点P(m,0)是x 轴上的一动点,PM ⊥x 轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的表达式:(2)①若点P 仅在线段A0上运动,如图,求线段MN 的最大值;②若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M,N,C,Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.431.二次函数菱形存在性问题(初三)如图,一次函数y =33x ―3图象与坐标轴交于点A 、B ,二次函数y =33x 2+bx +c 图象过A 、B 两点.(1)求二次函数解析式(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.答案422【解】(1)∵抛物线y =―13x 2+bx +c 交x 轴于A(―3,0),B(4,0)两点,∴y =―13(x +3)(x ―4)=―13x 2+13x +4;(2)①如图1,∵B(4,0),C(0,4),∴设BC 的解析式为:y =kx +n,则{4k +n =0n =4,解得{k =―1n =4∴BC 的解析式为:y =―x +4,∴―x +4=34x +94,解得:x =1,∴E(1,3),∵M(m,0),且MH ⊥x 轴,∴G (m,34m +94),F (m,―13m 2+13m +4),∴FG =―13m 2+13m +4―(34m +94)=―13m 2―512m +74∵S △EFG =59S △OEG ,△EFG 和△OEG 的水平宽度相同,∴FG =59ON,∴―13m 2―512m +74=59×94解得:m 1=34,m 2=―2;②存在,由①知:E(1,3),且∠CBM =45∘∴过点E 作AB 的平行线,与抛物线的交点就是正方形EFHP 的顶点F.∴FH =EF,∠EFH =∠FHP =∠HPE =90∘,∵M(m,0),且MH ⊥x 轴,∴H(m,―m +4),F (m,―13m 2+13m +4),分两种情况:第一种情况:当―3⩽m <1时,如图1,点F 在EP 的左侧∴FH =(―m +4)―(―13m 2+13m +4)=13m 2―43m,∴13m 2―43m =1―m,解得:m 1=1+132(舍),m 2=1―132,∴H(1―132,7+132),∴P (1,7+132),第二种情况:当1<m <4时,点F 在PE 的右边,如图2,同理得―13m 2+43m =m ―1,解得:m 1=1+132,m 2=1―132(舍),同理得P (1,7―132);综上,点P 的坐标为:(1,7+132)或(1,7―132).423【解】(1)∵OA =1,∴A(―1,0),又∵对称轴为x =2,∴B(5,0),将A,B 代入解析式得:{0=a ―2+c0=25a +10+c ,解得{a =―12c =52,∴y =―12x 2+2x +52(2)由(1)得:C (0,52),D (2,92),∴由两点距离公式可得:CD =22,故答案为22;(3)∵B(5,0),C (0,52),∴直线BC 的解析式为:y =―12x +52,设E (x,―12x 2+2x +52),且0<x <5,如图,作EF ⊥x 轴交BC 于点F,则F (x,―12x +52),∴EF =―12x 2+2x +52―(―12x +52)=―12x 2+52x,S △BCE =12×EF ×BO =12×(―12x 2+52x )×5=―54(x ―52)2+12516当x =52时,S △BCE 有最大值为12516;(4).设P(2,y),Q(m,n),由(1)知B(5,0),C (0,52),分三种情况讨论:①若BC 为矩形的对角线,由中点坐标公式得:{5+0=2+m 0+52=y +n ,解得:{m =3n =52―y ,又∵∠BPC =90∘,∴PC 2+PB 2=BC 2,即:22+(52―y )2+32+y 2=52+(52)2,解得y =4或y =―32,∴n =―32或n =4,∴Q (3,―32)或Q(3,4),②若BP 为矩形的对角线,由中点坐标公式得{5+2=0+m 0+y =52+n ,解得:{m =7n =y ―52,又∵∠BCP =90∘,BC 2+CP 2=BP 2即:52+(52)2+22+(52―y )2=32+y 2,解得y =132,∴Q(7,4),③若BQ 为矩形的对角线,由中点坐标公式得:{5+m =2+00+n =y +52,解得:{m =―3n =y +52,又∵∠BCQ =90∘,∴BC 2+CQ 2=BQ 2,即:52+(52)2+m 2+(52―n )2=(5―m)2+n 2,解得n =―72,∴Q (―3,―72),综上,点Q 的坐标为(3,―32)或(3,4),或(7,4)或(―3,―72).解法二,也可以构造利用一线三等角三角形相似来解决。
二次函数的图像和性质 复习课教案

yxOyx O二次函数的图像和性质复习课(一)一、复习目标1.掌握并理解二次函数的性质。
2.会用二次函数的性质解决相关的问题。
二、复习重、难点重点:二次函数的性质及应用。
难点:综合应用二次函数的性质解题。
三、课前准备重点知识扫描1.二次函数的定义:形如 (a 、b 、c 为常数,a )的函数是二次函数。
2.二次函数的图像:它是一条 ,图像是 对称图形。
3.二次函数的图像和性质4.求二次函数的解析式的方法(1)若知道抛物线上任意三个点的坐标,则设为一般式: , (2)若知道抛物线的顶点坐标(h , k ),则设为顶点式: ,二次函数顶点式: )0()(2≠+-=a k h x a y一般式:)0(2≠++=a c bx ax y图 象a >0a <0 a >0a <0开 口对称轴 直线 x = 直线 x = 顶点坐标( , )( , )最 值当x = 时,=最小y当x = 时,=最大y当x = 时,=最小y当x = 时,=最大y增减性当x 时y 随x 的增大而减小;当x 时y 随x 的增大而增大。
当x 时y 随x 的增大而增大; 当x 时y 随x 的增大而减小。
当x 时y 随x 的增大而减小; 当x 时y 随x 的增大而增大。
当x 时y 随x 的增大而增大; 当x 时y 随x 的增大而减小。
(3)若知道抛物线与x 轴的两个交点的坐标(1x ,0),(2x ,0),则设为交点式:)0)()((21≠--=a x x x x a y5.抛物线的平移6.二次函数)0(2≠++=a c bx ax y 的图像特征与系数a 、b 、c 及ac b 42-的关系项目字母字母符号 图像特征 aa >0 开口向上 a <0开口向下 bb=0对称轴是y 轴a 、b 同号 对称轴在y 轴左侧 左同 右异a 、b 异号对称轴在y 轴右侧cc=0 经过原点 c >0 与y 轴的正半轴相交 c <0与y 轴的负半轴相交 ac b 42-ac b 42-=0与x 轴有唯一交点(顶点)ac b 42->0与x 轴有两个交点 ac b 42-<0与x 轴有没有交点四、考点剖析考点1:二次函数的定义例1.下列函数是二次函数的有( )12)5(;)4();3()3(;2)2(;1)1(222+=++=-==-=x y c bx ax y x x y xy x y A 、1个; B 、2个; C 、3个; D 、4个考点2:二次函数的图像和性质的应用例2.已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x -1)2+m 的图象上,若x 1>x 2>1,则y 1 y 2考点3:二次函数图像的平移例3.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )(A)23(1)2y x =-- (B)23(1)2y x =+- (C )23(1)2y x =++ (D )23(1)2y x =-+ 考点4:二次函数的图像与系数关系例4.如图为二次函数y=ax 2+bx+c (a≠0)的图象,则下列说法:①b c >0 ②2a+b=0 ③a+b+c>0 ④ac b 42-﹤0其中正确的个数为( )A .1B .2C .3D .4 考点5:求二次函数的解析式例5.一条抛物线经过(-2,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式.五、变式训练1.二次函数22(1)3y x =-+的图象的最低点的坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)2.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .3.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是 。
中考数学总复习《二次函数中的平行四边形存在性问题》专题训练-附答案

中考数学总复习《二次函数中的平行四边形存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,三角形ABC 是以BC 为底边的等腰三角形,点A 、C 分别是一次函数334y x =-+的图象与y 轴、x 轴的交点,点B 在二次函数218y x bx c =++的图象上,且该二次函数图象上存在一点D 使四边形ABCD 能构成平行四边形.(1)求B 、D 坐标,并写出该二次函数表达式;(2)动点P 从A 到D ,同时动点Q 从C 到A 都以每秒1个单位的速度运动,问: ①当P 运动到何处时,有PQ AC ⊥?②当P 运动到何处时,四边形PDCQ 的面积最小?此时四边形PDCQ 的面积是多少?2.如图,二次函数()24y x =+的图象与x 轴交于点A ,与y 轴交于点B .(1)求抛物线的对称轴;(2)在平面直角坐标系内是否存在一点P ,使以P 、A 、O 、B 为顶点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.3.如图,二次函数()24y x =+的图象与x 轴交于点A ,与y 轴交于点B .(1)求点A B 、的坐标; (2)求抛物线的对称轴;(3)平面内是否存在一点P ,使以P A O B 、、、为顶点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.4.如图,已知二次函数2y x bx c =-++的图像交x 轴于点()10A -,和()50B ,,交y 轴于点C .(1)求这个二次函数的表达式;(2)如图1,点M 从点B 出发,以每秒2个单位长度的速度沿线段BC 向点C 运动,点N 从点O 出发,以每秒1个单位长度的速度沿线段OB 向点B 运动,点M ,N 同时出发.设运动时间为t 秒()05t <<.当t 为何值时,BMN 的面积最大?最大面积是多少?(3)已知P 是抛物线上一点,在直线BC 上是否存在点Q ,使以A ,C ,P ,Q 为顶点的四边形是平行四边形?若存在,求点Q 坐标;若不存在,请说明理由. 5.已知二次函数213442y x x =--与x 数轴交于点A 、B (A 在B 的左侧),与y 轴交于点C ,连接BC . 发现:点A 的坐标为__________,求出直线BC 的解析式;拓展:如图1,点P 是直线BC 下方抛物线上一点,连接PB 、PC ,当PBC 面积最大时,求出P 点的坐标; 探究:如图2,抛物线顶点为D ,抛物线对称轴交BC 于点E ,M 是线段BC 上一动点(M 不与B 、C 两点重合),连接PM ,设M 点的横坐标为()08<<m m ,当m 为何值时,四边形PMED 为平行四边形?6.解答题如图,在平面直角坐标系中,二次函数24y ax bx =+-的图像交坐标轴于()1,0A -、()4,0B 两点,点P 是抛物线上的一个动点.(1)求这个二次函数的解析式;(2)若点P 在直线BC 下方,P 运动到什么位置时,四边形PBOC 面积最大?求出此时点P 的坐标和四边形PBOC 的最大面积;(3)直线BC 上是否存在一点Q ,使得以点A B P Q 、、、组成的四边形是平行四边形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.7.如图,二次函数23y ax bx =++的图象与x 轴交于点()30A -,和()4,0B ,点A 在点B 的左侧,与y 轴交于点C .(1)求二次函数的函数解析式;(2)如图,点P 在直线BC 上方的抛物线上运动,过点P 作PD AC ∥交BC 于点D ,作PE x ⊥轴交BC 于点E ,求724PD PE +的最大值及此时点P 的坐标;(3)在(2)中724PD PE +取最大值的条件下,将抛物线沿水平方向向右平移4个单位,再沿竖直方向向上平移3个单位,点Q 为点P 的对应点,平移后的抛物线与y 轴交于点G ,M 为平移后的抛物线的对称轴上一点,在平移后的抛物线上确定一点N ,使得以点Q 、G 、M 、N 为顶点的叫边形是平行四边形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程. 8.如图,二次函数234y x bx c =++的图象与x 轴交于点A 和B ,点B 的坐标是(4,0),与y 轴交于点C (0,-3),点D 在抛物线上运动.(1)求抛物线的表达式;(2)当点E 在x 轴上运动时,探究以点B ,C ,D ,E 为顶点的四边形是平行四边形,并直接写出点E 的坐标. 9.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于(30)A -,,()1,0B 两点,与y 轴交于点C .(1)求这个二次函数的解析式;(2)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A 、C 、M 、Q ,为顶点的四边形是平行四边形?若存在,直接写出M 的坐标;若不存在,说明理由. 10.如图,直线122y x =+分别与x 轴、y 轴交于C ,D 两点,二次函数2y x bx c =-++的图像经过点D ,与直线相交于点E ,且:4:3CD DE =.(1)求点E 的坐标和二次函数表达式. (2)过点D 的直线交x 轴于点M .①当DM 与x 轴的夹角等于2DCO ∠时,请直接写出点M 的坐标;①当DM CD ⊥时,过抛物线上一动点P (不与点D ,E 重合),作DM 的平行线交直线CD 于点Q ,若以D ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标.11.如图,在平面直角坐标系中,二次函数的图像交坐标轴于()()1,04,0A B C -、、三点,且OB OC =,点P 是抛物线上的一个动点.(1)求这个二次函数的解析式;(2)若点P 在直线BC 下方,P 运动到什么位置时,四边形PBOC 面积最大?求出此时点P 的坐标和四边形PBOC 的最大面积;(3)直线BC 上是否存在一点Q ,使得以点A B P Q 、、、组成的四边形是平行四边形?若存在,求出点Q 的坐标;若不存在,请说明理由.12.已知二次函数220y ax x c a =++≠()的图像与x 轴交于10()A B 、,两点,与y 轴交于点(03)C -,.(1)求二次函数的表达式;(2)D 是二次函数图像上位于第三象限内的点,求ACD 的面积最大时点D 的坐标;(3)M 是二次函数图像对称轴上的点,在二次函数图像上是否存在点N ,使以M N B O 、、、为顶点的四边形是平行四边形?若有,请写出点N 的坐标.(不写求解过程)13.在平面直角坐标系中,二次函数22y ax bx =++的图像与x 轴交于()()3,0,1,0A B -两点,与y 轴交于点C . (1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △面积最大时,求出点P 的坐标;(3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A C M Q 、、、为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.14.如图1,二次函数2y ax bx =+的图像过点A (-1,3),顶点B 的横坐标为1.(1)求二次函数的解析式;(2)点P 为二次函数第一象限图象上一点,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标;(3)如图3,一次函数y kx =(k >0)的图象与该二次函数的图像交于O 、C 两点,点T 为该二次函数图像上位于直线OC 下方的动点,过点T 作直线1:l y x b k=-+交线段OC 于点M (不与O 、C 重合),过点T 作直线TN //y 轴交OC 于点N ,若在点T 运动的过程中,2ON OM =常数m ,求m 、k 的值. 15.如图,在平面直角坐标系中,二次函数214y x bx c =-++的图象与坐标轴交于、、A B C 三点,其中点A的坐标为()0,8,点B 的坐标为()4,0-.(1)求该二次函数的表达式及点C 的坐标;(2)点D 为该二次函数在第一象限内图象上的动点,连接AC CD 、,以AC CD 、为邻边作平行四边形ACDE ,设平行四边形ACDE 的面积为.S ①求S 的最大值;①当S 取最大值时,Р为该二次函数对称轴上--点,当点D 关于直线CP 的对称点E 落在y 轴上时,求点Р的坐标.参考答案1.【答案】(1)()4,0B - ()8,3D 211384y x x =--(2)当点P 运动到距离点52A 个单位处时,四边形PDCQ 面积最小,最小值为8182.【答案】(1)4x =-(2)()4,16或()4,16--或()4,16-3.【答案】(1)()4,0A - ()0,16B (2)4x =-(3)()4,16或()4,16-或()4,16--. 4.【答案】(1)245y x x =-++(2)当52t =时,BMN 的面积最大,最大面积是258(3)存在,Q 的坐标为()712-,或()72-,或()14,或()23, 5.【答案】发现:()2,0-,直线BC 的解析式为1y x 42=-;拓展:()4,6P -;探究:当5m =时,四边形PMED 为平行四边形6.【答案】(1)234y x x =--(2)当P 点坐标为(2,6)-时,16(3)Q 的坐标为(2,6)--或(10,6)7.【答案】(1)211344y x x =-++(2)724PD PE +的最大值为12,此时522⎛⎫ ⎪⎝⎭,(3)1611632N ⎛⎫ ⎪⎝⎭, 2471632N ⎛⎫-- ⎪⎝⎭,32147216N ⎛⎫- ⎪⎝⎭,.8.【答案】(1)239344y x x =--(2)(1,0)或(7,0)或41502⎛⎫+- ⎪ ⎪⎝⎭,或41502⎛⎫- ⎪ ⎪⎝⎭, 9.【答案】(1)224233y x x =--+(2)存在,点M 的坐标为(2,2)-或---,(172)或(17,2)-+-10.【答案】(1)2722y x x =-++(2)①302⎛⎫- ⎪⎝⎭,或302⎛⎫⎪⎝⎭,;①3192-或3192+ 11.【答案】(1)234y x x =--(2)(2,6)P -,四边形PBOC 的最大面积为16(3)存在,Q 的坐标为(2,6)--或(10,6) 12.【答案】(1)223y x x =+-(2)315(,)24D --(3)存在,点N 的坐标为(2,5)或(0,3)-或(2,3)--13.【答案】(1)224233y x x =--+;(2)35(,)22P -(3)存在 12(1,0),(5,0)Q Q -- 34(27,0),(27,0)+-Q Q .14.【答案】(1)22y x x =-;(2)点P 的坐标(15,4)+或(13,2)+;(3)554m =12k =.15.【答案】(1)y =-14x 2+x +8,C 点坐标为(8,0);(2)①32;①P (2,2)或(2,6)。
中考数学总复习《二次函数与菱形存在性问题》专题训练-附答案

中考数学总复习《二次函数与菱形存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.综合与探究:如图,在平面直角坐标系中,二次函数228y x x =--的图像与x 轴交于A ,B 两点,点A 在点B 的左侧,与y 轴交于点C ,点P 是直线BC 下方抛物线上的一个动点.(1)求点A ,B ,C 的坐标;(2)连接PO ,PC ,并将POC △沿y 轴对折,得到四边形POP C '.是否存在点P ,使四边形POP C '为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时点P 的坐标和四边形ABPC 的最大面积. 2.如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为()3,0,与y 轴交于()0,3C -点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO 、PC ,并把POC △沿CO 翻折,得到四边形POP C ',那么是否存在点P ,使四边形POP C '为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积. 3.如图,一次函数3y x =-+的图像与x 轴和y 轴分别交于点B 和点C ,二次函数2y x bx c =-++的图像经过B ,C 两点,并与x 轴交于点A .点()m 0M ,是线段OB 上一个动点(不与点O 、B 重合),过点M 作x 轴的垂线,分别与二次函数图像和直线BC 相交于点D 和点E ,连接CD .(1)求这个二次函数的解析式;(2)点F 是平面内一点,是否存在以C ,D ,E ,F 为顶点的四边形为菱形?若存在,请求出点M 的坐标;若不存在,请说明理由.4.如图,已知二次函数2y ax 2x c =++的图象经过点(03)C ,,与x 轴分别交于点A ,点(30)B ,.点P 是直线BC 上方的抛物线上一动点.(1)求二次函数2y ax 2x c =++的表达式;(2)连接PO PC ,,并把POC △沿y 轴翻折,得到四边形POP C '.若四边形POP C '为菱形,请求出此时点P 的坐标;(3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积. 5.如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于A B 、两点,B 点的坐标为()3,0,与y 轴交于点()0,3C -,点P 是直线BC 下方抛物线上的任意一点.(1)求这个二次函数2y x bx c =++的解析式;(2)如果点P 在运动过程中,能使得以P C B 、、为顶点的三角形面积最大,请求出此时点P 的坐标; (3)连接,PO PC ,并将POC △沿y 轴对折,得到四边形POP C ',如果四边形POP C '为菱形,求点P 的坐标. 6.二次函数2(0)y ax bx c a =++≠经过点(0,2)A ,(1,0)B -和(4,0)C .(1)求该二次函数的解析式; (2)设点D 的横坐标为302m m ⎛⎫<<⎪⎝⎭,过点D 作DE y ∥轴交直线AC 于点E ,DG x ∥轴交对称轴于点G ,以DG 、DE 为边构造矩形DEFG ,当矩形DEFG 的周长最大时,求点D 的坐标;(3)将抛物线向右平移1个单位,向上平移2个单位后得到新抛物线y ',y '与直线2x =交于点M ,点N 为平移后抛物线y '对称轴上一点,点Q 为平面内任意一点.在第(2)问条件下,当点D 、M 、N 、Q 构成的四边形为菱形时,直接写出点Q 的坐标.7.在平面直角坐标系中,已知点A 在y 轴正半轴上,如果四个点()0,0、()0,2和()1,1、()1,1-中恰有三个点在二次函数2y ax =(a 为常数且0a ≠)的图象上.(1)直接写出a 的值;(2)如图1,点P 、Q 在二次函数图象上,且在y 轴异侧,连接PQ 交y 轴于点()0,4A ,46POQ S =△设点P 、Q 的横坐标1x ,2x (12x x <)为一元二次方程220x mx m -+=的两个根,求m 的值;(3)如图2,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且AD y ⊥轴,求菱形的边长.8.综合与探究如图,已知二次函数()220y ax bx a =++≠的图像与x 轴交于1,0A ,B 两点,与y 轴交于点C ,直线122y x =-+经过B ,C 两点 (1)求二次函数的解析式;(2)点P 是线段 BC 上一个动点,过点P 作x 轴的垂线于点Q ,交抛物线于点D ,当点Q 是线段PD 的中点时,求点P 的坐标;(3)在(2)的条件下,若点M 是直线BC 上一点,N 是平面内一点,当以P ,D ,M ,N 为顶点的四边形是菱形时,请直接写出点N 的坐标.9.综合与探究如图,二次函数23y ax bx =++与x 轴相交于点(2,0)A -和点(4,0)B ,与y 轴相交于点C ;连接BC ,点P 为BC 上方抛物线上的一个动点,过点P 作PE BC ⊥于点E .(1)求抛物线的表达式(2)设点P 的横坐标为m (04)m <<,试用含m 的代数式表示线段PE 的长;并求出PE 长度的最大值. (3)连接AC ,点M 是x 轴上的一个动点,点N 是平面内任意一点;是否存在这样的点M 、N ,使得以A 、C 、M 、N 为顶点的四边形为菱形.若存在,请直接写出点N 的坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,﹣3)点,点P 是直线BC 下方的抛物线上一动点. (1)分别求出图中直线和抛物线的函数表达式;(2)连接PO 、PC ,并把△POC 沿C O 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.11.在平面直角坐标系中,二次函数223432333y x x =--的图像与x 轴交于,A B 两点,与y 轴交于点C ,连接,AC BC .(1)求,A B 两点坐标及直线BC 的解析式;(2)点P 是直线BC 下方抛物线上一点,当BPC ∆面积最大时,在x 轴下方找一点Q ,使得2AQ BQ PQ ++最小,记这个最小值是d ,请直接写出此时点P 的坐标及2d .(3)在(2)的条件下,连接AP 交y 轴于点R ,将抛物线沿射线PA 平移,平移后的抛物线记为'y , 当'y 经过点A 时,将抛物线'y 位于x 轴下方部分沿x 轴翻折,翻折后所得的曲线记为N ,点'D 为曲 线N 的顶点,将AOP ∆沿直线AP 平移,得到'''A O P ∆,在平面内是否存在点T ,使以点',,',T D R O 为顶点的四边形为菱形?若存在,请直接写出'O 的横坐标;若不存在,请说明理由.12.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边)(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明); (3)抛物线1L ,2L 均会分别经过某些定点; △求所有定点的坐标;△若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?13.在平面直角坐标系xOy 中,已知点A 在y 轴正半轴上.(1)如果四个点()()()()0,00,21,11,1-、、、中恰有三个点在二次函数2y ax =(a 为常数,且0a ≠)的图象上. △=a ________;△如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且AD y ⊥轴,求菱形的边长; △如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点B 、D 在y 轴的同侧,且点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,试探究n m -是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD 的顶点B 、D 在二次函数2y ax =(a 为常数,且0a >)的图象上,点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,直接写出m 、n 满足的等量关系式. 14.综合与探究如图,二次函数24y ax bx =++的图像经过x 轴上的点()6,0A 和y 轴上的点B ,且对称轴为直线72x =.(1)求二次函数的解析式.(2)点E 位于抛物线第四象限内的图像上,以OE ,AE 为边作平行四边形OEAF .当平行四边形OEAF 为菱形时,求点F 的坐标与菱形OEAF 的面积.(3)连接AB ,在直线AB 上是否存在一点P ,使得AOP 与AOB 相似,若存在,请直接写出点P 坐标,若不存在,请说明理由.15.如图,在平面直角坐标系中,O 为坐标原点,一次函数21y x =--与y 轴交于点A ,若点A 关于x 轴的对称点D 在一次函数12y x b =+的图象上.(1)求b 的值;(2)若一次函数21y x =--与一次函数y x =-交于B ,且点B 关于原点的对称点为点C .求过A ,B ,C 三点对应的二次函数表达式;(3)P 为抛物线上一点,它关于原点的对称点为点Q . △当四边形PBQC 为菱形时,求点P 的坐标;△若点P 的横坐标为()11t t -<<,当t 为何值时,四边形PBQC 的面积最大?请说明理由.参考答案:1.(1)(2,0)- (4,0) (0,8)- (2)存在,(15,4)+- (3)(2,8)-,322.(1)2=23y x x -- (2)存在 2103,22⎛⎫+- ⎪ ⎪⎝⎭(3)P 点的坐标为315,24⎛⎫- ⎪⎝⎭,四边形ABPC 的面积的最大值为7583.(1)223y x x =-++;(2)存在,点M 的坐标为()1,0或()2,0或()32,0-.4.(1)223y x x =-++ (2)点P 的坐标为53122, (3)点P 的坐标315,24⎛⎫ ⎪⎝⎭,四边形ACPB 面积的最大值为7585.(1)2=23y x x --;(2)BPC △的面积最大时,P 点的坐标为31524⎛⎫- ⎪⎝⎭,;(3)P 点的坐标为210322⎛⎫+- ⎪ ⎪⎝⎭,.6.(1)213222y x x =-++;(2)()1,3;(3)点Q 的坐标为19,22⎛⎫ ⎪⎝⎭或3619,22⎛⎫+ ⎪ ⎪⎝⎭或3619,22⎛⎫- ⎪ ⎪⎝⎭7.(1)1a =; (2)2m =- (3)2338.(1)215222y x x =-+;(2)P (2,1);(3)4225,1555N ⎛⎫--+ ⎪⎝⎭422+5,1555N ⎛⎫-- ⎪⎝⎭ ()0,0N 1811,55N ⎛⎫⎪⎝⎭9.(1)233384y x x =-++;(2)236 105PE m m =-+,最大值为65;(3)存在点M 、N ,使得以A 、C 、M 、N 为顶点的四边形为菱形.点N 的坐标有4个,分别为:()13,3- ()13,3 (0,3)- 13,34⎛⎫- ⎪⎝⎭10.(1)y =x ﹣3,y =x 2﹣2x ﹣3.(2)存在,点P 2103,22⎛⎫+- ⎪ ⎪⎝⎭11.(1)A (−1,0),B (3,0) 23233yx ;(2)P (32,532-),d 2=46203+;(3)'O 的横坐标为:512-或512--或920112或920112或115.12.(1)()1,41m --+ 13x -<<;(2)四边形AMDN 是矩形;(3)△所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或1,1;△抛物线2L 应平移的距离是423+或423-. 13.(1)△1;△233;△是,值为1 (2)()1a n m -=或0m n += 14.(1)2214433y x x =-+ (2)(3,4)F ;菱形OEAF 的面积为24(3)存在,点P 坐标为(0,4)或2436,1313⎛⎫⎪⎝⎭15.(1)1b = (2)21y x x =--(3)△()12,12--或()12,12++;△当0=t 时,四边形PBQC 的面积最大。
2024年中考数学复习专题+课件 二次函数的实际应用

2.(2023·滨州)如图,要修一个圆形喷水池,在池中心竖直安装一根水 管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水 平距离为 1 m 处达到最高,高度为 3 m,水柱落地处离池中心 3 m,水管 长度应为 22..225 5 m.
3.(2023·十堰)“端午节”吃粽子是中国传统习俗,在“端午节”来临 前,某超市购进一种品牌粽子,每盒进价是 40 元,并规定每盒售价不得 少于 50 元,日销售量不低于 350 盒,根据以往销售经验发现,当每盒售 价定为 50 元时,日销售量为 500 盒,每盒售价每提高 1 元,日销售量减 少 10 盒,设每盒售价为 x 元,日销售量为 p 盒. (1)当 x=60 时,p=44000 0; (2)当每盒售价定为多少元时,日销售利润 W(单位:元)最大?最大利润 是多少? (3)小强说:“当日销售利润最大时,日销售额不是最大,”小红说:“当 日销售利润不低于 8 000 元时,每盒售价 x 范围为 60≤x≤80.”你认为 他们的说法正确吗?若正确,请说明理由;若不正确,请直接写出正确 的结论.
(2)∵OA=3 m,CA=2 m,∴OC=5 m, 选择扣球,则令 y=0,即-0.4x+2.8=0, 解得 x=7, ∴落地点到 C 点的距离为 7-5=2 m, 选择吊球,则令 y=0,即-0.4(x-1)2+3.2=0, 解得 x=±2 2+1(负值舍去), ∴落地点到 C 点的距离为 5-(2 2+1)=(4-2 2)m, ∵4-2 2<2,
又∵50≤x≤65,∴当日销售利润不低于 8 000 元时,每盒售价 x 的范围
为 60≤x≤65.
4.(2023·朝阳)某超市以每件 10 元的价格购进一种文具,销售时该文
具的销售单价不低于进价且不高于 19 元.经过市场调查发现,该文具的
中考数学重点专题复习 考点11 二次函数-备战2022年中考数学必考点与题型全归纳(原卷版)

考点11 二次函数二次函数是非常重要的函数,年年都会考查,总分值为18~20分,预计2022年各地中考还会考,它经常以一个压轴题独立出现,有的地区也会考察二次函数的应用题,小题的考察主要是二次函数的图象和性质及或与几何图形结合来考查。
1、二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2、二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0. 3、二次函数的图象及性质解析式 二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴 x =–2ba 顶点 (–2b a ,244ac b a-)a 的符号a >0a<0图象开口方向 开口向上 开口向下最值 当x =–2b a 时,y 最小值=244ac b a- 当x =–2b a 时,y 最大值=244ac b a- 最点抛物线有最低点抛物线有最高点增减性当x <–2ba 时,y 随x 的增大而减小;当x >–2b a 时,y 随x 的增大而增大当x <–2ba 时,y 随x 的增大而增大;当x >–2b a时,y 随x 的增大而减小4二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.5、二次函数与一元二次方程的关系1)二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了一元二次方程ax 2+bx +c =0(a ≠0). 2)ax 2+bx +c =0(a ≠0)的解是抛物线y =ax 2+bx +c (a ≠0)的图象与x 轴交点的横坐标. 3)(1)b 2–4ac >0⇔方程有两个不相等的实数根,抛物线与x 轴有两个交点; (2)b 2–4ac =0⇔方程有两个相等的实数根,抛物线与x 轴有且只有一个交点; (3)b 2–4ac <0⇔方程没有实数根,抛物线与x 轴没有交点. 6、二次函数的综合 1)函数存在性问题解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在. 2)函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案. (3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.考向1 二次函数的有关概念1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零. 2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.3.二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.1.(2021·甘肃兰州·中考真题)二次函数222=++y x x 的图象的对称轴是( ) A .1x =- B .2x =- C .1x = D .2x =2.(2021·浙江中考真题)如图,已知经过原点的抛物线与轴交于另一点A (2,0). (1)求的值和抛物线顶点的坐标;(2)求直线的解析式.1.(2020·江苏无锡·中考真题)请写出一个函数表达式,使其图象的对称轴为y 轴:__________.2.(2021·安徽·淮北市中考模拟)若221()3m y m m x x +=+-+是关于x 的二次函数,则m =_______.考向2 二次函数的图象二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.1.(2021·湖北襄阳市·中考真题)一次函数y ax b =+的图象如图所示,则二次函数2y ax bx =+的图象可能是( )A .B .C .D .2.(2021·江西中考真题)在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是( )A .B .C .D .1.(2021·山东聊城市·中考真题)已知二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +c 的图象和反比例函数y =的图象在同一坐标系中大致为() 22y x mx =+x m MAM 2y ax =y bx c =+2y ax bx c =++a b cx++A.B.C.D.2.(2021·湖北黄冈市·中考真题)如图,为矩形的对角线,已知,.点P沿折线以每秒1个单位长度的速度运动(运动到D点停止),过点P作于点E,则的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.考向3 二次函数的图象与字母系数的关系1.(2021·山东日照·中考真题)抛物线()20y ax bx c a=++≠的对称轴是直线1x=-,其图象如图所示.下列结论:①0abc<;②()()2242a c b+<;③若()11,x y和()22,x y是抛物线上的两点,则当1211x x+>+时,12y y<;④抛物线的顶点坐标为()1,m-,则关于x的方程21ax bx c m++=-无实数根.其中正确结论的个数是()A.4B.3C.2D.12.(2021·四川遂宁市·中考真题)已知二次函数2(0)y ax bx c a=++≠的图象如图所示,有下列5个结论:①0abc>;②24b ac<;③23c b<;④2()a b m am b+>+(1m≠);⑤若方程2ax bx c++=1有四个根,则这四个根的和为2,其中正确的结论有()A.2个B.3个C.4个D.5个1.(2021·湖北恩施土家族苗族自治州·中考真题)如图,已知二次函数的图象与轴交于,顶点是,则以下结论:①;②;③若,则或;④.其中正确的有()个.A.1 B.2 C.3 D.42.(2021·黑龙江齐齐哈尔市·中考真题)如图,二次函数2(0)y ax bx c a=++≠图象的一部分与x轴的一个交点坐标为()1,0,对称轴为1x=-,结合图象给出下列结论:①0a b c++=;②20a b c-+<;③关于x的一元二次方程20(a0)++=≠ax bx c的两根分别为-3和1;④若点()14,y-,()22,y-,()33,y均在二次函数图象上,则123y y y<<;⑤()a b m am b-<+(m为任意实数).其中正确的结论有()A.1个B.2个C.3个D.4个考向4 二次函数的性质二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.AC ABCD3AD=4CD=C A D--PE BC⊥CPE△2y ax bx c=++x()3,0-()1,m-0abc>420a b c++>y c≥2x-≤0x≥12b c m+=1.(2021·内蒙古赤峰市·中考真题)已知抛物线2上的部分点的横坐标x 与纵坐标y 的对应值如表:x … -1 0 1 2 3 … y…3-1m3…A .抛物线2y ax bx c =++的开口向下B .当3x <时,y 随x 增大而增大C .方程20ax bx c ++=的根为0和2D .当0y >时,x 的取值范围是02x <<2.(2021·山东菏泽市·中考真题)定义:[],,a b c 为二次函数2y ax bx c =++(0a ≠)的特征数,下面给出特征数为[],1,2m m m --的二次函数的一些结论:①当1m =时,函数图象的对称轴是y 轴;②当2m =时,函数图象过原点;③当0m >时,函数有最小值;④如果0m <,当12x >时,y 随x 的增大而减小,其中所有正确结论的序号是______.3.(2021·北京中考真题)在平面直角坐标系中,点和点在抛物线上.(1)若,求该抛物线的对称轴;(2)已知点在该抛物线上.若,比较的大小,并说明理由.1.(2021·江苏泰州市·中考真题)在函数2(1)y x =-中,当x >1时,y 随x 的增大而 ___.(填“增大”或“减小”) 2.(2021·山东中考真题)在直角坐标系中,若三点A (1,﹣2),B (2,﹣2),C (2,0)中恰有两点在抛物线y =ax 2+bx ﹣2(a >0且a ,b 均为常数)的图象上,则下列结论正确是_______.A .抛物线的对称轴是直线12x = B .抛物线与x 轴的交点坐标是(﹣12,0)和(2,0)C .当t >94-时,关于x 的一元二次方程ax 2+bx ﹣2=t 有两个不相等的实数根 D .若P (m ,n )和Q (m +4,h )都是抛物线上的点且n <0,则0h > .3.(2021·浙江嘉兴市·中考真题)已知二次函数. (1)求二次函数图象的顶点坐标;(2)当时,函数的最大值和最小值分别为多少? (3)当时,函数的最大值为,最小值为,m -n=3求的值.考向5 二次函数的平移1.抛物线在平移的过程中,a 的值不发生变化,变化的只是顶点的位置,且与平移方向有关. 2.涉及抛物线的平移时,首先将表达式转化为顶点式y =a (x –h )2+k 的形式.3.抛物线的移动主要看顶点的移动,y =ax 2的顶点是(0,0),y =a (x –h )2+k 的顶点是(h ,k ). 4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移.1.(2021·山西中考真题)抛物线的函数表达式为()2321y x =-+,若将x 轴向上平移2个单位长度,将y 轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )A .()2313y x =++B .()2353y x =-+ C .()2351y x =--D .()2311y x =+-2.(2021·江苏盐城市·中考真题)已知抛物线经过点和.(1)求、的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.xOy ()1,m ()3n ,()20y ax bx a =+>3,15m n ==()()()1231,,2,,4,y y y -0mn <123,,y y y 265y x x =-+-14x ≤≤3t x t +≤≤m n t 2(1)y a x h =-+(0,3)-(3,0)a h1.(2021·江苏苏州市·中考真题)已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( ) A .5-或2 B .5- C .2 D .2- 2.(2021·西藏·中考真题)将抛物线y =(x ﹣1)2+2向左平移3个单位长度,再向下平移4个单位长度所得到的抛物线的解析式为( ) A .y =x 2﹣8x +22 B .y =x 2﹣8x +14 C .y =x 2+4x +10 D .y =x 2+4x +2考向6 二次函数与一元二次方程、不等式的综合抛物线y =ax 2+bx +c (a ≠0)与x 轴的交点个数及相应的一元二次方程根的情况都由Δ=b 2–4ac 决定.1.当Δ>0,即抛物线与x 轴有两个交点时,方程ax 2+bx +c =0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.2.当Δ=0,即抛物线与x 轴有一个交点(即顶点)时,方程ax 2+bx +c =0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.3.当Δ<0,即抛物线与x 轴无交点时,方程ax 2+bx +c =0无实数根,此时抛物线在x 轴的上方(a >0时)或在x 轴的下方(a <0时).1.(2021·山东淄博市·中考真题)对于任意实数a ,抛物线22y x ax a b =+++与x 轴都有公共点.则b 的取值范围是_______.2.(2021·广西贺州市·中考真题)如图,已知抛物线2y ax c =+与直线y kx m =+交于1(3,)A y -,2(1,)B y 两点,则关于x 的不等式2ax c kx m +≥-+的解集是( )A .3x ≤-或1≥xB .1x ≤-或3x ≥C .31x -≤≤D .13x -≤≤3.(2021·湖北宜昌市·中考真题)在平面直角坐标系中,抛物线()()14y x x n =-+-与x 轴交于点A 和点()(),04B n n ≥-,顶点坐标记为()11,h k .抛物线()222229y x n n n =-+-++的顶点坐标记为()22,h k .(1)写出A 点坐标;(2)求1k ,2k 的值(用含n 的代数式表示);(3)当44n -≤≤时,探究1k 与2k 的大小关系;(4)经过点()229,5M n n+-和点()22,95N n n -的直线与抛物线()()14y x x n =-+-,()222229y x n n n =-+-++的公共点恰好为3个不同点时,求n 的值.1.(2020·黑龙江大庆市·中考真题)已知关于x 的一元二次方程220x x a --=,有下列结论: ①当1a >-时,方程有两个不相等的实根;②当0a >时,方程不可能有两个异号的实根; ③当1a >-时,方程的两个实根不可能都小于1;④当3a >时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.2.(2021·四川南充市·中考真题)关于抛物线221(0)y ax x a =-+≠,给出下列结论:①当0a <时,抛物线与直线22y x =+没有交点;②若抛物线与x 轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),则1a .其中正确结论的序号是________. 3.(2021·四川乐山市·中考真题)已知关于的一元二次方程. (1)若方程有两个不相等的实数根,求的取值范围;(2)二次函数的部分图象如图所示,求一元二次方程的解.x 20x x m +-=m 2y x x m =+-20x x m +-=考向7 二次函数的实际应用在生活中,我们常会遇到与二次函数及其图象有关的问题,解决这类问题的一般思路:首先要读懂题意,弄清题目中牵连的几个量的关系,并且建立适当的直角坐标系,再根据题目中的已知条件建立数学模型,即列出函数关系式,然后运用数形结合的思想,根据函数性质去解决实际问题.考察背景主要有:经济问题;物体运动轨迹问题;拱桥问题等1.(2021·浙江杭州市·中考真题)在“探索函数的系数,,与图象的关系”活动中,老师给出了直角坐标系中的四个点:,,,,同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中的值最大为( )A .B .C .D .2.(2021·山东青岛·中考真题)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度1y (米)与小钢球运动时间x (秒)之间的函数关系如图所示;小钢球离地面高度2y (米)与它的运动时间x (秒)之间的函数关系如图中抛物线所示. (1)直接写出1y 与x 之间的函数关系式;(2)求出2y 与x 之间的函数关系式; (3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?3.(2021·辽宁盘锦·中考真题)某工厂生产并销售A ,B 两种型号车床共14台,生产并销售1台A 型车床可以获利10万元;如果生产并销售不超过4台B 型车床,则每台B 型车床可以获利17万元,如果超出4台B 型车床,则每超出1台,每台B 型车床获利将均减少1万元.设生产并销售B 型车床台. (1)当时,完成以下两个问题:A 型B 型车床数量/台 ________每台车床获利/万元10________B 型车床多少台?(2)当0<≤14时,设生产并销售A ,B 两种型号车床获得的总利润为W 万元,如何分配生产并销售A ,B 两种车床的数量,使获得的总利润W 最大?并求出最大利润.2y ax bx c =++a b c ()0,2A ()10B ,()3,1C ()2,3D a 52325612x 4x >x x1.(2021·江苏连云港市·中考真题)某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元. 2.(2021·浙江绍兴市·中考真题)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB 是抛物线的一部分,抛物线的顶点C 在y 轴上,杯口直径4AB =,且点A ,B 关于y 轴对称,杯脚高4CO =,杯高8DO =,杯底MN 在x 轴上.(1)求杯体ACB 所在抛物线的函数表达式(不必写出x 的取值范围).(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A CB ''所在抛物线形状不变,杯口直径//A B AB '',杯脚高CO 不变,杯深CD '与杯高OD '之比为0.6,求A B ''的长.3.(2021·山东临沂市·中考真题)公路上正在行驶的甲车,发现前方20m 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s (单位:m )、速度v (单位:m/s )与时间t (单位:s ) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s 时,它行驶的路程是多少? (2)若乙车以10m/s 的速度匀速行驶,两车何时相距最近,最近距离是多少?考向8 二次函数与几何图形(选填题)1.(2021·广东中考真题)设O 为坐标原点,点A 、B 为抛物线2y x 上的两个动点,且OA OB ⊥.连接点A 、B ,过O 作OC AB ⊥于点C ,则点C 到y 轴距离的最大值( ) A .12B 2C 3D .12.(2021·贵州黔东南苗族侗族自治州·中考真题)如图,抛物线()210:+=+L y ax bx c a ≠与x 轴只有一个公共点A (1,0),与y 轴交于点B (0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为( )A .1B .2C .3D .41.(2021·吉林长春市·中考真题)如图,在平面直角坐标系中,点(2,4)A 在抛物线2y ax =上,过点A 作y 轴的垂线,交抛物线于另一点B ,点C 、D 在线段AB 上,分别过点C 、D 作x 轴的垂线交抛物线于E 、F 两点.当四边形CDFE 为正方形时,线段CD 的长为_________.2.(2021·湖北武汉市·中考真题)如图(1),在ABC 中,AB AC =,90BAC ∠=︒,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x AD =,y AE CD =+,y 关于x 的函数图象如图(2),图象过点()0,2,则图象最低点的横坐标是__________.3.(2021·浙江柯桥·九年级阶段练习)如图,“心”形是由抛物线26y x =-+和它绕着原点O ,顺时针旋转60°的图形经过取舍而成的,其中顶点C 的对应点为D ,点A ,B 是两条抛物线的两个交点,点E ,F ,G 是抛物线与坐标轴的交点,则AB =_______________.考向9 存在性问题与动态问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数表达式,最后根据函数表达式判别图象的变化.1.(2021·山西中考真题)如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,.(1)求,,三点的坐标并直接写出直线,的函数表达式;(2)点是直线下方抛物线上的一个动点,过点作的平行线,交线段于点.①试探究:在直线上是否存在点,使得以点,,,为顶点的四边形为菱形,若存在,求出点的坐标;若不存在,请说明理由;②设抛物线的对称轴与直线交于点,与直线交于点.当时,请直接写出的长.21262y x x =+-x A B A B y C AC BC A B C AC BC P AC P BC l AC D l E D C B E E l M AC N DMN AOC S S =△△DM2.(2021·湖南岳阳市·中考真题)如图,抛物线经过,两点,与轴交于点,连接.(1)求该抛物线的函数表达式;(2)如图2,直线:经过点A ,点为直线上的一个动点,且位于轴的上方,点为抛物线上的一个动点,当轴时,作,交抛物线于点(点在点的右侧),以,为邻边构造矩形,求该矩形周长的最小值; (3)如图3,设抛物线的顶点为,在(2)的条件下,当矩形的周长取最小值时,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,请说明理由.1.(2021·广东中考真题)已知二次函数的图象过点,且对任意实数x ,都有.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x 轴的正半轴交点为A ,与y 轴交点为C ;点M 是(1)中二次函数图象上的动点.问在x 轴上是否存在点N ,使得以A 、C 、M 、N 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N 的坐标;若不存在,请说明理由.2.(2021·四川达州市·中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =-++交x 轴于点A 和()1,0C ,交y 轴于点()0,3B ,抛物线的对称轴交x 轴于点E ,交抛物线于点F .(1)求抛物线的解析式;(2)将线段OE 绕着点О沿顺时针方向旋转得到线段'OE ,旋转角为()090αα︒<<︒,连接'AE ,'BE ,求13''BE AE +的最小值.(3)M 为平面直角坐标系中一点,在抛物线上是否存在一点N ,使得以A ,B ,M ,N 为顶点的四边形为矩形?若存在,请直接写出点N 的横坐标;若不存在,请说明理由;1.(2021·贵州·峰林学校九年级期中)已知二次函数()2113my m x m +=-+,下列说法正确的是( )A .图象开口向上B .图象的顶点坐标为()2,3-C .图象的对称轴是直线3x =-D .有最大值,为-32.(2021·湖南张家界市·中考真题)若二次函数的图象如图所示,则一次函数与反比例函数在同一个坐标系内的大致图象为( ) 22y ax bx =++()1,0A -()4,0B y C BC l 3y kx =+P l x Q //PQ y QM PQ ⊥M M Q PQ QM PQMN D PQMN F CBF =∠DQM ∠F 2y ax bx c =++()1,0-22412286x ax bx c x x -≤++≤-+2(0)y ax bx c a =++≠y ax b =+cy x=-A .B .C .D .3.(2021·广西河池·中考真题)二次函数2(0)y ax bx c a =++≠的图象如图所示,下列说法中,错误的是( )A .对称轴是直线12x =B .当12x -<<时,0y <C .a c b +=D .a b c +>- 4.(2021·四川巴中·中考真题)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格,则下列结论:22=的两根为=﹣,=;④<.其中正确的有( )x … ﹣3 ﹣2 ﹣1 1 2 … y…1.8753m1.875…5.(2021·陕西中考真题)下表中列出的是一个二次函数的自变量与函数y 的几组对应值:x… -2 0 1 3 … y…6-4-6-4…A .这个函数的图象开口向下B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当1x >时,y 的值随x 值的增大而增大6.(2021·江苏常州市·中考真题)已知二次函数2(1)y a x =-,当0x >时,y 随x 增大而增大,则实数a 的取值范围是( ) A .0a > B .1a > C .1a ≠ D .1a <7.(2021·江苏徐州市·中考真题)在平面直角坐标系中,将二次函数2y x 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( )A .()221y x =-+ B .()221y x =++ C .()221y x =+- D .()221y x =--8.(2021·贵州铜仁市·中考真题)已知直线过一、二、三象限,则直线与抛物线的交点个数为( ) A .0个 B .1个 C .2个 D .1个或2个9.(2021·山东淄博市·中考真题)已知二次函数2286y x x =-+的图象交x 轴于,A B 两点.若其图象上有且只有123,,P P P 三点满足123ABP ABP ABP S SSm ===,则m 的值是( )A .1B .32C .2D .410.(2021·四川雅安市·中考真题)定义:{}()min ,()a ab a b b a b ≤⎧=⎨>⎩,若函数()2min 123y x x x =+-++,,则该函数的最大值为( ) A .0 B .2 C .3 D .4 11.(2021·辽宁盘锦·中考真题)如图,四边形ABCD 是菱形,BC =2,∠ABC =60°,对角线AC 与BD 相交于点O ,线段BD 沿射线AD 方向平移,平移后的线段记为PQ ,射线PQ 与射线AC 交于点M ,连结PC ,设OM 长为x ,△PMC 面积为y .下列图象能正确反映出y 与x 的函数关系的是( )2y kx =+2y kx =+223y x x =-+A.B.C.D.12.(2021·贵州黔东南苗族侗族自治州·中考真题)如图,二次函数()2=++0y ax bx c a≠的函数图像经过点(1,2),且与x轴交点的横坐标分别为1x、2x,其中-1<1x<0,1<2x<2,下列结论:①0abc>;②20a b+<;③420a b c-+>;④当()12x m m=<<时,22am bm c<+-;⑤1b>,其中正确的有___________.(填写正确的序号)13.(2021·黑龙江中考真题)二次函数232y x=-的最小值为________.14.(2021·青海西宁·中考真题)从12-,-1,1,2,-5中任取一个数作为a,则抛物线2y ax bx c=++的开口向上的概率是______.15.(2021·江苏无锡市·中考真题)如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数的图象交于A、B两点,且,P为的中点,设点P的坐标为,写出y关于x的函数表达式为:________.16.(2021·四川成都市·中考真题)在平面直角坐标系xOy中,若抛物线22y x x k=++与x轴只有一个交点,则k=_______.17.(2021·湖北襄阳市·中考真题)从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式2241y x x=-++,喷出水珠的最大高度是______m.18.(2020·山东临沂·中考真题)已知抛物线22232(0)y ax ax a a=--+≠.(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;19.(2021·安徽中考真题)已知抛物线221(0)y ax x a=-+≠的对称轴为直线1x=.(1)求a的值;(2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且110x-<<,212x<<.比较y1与y2的大小,并说明理由;(3)设直线(0)y m m=>与抛物线221y ax x=-+交于点A、B,与抛物线23(1)y x=-交于点C,D,求线段AB与线段CD的长度之比.20.(2021·浙江宁波市·中考真题)如图,二次函数(a为常数)的图象的对称轴为直线.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.2y x3CB AC CB(,)(0)P x y x>()()1y x x a=--2x=21.(2021·辽宁锦州·中考真题)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t ,加工过程中原料的质量有20%的损耗,加工费m (万元)与原料的质量x (t )之间的关系为m =50+0.2x ,销售价y (万元/t )与原料的质量x (t )之间的关系如图所示. (1)求y 与x 之间的函数关系式;(2)设销售收入为P (万元),求P 与x 之间的函数关系式;(3)原料的质量x 为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).22.(2021·湖北武汉市·中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.23.(2021·黑龙江中考真题)如图,抛物线()230y axbx a =++≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点C ,连接BC ,与抛物线的对称轴交于点E ,顶点为点D .(1)求抛物线的解析式;(2)求BOC ∆的面积.24.(2021·河南中考真题)如图,抛物线2y x mx =+与直线y x b =-+交于点A (2,0)和点B .(1)求m 和b 的值;(2)求点B 的坐标,并结合图象写出不等式2x mx x b +>-+的解集;(3)点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标M x 的取值范围.25.(2021·江苏徐州市·中考真题)如图,点,A B 在函数214y x =的图像上.已知,A B 的横坐标分别为-2、4,直线AB 与y 轴交于点C ,连接,OA OB .(1)求直线AB 的函数表达式;(2)求AOB ∆的面积;(3)若函数A B A B A B 100kg A 2kg B 4kg x x w wx a a214y x =的图像上存在点P ,使得PAB ∆的面积等于AOB ∆的面积的一半,则这样的点P 共有___________个.26.(2021·黑龙江鹤岗市·中考真题)如图,抛物线2()30y ax bx a =++≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点C ,连接BC ,与抛物线的对称轴交于点E ,顶点为点D . (1)求抛物线的解析式;(2)点P 是对称轴左侧抛物线上的一个动点,点Q 在射线ED 上,若以点P 、Q 、E 为顶点的三角形与BOC 相似,请直接写出点P 的坐标.27.(2021·黑龙江大庆市·中考真题)如图,抛物线2y ax bx c =++与x 轴交于除原点O 和点A ,且其顶点B 关于x 轴的对称点坐标为()2,1.(1)求抛物线的函数表达式;(2)抛物线的对称轴上存在定点F ,使得抛物线2y ax bx c =++上的任意一点G 到定点F 的距离与点G 到直线2y =-的距离总相等.①证明上述结论并求出点F 的坐标;②过点F 的直线l 与抛物线2y ax bx c =++交于,M N 两点.证明:当直线l 绕点F旋转时,11MF NF+是定值,并求出该定值;(3)点()3,C m 是该抛物线上的一点,在x 轴,y 轴上分别找点,P Q ,使四边形PQBC 周长最小,直接写出,P Q 的坐标.28.(2021·贵州毕节市·中考真题)如图,抛物线2y x bx c =++与x 轴相交于A ,B 两点,与y 轴相交于点C ,对称轴为直线2x =,项点为D ,点B 的坐标为3,0.(1)填空:点A 的坐标为_________,点D 的坐标为_________,抛物线的解析式为_________; (2)当二次函数2y x bx c =++的自变量:满足2m x m ≤≤+时,函数y 的最小值为54,求m 的值;(3)P 是抛物线对称轴上一动点,是否存在点P ,使PAC △是以AC 为斜边的直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习二次函数中矩形的存在性所谓二次函数与矩形存在性问题,即在二次函数中确定动点位置,使其与其他点等构成矩形,本文将对题型构造及解决方法作简单介绍.首先关于矩形本身,我们已经知道:矩形的判定(1)有一个角是直角的平行四边形;(2)对角线相等的平行四边形;(3)有三个角为直角的四边形.第一步:先画草图。
因为题目已经明确四边形顶点的顺序,所以可以得知A,M为矩形相对的两个顶点。
第二步:求点坐标,可以直接通过对角线相等计算长度。
解题模型探究1.铺垫知识铺垫1:直角三角形存在类问题的几何作图方法已知点C为直线上一动点,请问是否存在点C使得△ABC为直角三角形,如果存在,请画出示意图.图1是指以点A为直角顶点时对应的C点;图2是指以点B为直角顶点时对应的C点;图3是指以AB 为直径和直线相交时对应的C点.上述作图方法我们简称为“一圆两垂直”铺垫2:直角三角形存在类问题的解题策略详情请参考“二次函数与直角三角形存在类问题”铺垫3:平行四边形顶点坐标公式根据平行四边形的性质对角线互相平分,可以知道点O为线段AC和线段BD的中点。
在平面直角坐标系背景下的矩形存在类问题其本质就是“直角三角形存在类问题”和“平行四边形存在类问题”的结合.矩形除了具有平行四边形的性质之外,还有“对角线相等”或“内角为直角”,因此相比起平行四边形,坐标系中的矩形满足以下3个等式:(AC为对角线时)因此在矩形存在性问题最多可以有3个未知量,代入可以得到三元一次方程组,可解.确定了有3个未知量,则可判断常见矩形存在性问题至少有2个动点,多则可以有3个.2.题型分类:(1)2个定点+1个半动点+1个全动点;(2)1个定点+3个半动点.思路1:先直角,再矩形在构成矩形的4个点中任取3个点,必构成直角三角形,以此为出发点,可先确定其中3个点构造直角三角形,再确定第4个点.对“2定+1半动+1全动”尤其适用.引例:已知A(1,1)、B(4,2),点C在x轴上,点D在平面中,且以A、B、C、D为顶点的四边形是矩形,求D点坐标.【小结】这种解决矩形存在性问题的方法相当于在直角三角形存在性问题上再加一步求D点坐标,也是因为这两个图形之间的密切关系方能如此.思路2:先平行,再矩形当AC为对角线时,A、B、C、D满足以下3个等式,则为矩形:其中第1、2个式子是平行四边形的要求,再加上式3可为矩形.表示出点坐标后,代入点坐标解方程即可.无论是“2定1半1全”还是“1定3半”,对于我们列方程来解都没什么区别,能得到的都是三元一次方程组.引例:已知A(1,1)、B(4,2),点C在x轴上,点D在平面中,且以A、B、C、D为顶点的四边形是矩形,求D点坐标.【小结】这个方法是在平行四边形基础上多加一个等式而已,剩下的都是计算的故事.典型考题1.构造对角线互相平分且相等得矩形例1(2019南充中考题,有删减)如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),点B(-3,0),且OB=OC.(1)求抛物线的解析式;(2)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M、N之间的动点,过点D作y轴的平行线交MN于点E.①求DE的最大值;②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.2.构造直角得矩形例2(2018铁岭中考题,有删减)如图,抛物线y=-x+bx+c交x轴于点A,B,交y轴于点C.点B的坐标为(3,0)点C的坐标为(0,3),点C与点D关于抛物线的对称轴对称.(1)求抛物线的解析式;(2)若点P为抛物线对称轴上一点,连接BD,以PD,PB为边作平行四边形PDNB,是否存在这样的点P,使得平行四边形PDNB是矩形?若存在,请求出tan∠BDN的值;若不存在,请说明理由.方法梳理以二次函数为背景的矩形存在性问题,需要在复杂的问题中牢牢把握核心问题,确定求动点坐标,把矩形问题转化为直角三角形存在性问题,画图,并求解。
这样可以让学生清楚问题的来龙去脉,以及相关图形的组合。
第一步:分类讨论。
分清具体边为对角线,还是为矩形的边。
第二步:作图。
可以利用对角线互分,相等;边平移,作垂线。
第三步:利用直角三角形的性质求点坐标(转化为直角三角形存在性问题,通过一线三直角,斜边上的中线等于斜边的一半解决)体会一线三直角方法更好,优化方法。
2019年四川省南充市中考数学第25题【2019·四川·南充】如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB=OC.(1)求抛物线的解析式;(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.∠求DE的最大值;∠点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.【考点】HF :二次函数综合题【分析】(1)已知抛物线与x 轴两交点坐标,可设交点式(1)(3)y a x x;由3OCOB得(0,3)C ,代入交点式即求得1a.(2)由POBACB 联想到构造相似三角形,因为求点P 坐标一般会作x 轴垂线PH 得Rt POH ,故可过点A 在BC 边上作垂线AG ,构造ACG POH ∽.利用点A 、B 、C 坐标求得AG 、CG 的长,由相似三角形对应边成比例推出12PH AG OHCG.设点P 横坐标为p ,则OH 与PH 都能用p 表示,但需按P 横纵坐标的正负性进行分类讨论.得到用p 表示OH 与PH 并代入2OH PH 计算即求得p 的值,进而求点P 坐标.(3)∠用m 表示M 、N 横纵坐标,把m 当常数求直线MN 的解析式.设D 横坐标为d ,把x d 代入直线MN 解析式得点E 纵坐标,D 与E 纵坐标相减即得到用m 、d 表示的DE 的长,把m 当常数,对未知数d 进行配方,即得到当2dm时,DE 取得最大值.∠由矩形MDNF 得MN DF 且MN 与DF 互相平分,所以E 为MN 中点,得到点D 、E 横坐标为2m.由∠得2dm时,4DE,所以8MN .用两点间距离公式用m 表示MN 的长,即列得方程求m 的值.【解答】解:(1)Q 抛物线与x 轴交于点(1,0)A ,点(3,0)B 设交点式(1)(3)y a xx3OCOBQ ,点C 在y 轴负半轴(0,3)C 把点C 代入抛物线解析式得:33a 1a抛物线解析式为2(1)(3)43yx xxx (2)如图1,过点A 作AGBC 于点G ,过点P 作PH x 轴于点H90AGB AGC PHOACBPOBQACG POH ∽AG CG PHOHAG PH CG OH 3OBOCQ ,90BOC45ABC,2232BCOBOCABG 是等腰直角三角形222AG BG AB 32222CG BC BG 12PH AG OH CG 2OHPH设2(,43)P p p p ∠当3p 或10p时,点P 在点B 左侧或在AC 之间,横纵坐标均为负数OH p ,22(43)43PH p p pp 22(43)ppp 解得:19334p ,29334p 933(4P ,933)8或933(4,933)8∠当31p或0p 时,点P 在AB 之间或在点C 右侧,横纵坐标异号22(43)ppp解得:12p ,232p (2,1)P 或3(2,3)4综上所述,点P 的坐标为933(4,933)8、933(4,933)8、(2,1)或3(2,3)4.(3)∠如图2,4x mQ 时,22(4)4(4)31235ym m mm 2(,43)M m mm ,2(4,1235)N mm m 设直线MN 解析式为ykx n2243(4)1235km n m m k mnmm 解得:22843k m nmm 直线2:(28)43MN y m xmm 设(D d ,243)(4)d dm dm//DE y Q 轴ED x x d ,(E d ,2(28)43)m d m m 2222243[(28)43](24)4[(2)]4DE d d m d m m d m d m m d m 当2d m 时,DE 的最大值为4.∠如图3,D Q 、F 关于点E 对称DE EFQ 四边形MDNF 是矩形MN DF ,且MN 与DF 互相平分12DE MN ,E 为MN 中点422D E m m x x m 由∠得当2d m 时,4DE 28MN DE 22222(4)[1235(43)]8m m m m m m 解得:1342m ,2342m m 的值为342或342时,四边形MDNF 为矩形.【点评】本题考查了求二次函数解析式,求二次函数最大值,等腰三角形的性质,相似三角形的判定和性质,一元二次方程的解法,二元一次方程组的解法,矩形的性质.第(3)题没有图要先根据题意画草图帮助思考,设计较多字母运算时抓住其中的常量和变量来分析和计算.2019年湖南省常德市中考数学第25题【2019·湖南·常德】如图,已知二次函数图象的顶点坐标为A(1,4),与坐标轴交于B、C、D三点,且B点的坐标为(﹣1,0).(1)求二次函数的解析式;(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)当矩形MNHG的周长最大时,能否在二次函数图象上找到一点P,使∠PNC的面积是矩形MNHG面积的?若存在,求出该点的横坐标;若不存在,请说明理由.【分析】(1)二次函数表达式为:y=a(x﹣1)2+4,将点B的坐标代入上式,即可求解;(2)矩形MNHG的周长C=2MN+2GM=2(2x﹣2)+2(﹣x2+2x+3)=﹣2x2+8x+2,即可求解;(3)S∠PNC==×PK×CD=×PH×sin45°×3,解得:PH==HG,即可求解.【解答】解:(1)二次函数表达式为:y=a(x﹣1)2+4,将点B的坐标代入上式得:0=4a+4,解得:a=﹣1,故函数表达式为:y=﹣x2+2x+3…∠;(2)设点M的坐标为(x,﹣x2+2x+3),则点N(2﹣x,﹣x2+2x+3),则MN=x﹣2+x=2x﹣2,GM=﹣x2+2x+3,矩形MNHG的周长C=2MN+2GM=2(2x﹣2)+2(﹣x2+2x+3)=﹣2x2+8x+2,∠﹣2<0,故当x=﹣=2,C有最大值,最大值为10,此时x=2,点N(0,3)与点D重合;(3)∠PNC的面积是矩形MNHG面积的,则S∠PNC=×MN×GM=×2×3=,连接DC,在CD得上下方等距离处作CD的平行线m、n,过点P作y轴的平行线交CD、直线n于点H、G,即PH=GH,过点P作PK∠∠CD于点K,将C(3,0)、D(0,3)坐标代入一次函数表达式并解得:直线CD的表达式为:y=﹣x+3,OC=OD,∠∠OCD=∠ODC=45°=∠PHK,CD=3,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),S∠PNC==×PK×CD=×PH×sin45°×3,解得:PH==HG,则PH=﹣x2+2x+3+x﹣3=,解得:x=,故点P(,),直线n的表达式为:y=﹣x+3﹣=﹣x+…∠,联立∠∠并解得:x=,即点P′、P″的坐标分别为(,)、(,);故点P坐标为:(,)或(,)或(,).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.【2019·泰安新泰一模】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【分析】(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),求出点C坐标代入求出a即可;(2)由△CMD∽△FMP,可得m==,根据关于m关于x的二次函数,利用二次函数的性质即可解决问题;(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.分两种情形分别求解即可:①当DP是矩形的边时,有两种情形;②当DP是对角线时;【解答】解:(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(x+2)(x﹣4)或y=﹣x2+x+4或y=﹣(x﹣1)2+.(2)如图1中,作PE⊥x轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣x+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=kx+1中,得到k=,∴直线DP的解析式为y=x+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE?OQ,∴1=?OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=x+1,PQ⊥PD,∴直线PQ的解析式为y=﹣x+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(x,0),则QD2=x2+1,QP2=(x﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴x2+1+(x﹣2)2+16=13,整理得x2﹣2x+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).【点评】本题考查二次函数综合题、一次函数的应用、平行线的性质.相似三角形的判定和性质、矩形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题。