计算流体力学课程总结

计算流体力学课程总结
计算流体力学课程总结

计算流体力学课程总结

计算流体动力学(computational Fluid Dynamics,简称CFD)是通过计算机数值

计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。是用电子计算机和离散化的数值方法对流体力学问题进行数值模拟和分析的一个分支。

流体力学和其他学科一样,是通过理论分析和实验研究两种手段发展起来的。很早就已有理论流体力学和实验流体力学两大分支。理论分析是用数学方法求出问题的定量结果。但能用这种方法求出结果的问题毕竟是少数,计算流体力学正是为弥补分析方法的不足而发展起来的。计算流体力学是目前国际上一个强有力的研究领域,是进行传热、传质、动量传递及燃烧、多相流和化学反应研究的核心和重要技术,广泛应用于航天设计、汽车设计、生物医学工业、化工处理工业、涡轮机设计、半导体设计、HAVC&R 等诸多工程领域。

计算流体力学的任务是流体力学的数值模拟。数值模拟是“在计算机上实现的一

个特定的计算,通过数值计算和图像显示履行一个虚拟的物理实验——数值实验“。

数值模拟包括以下几个部分。首先,要建立反映问题(工程问题、物理问题等)本质数

学模型。其次,数学模型建立以后需要解决的问题是寻求高效率、高准确度的计算方法。再次,在确定了计算方法和坐标系统后,编制程序和进行计算式整个工作的主体。最后,当计算工作完成后,流畅的图像显示是不可缺少的部分。

还有一个就是CFD的基本思想问题,它就是把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通

过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求

解代数方程组获得场变量的近似值。

经过四十多年的发展,CFD出现了多种数值解法。这些方法之间的主要区别在于

对控制方程的离散方式。根据离散的原理不同,CFD大体上可分为三个分支:

?有限差分法(Finite Different Method,FDM)

?有限元法(Finite EIement Method,FEM)

?有限体积法(Finite Volume Method,FVM)

有限差分法是应用最早、最经典的CFD方法,也是最成熟、最常用的方法。它将求解域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程的

导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。求出差分万程组

的解,就是微分方程定解问题的数值近似解。它是一种直接将微分问题变为代数问题

的近似数值解法。

有限元法是20世纪80年代开始应用的—种数值解法,它吸收了有限差分法中离散处理的内核,又采用了变分计算中选择逼近函数对区域进行积分的合理方法。有限元法因求解速度较有限差分法和有限体积法慢,因此应用不是特别广泛。它是将求解区域分成若干个小的单元,设定待求变量在单元上的分布函数,适应性强,适用于复杂的求解区域。

有限体积法是将计算区域划分为一系列控制体积,将待解微分方程对每一个控制体积积分得出离散方程。有限体积法的关键是在导出离散方程过程中,需要对界面上的被求函数本身及其导数的分布作出某种形式的假定。用有限体积法导出的离散方程可以保证具有守恒特性,而且离散方程系数物理意义明确,计算量相对较小。基本上属于有限差分法的范畴。

了解了计算流体力学的大概内容以后,我们还要知道一些常用的CFD软件,学习这门课的最终目的所在,就是能够熟练的掌握并应用这些软件来解决一些工程中的实际问题,所有的商业CFD软件都包括三个部分:

前处理器 (关键是要把握好计算精度与计算成本之间的平衡。)

求解器(求解器(solver)的核心是数值求解方案。)

后处理器(后处理的目的是有效地观察和分析流动计算结果。)

综合以上内容,我们可以指导流动问题的控制方程一般是非线性的,自变量多,计算域的几何形状和边界条件复杂,很难求得解析解,而用CFD方法则有可能找出满足工程需要的数值解,同时,可利用计算机进行各种数值试验,它不受物理模型和实验模型的限制,省钱省时,有较多的灵活性,能给出详细和完整的资料,很容易模拟特殊尺寸、高温、有毒、易燃等真实条件和实验中只能接近而无法达到的理想条件。另外,数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适用、适合于在计算机上进行计算的离散的有限数学模型,且最终结果不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并有一定的计算误差。

当然,有优点就有缺点,CFD因涉及大量数值计算,因此,常需要较高的计算机软硬件配置。但是,在日新月异、飞速前进的当今社会,这不是个问题!

计算流体力学课程总结

计算流体力学课程总结 计算流体动力学(computational Fluid Dynamics,简称CFD)是通过计算机数值 计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。是用电子计算机和离散化的数值方法对流体力学问题进行数值模拟和分析的一个分支。 流体力学和其他学科一样,是通过理论分析和实验研究两种手段发展起来的。很早就已有理论流体力学和实验流体力学两大分支。理论分析是用数学方法求出问题的定量结果。但能用这种方法求出结果的问题毕竟是少数,计算流体力学正是为弥补分析方法的不足而发展起来的。计算流体力学是目前国际上一个强有力的研究领域,是进行传热、传质、动量传递及燃烧、多相流和化学反应研究的核心和重要技术,广泛应用于航天设计、汽车设计、生物医学工业、化工处理工业、涡轮机设计、半导体设计、HAVC&R 等诸多工程领域。 计算流体力学的任务是流体力学的数值模拟。数值模拟是“在计算机上实现的一 个特定的计算,通过数值计算和图像显示履行一个虚拟的物理实验——数值实验“。 数值模拟包括以下几个部分。首先,要建立反映问题(工程问题、物理问题等)本质数 学模型。其次,数学模型建立以后需要解决的问题是寻求高效率、高准确度的计算方法。再次,在确定了计算方法和坐标系统后,编制程序和进行计算式整个工作的主体。最后,当计算工作完成后,流畅的图像显示是不可缺少的部分。 还有一个就是CFD的基本思想问题,它就是把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通 过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求 解代数方程组获得场变量的近似值。 经过四十多年的发展,CFD出现了多种数值解法。这些方法之间的主要区别在于 对控制方程的离散方式。根据离散的原理不同,CFD大体上可分为三个分支: ?有限差分法(Finite Different Method,FDM) ?有限元法(Finite EIement Method,FEM) ?有限体积法(Finite Volume Method,FVM) 有限差分法是应用最早、最经典的CFD方法,也是最成熟、最常用的方法。它将求解域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程的 导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。求出差分万程组 的解,就是微分方程定解问题的数值近似解。它是一种直接将微分问题变为代数问题 的近似数值解法。

产品数据管理技术与计算流体力学课程介绍

〈〈产品数据管理(PDM技术》课程简介 课程代码:AM011 课程简介: 本门课程将讲授PDM技术的基本概念、理论方法、系统结构和PDM^r业实施案例以及典型PDM^统介绍等相关专题,以满足我国企业信息化工程对大量复合型人才的需求 本课程的主要任务是: 1、掌握PDMJ术的发展与应用; 2、掌握PDMJ术的基本理论和方法; 3、掌握PDMK统体系结构和主要功能; 4、掌握PD"对象的建模方法和对象模型; 5、了解PDMK统实施方法; 6、了接国内外著名PDMS用系统。 本课程是一门实用性和系统性很强的课程,包含了机械工程和工业工程等领域高级技术 人员必须掌握的基本知识和内容。课程学习的目的是使学生掌握 PD M 基本理论知识和方法,为今后从事企业信息化工作,特别是从事产品数字化设计、制造与管理工作打下坚实的理论基础。 This course is the basic course on product development, it covers the following topics: Development and applications of PDM technology, Supporting technologies of PDM, Product data management technology, Product development lifecycle management technology, PDM implementation methodology, Introduction to SIPM/PDM.

院(系)公章: 撰写人:

《计算流体动力学分析》学习报告

《计算流体动力学分析》学习报告 计算流体力学基础: 本章主要讲解流体动力学的核心思想以及流体动力学的控制方程。 1、计算流体动力学(Computational Fluid Dynamic )基本思想:把原来在时间和空间上的连续的物理量,用一系列离散点上的变量值来代替,通过一定的原则和方式建立变量之间的代数方程式,求解之后获得变量的近似值。 2、CFD 控制方程: 质量守恒方程 0)·=?+??u t ρρ( 动量守恒方程(Navier-Stokes 方程) Fz z y x z u w div t w F z y x y u v div t v F z y x x u u div t u zz zx zx y zy yy xy x zx yx xx +??+??+??+??-=+??+??+??+??+??-=+??+??+??+??+??-=+??τττρρρτττρρρτττρρρ)()()()()()( 能量守恒方程 T p S gradT c k div T u div t +=+??)()(T ( ρρ) S T 为粘性耗散项。 方程含有u ,v ,w ,p ,T 和ρ六个未知量,所以还需要一个方程组,才能使其封闭,而这个方程组就是联系P 和ρ的状态方程组:P=(ρ,T )。 组分质量守恒方程(在一个系统中,可能存在质的交换,或者存在化学组分时使用。) ()s s s s S c grad D div c u div t +=+??)()(c (s ρρρ ) 为便于对控制方程进行计算和分析,对CFD 控制方程写成通用格式: ()S z z y y x x z w y v x u t S grad div u div t +??Γ??+??Γ??+??Γ??=??+??+??+??+Γ=+??)()()()()()())()(φφφφρφρφρρφφφρρφ 依次为瞬态项,对流项,扩散项和源项。 3、湍流控制方程 三维的N-S 方程无论对于层流还是湍流都是是使用的,但由于直接求解三维瞬态的控制方程,对计算机的内存和速度要求很高,因此在工程上广为采用的方法是对瞬态的N-S 方程进行实践平均处理,同时补充反应湍流特性的其他方程,例如湍动能方程以及湍流耗散率方程

结构力学个人总结

结构力学个人总结 本页是精品最新发布的《结构力学个人总结》的详细文章,。篇一:结构力学心得体会 结构力学心得体会 本学期结构力学的课程已经接近尾声。主要是三部分内容,即渐近法、矩阵位移法和平面刚架静力分析的程序设计。通过为期八周的理论课学习和六次的上机课程设计,我收获颇丰。 而对结构力学半年的学习,也让我对这门学科有了很大的认识。结构力学是力学的分支,它主要研究工程结构受力和传力的规律以及如何进行结构优化的学科。工程力学是机械类工种的一门重要的技术基础课,许多工程实践都离不开工程力学,工程力学又和其它一些后绪课程及实习课有紧密的联系。所以,工程力学是掌握专业知识和技能不可缺少的一门重要课程。 首先,渐近法的核心是力矩分配法。计算超静定刚架,不论采用力法或位移法,都要组成和验算典型方程,当未知量较多时,解算联立方程比较复杂,力矩分配法就是为了计算简洁而得到的捷径,它是位移法演变而来的一种结构计算方法。其物理概念生动形象,每轮计算又是按同一步骤重复进行,进而易于掌握,适合手算,并可不经过计算节点位移而直接求得杆端弯矩,在结构设计中被广泛应用,是我们应该掌握的基本技能。本章要

求我们能够熟练得运用力矩分配法对钢架结构进行力矩分配和传递,然后计算出杆端最后的弯矩,画出钢架弯矩图。 其次,与上一学期所学的力法和位移法那些传统的结构力学基本方法相比,本学期所学的矩阵位移法是通过与计算机相结合,解决力法和位移法不能解决的结构分析题。其核心是杆系结构的矩阵分析,主要包括两部分内容,即单元分析和整体分析。矩阵位移法的程序简单并且通用性强,所以应用最广,范文 TOP100也是我们本学期学习的重点和难点。本章要求我们掌握单位的刚度方程并且明白单位矩阵中每一个元素的物理意义,可以熟练的进行坐标转换,最为重要的是能够利用矩阵位移法进行计算。 最后,是平面钢架静力分析的程序设计。其核心是如何把矩阵分析的过程变成计算机的计算程序,实现计算机的自动计算。我们所学的是一种新的程序设计方法—PAD软件设计方法,它的程序设计包括四步:1、把计算过程模块化,给出总体程序结构的PAD设计;2、主程序的PAD设计;3、子程序的PAD设计;4、根据主程序和子程序的PAD设计,用程序语言编写计算程序。要求我们具备结构力学、算法语言,即VB、矩阵代数等方面的基础知识。在上机利用VB 进行程序设计解答实际问题的过程中,我们遇到了各种各样的难题,每一道题得出最后的结果都不会那么容易轻松。第一,需要重视细节,在抄写程序代码时,需要同组人的分工合作,然后再把每一部分的代码合成一个整体然后运行,这

计算流体力学论文

自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES ),也是由N-S 方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问值题[1]。目前数模拟主要有三种方法:1.平均N-S 方程的求解,2.大涡模拟(LES ),3.直接数值模拟(DNS ),而模拟的前提是建立合适的湍流模型。 2、基本湍流模型 常用的湍流模型有: 零方程模型:C-S 模型,由Cebeci-Smith 给出;B-L 模型,由Baldwin-Lomax 给出。一方程模型:来源由两种,一种从经验和量纲分析出发,针对简单流动逐步发展起来,如Spalart-Allmaras(S-A)模型;另一种由二方程模型简化而来,如Baldwin-Barth(B-B)模型。二方程模型:应用比较广泛的两方程模型有Jones 与Launder 提出的标准k-e 模型,以及k-omega 模型。 2.1 零方程模型 上世纪30年代发展的一系列湍流的半经验理论,如Prandtl 的混合长度理论、Taylor 的涡量输运理论、von Karman 的相似性理论等,本质上即是零方程湍流模型。零方程模型直接建立雷诺应力与平均速度之间的代数关系,由于不涉及代数关系故称为另方程模型: ''m u u v y ρρε?-=? 其中m ε称为涡粘系数,他与分子的运动粘性系数ν有相同的量级。对于一般的三维的情况,上式可写为: '' 223 i j m ij ij u v S K ρεδ-=- K 为单位质量的湍流脉动动能。为了发展上述方法,需要建立m ε与平均速度之间的关系。1925年,普朗特沿这一方向做了重要工作,提出可混合长度理论,混合长度理论认为,存在这样的长度l ,在此长度内流体质点运动是自由的(不与

结构力学培训心得体会(精)

结构力学培训心得体会 浅谈结构变形图在定性结构力学教学中的应用 许凯 (武汉科技大学城市建设学院) 2008年7月25日至27日,我参加了《结构力学骨干教师高级研修班》培训。三天的培训使我受益良多,感谢两位主讲老师带给我们的新观点、新方法,这些新的理念引发了我对今后结构力学教学工作的诸多思考。 结构力学是结构工程师的看家本领,正因为如此,结构力学教学中能力和素质的培养应为教学工作的主导,应将能力培养贯穿教学活动的始终和各个环节,袁老师认为结构力学中有三个方面的能力要重点训练培养,它们是:经典方法分析能力,计算机分析能力和定性分析能力。也就是“一个基础、两座大厦”。这个比喻非常的形象,点出了结构力学教学的重点以及结构力学今后的发展方向。 “定性结构力学”培养的是学生定性的分析和判断能力。定性分析是结构力学以及其它所有力学进行分析和计算的概念性基础。工程中的概念设计、估算判断、计算模型建立、计算结果分析等都要用到定性分析。因此,对于没有条件开设这门课的高校,应该把该课程的内容融入到经典结构力学的教学中去,对此,我在教学工作中也做过一些尝试,今后考虑如何系统化,并以提高学生的综合素质与能力为着眼点。 一、由变形图确定弯矩图 正确绘制梁与刚架在荷载作用下的变形图,有助于确定结构内力图的大致形状,校核原结构的弯矩图是否正确,在定性结构力学中,具有十分重要的意义。 例如,对于各种形式的拱(见图1,a、b、c),如果让学生死记弯矩图的形状,一是不容易记住,二是不能理解其力学本质。通过绘制变形图(图中虚线部分,将杆件受拉一侧标记为+),很容易地得到弯矩图的大致形状。至于变形图的绘制,其实并不复杂,只要注意满足约束条件,注意荷载方向与变形趋势之间的关系,以及注意结点的特性等基本要素,再辅以适当的练习,就可以掌握其方法,并在结构的定性分析中灵活应用了。 更深一层地,可以用变形图对结构做进一步的分析和判断,例:用变形图判断混凝土拱结构的开裂部位。根据变形图(见图1,c),判断构件可能出现裂缝的部位(见图1,d)。

流体力学实践报告

黑龙江科技大学建筑工程二学历实践报告 流体力学实践报告 一、实践概述 在此次实践中,老师给我演示了雷诺试验与伯努利方程试验。下面我就实践的主要内容进行一下总结。 二、雷诺实验 (一)、实验目的 1、观察液体流动时的层流与紊流现象。区分两种不同流态的特征,搞清两种流态产生的条件。分析圆管流态转化的规律,加深对雷诺数的理解。 2、测定颜色水在管中的不同状态下的雷诺数及沿程水头损失。绘制沿程水头损失与断面平均流速的关系曲线,验证不同流态下沿程水头损失的规律就是不同的。进一步掌握层流、紊流两种流态的运动学特性与动力学特性。 3、通过对颜色水在管中的不同状态的分析,加深对管流不同流态的了解。学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。 (二)、实验原理 1、液体在运动时,存在着两种根本不同的流动状态。当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。当液体流速逐渐增大,质点惯性力也逐渐增大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层

的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈紊流运动。这种从层流到紊流的运动状态,反应了液流内部结构从量变到质变的一个变化过程。 液体运动的层流与紊流两种型态,首先由英国物理学家雷诺进行了定性与定量的证实,并根据研究结果,提出液流型态可用下列无量纲数来判断: Re=Vd/ν Re 称为雷诺数。液流型态开始变化时的雷诺数叫做临界雷诺数。 在雷诺实验装置中,通过有色液体的质点运动,可以将两种流态的根本区别清晰地反映出来。在层流中,有色液体与水互不混惨,呈直线运动状态,在紊流中,有大小不等的涡体振荡于各流层之间,有色液体与水混掺。 2、在如图所示的实验设备图中,取1-1,1-2两断面,由恒定总流的能量方程知: f 2222221111h g 2V a p z g 2V a p z ++γ+=+γ+ 因为管径不变V 1=V 2 ∴=γ +-γ+=)p z ()p z (h 2211f △h 所以,压差计两测压管水面高差△h 即为1-1与1-2两断面间的沿程水头损失,用重量法或体积浊测出流量,并由实测的流量值求得断面平均流速A Q V =,作为lgh f 与lgv 关系曲线,如下图所示,曲线上EC 段与BD 段均可用直线关系式表示,由斜截式方程得: lgh f =lgk+mlgv lgh f =lgkv m h f =kv m m 为直线的斜率

《计算流体力学》结课作业要点.doc

2012~2013学年第1学期 12级研究生《计算流体力学》结课作业 适用专业:供热供燃气通风及空调工程 一、结合某一具体学科,阐述纯理论方法、实验方法及数值方法在科学研究中的各自优缺点,在此基础上论述数值模拟方法的发展前景。(不少于4千字)。 流体力学是力学的一个重要分支, 是研究流体(液体和气体)的力学运动规律及其应用的学科, 主要研究在各种力的作用下,流体本身的静止状态和运动状态特征,以及流体和相邻固体界面有相对运动时的相互作用和流动规律。在人们的生活和生产活动中随时随地都可遇到流体,流体力学与人类的日常生活和生产事业密切相关。按其研究内容的侧重点不同,分为理论流体力学和工程流体力学。其中理论流体力学主要采用严密的数学推理方法,力求准确性和严密性,工程流体力学侧重于解决工程实际中出现的问题,而不追求数学上的严密性。当然由于流体力学研究的复杂性,在一定程度上,两种方法都必须借助于实验研究,得出经验或半经验的公式。 在实际工程的诸多领域流体力学都起着十分重要的作用。如气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了流体力学自身的不断发展。1950年后,计算机的发展给予流体力学以极大的推动作用。 目前,解决流体力学问题的方法主要有实验方法、理论分析方法和数值方法三种。 实验方法 同物理学、化学等学科一样,流体力学的研究离不开实验,尤其是对新的流体运动现象的研究。实验能显示运动特点及其主要趋势,有助于形成概念,检验理论的正确性。二百年来流体力学发展史中每一项重大进展都离不开实验。流体力学实验研究方法有实物实验、比拟研究和模型研究三类:实物实验是用仪器实测原型系统的流动参数,适用于较小的原型;比拟实验是利用电场和磁场来模拟流场,实施起来限制条件较多;模型研究是实验流体力学最常用的研究方法。 实验研究的一般过程是:在相似理论的指导下建立实验模型,用流体测量技术测量流动参数,处理和分析实验数据。建立实验模型要求模型与原型满足相似理论,即满足两个流场

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

浅析问题教学法在结构力学课程中的应用

浅析问题教学法在结构力学课程中的应用 发表时间:2019-09-10T16:15:02.860Z 来源:《建筑学研究前沿》2019年10期作者:戴烽滔[导读] 我国经济的快速发展带动我国其它行业发展迅速。问题教学法在我国古代早有论述,如朱熹的“读书无疑者,须教有疑,小疑则小进,大疑则大进”。 西南科技大学四川绵阳 621000摘要:我国经济的快速发展带动我国其它行业发展迅速。问题教学法在我国古代早有论述,如朱熹的“读书无疑者,须教有疑,小疑则小进,大疑则大进”。问题教学法的核心是问题设置,通过问题诱发学生自主学习的欲望,培养主动学习的习惯,通过循环往复不断优化自主学习方法,提高学生学习能力的教学方法。 关键词:问题教学法;结构力学课程;应用引言 我国教育事业的快速发展离不开国家经济的大力支持。在所有专业课中课时量最多,且占学分最高。它以高等数学、线性代数和微分方程等数学课程,以及材料力学、理论力学等力学课程为基础,在各门专业课程的学习中起着承上启下的作用,在土木工程系列的结构、房建、桥梁、水利、道路以及地下工程等各专业的学习中都占有重要地位。 1结构力学课程教学的特点(1)知识点多,前后内容环环相扣。既有平面几何组成规律的内容,也有静力荷载作用下五种基本类型结构(梁、拱、桁架、刚架和组合结构)的内力与位移计算问题,还有影响线问题,结构的动力计算、弹性稳定、塑性分析与极限荷载等内容。平面几何组成分析的学习有助于了解结构中杆件组成的相互关系,便于选择对应的计算方法;静定结构中平衡方程与截面法是内力计算的基础,其掌握的程度直接影响后续静定结构的位移计算;而静定结构的位移计算又是超静定结构内力计算的基础;静力荷载下的内力与位移计算是动力荷载结构响应分析的基础;结构的弹性设计又是结构塑性设计与极限荷载计算的基础。(2)实践性强,与工程实际联系紧密。结构力学中很多计算都是以计算简图作为分析的对象,计算简图的简化是联系实际与计算模型的桥梁,计算简图的合理选择是结构分析的一个重要环节,也是必须解决的首要问题。计算简图的简化要把握“存本去末”与“计算简化”两个基本原则,其简化要点有结构体系的简化、杆件的简化、结点的简化、支座的简化、荷载的简化和材料性质的简化。这就要求教师要重点讲解计算简图知识点,选取不同的工程实例进行讲解,以五种基本结构为原型,不仅讲清楚题目的工程背景,而且要指出哪些是主要因素必须考虑,哪些是次要因素可以忽略。(3)方法灵活,概念与原理的掌握成为根本。结构力学中几何组成分析中三个规则的灵活应用,静定结构内力计算截面法的选取,超静定结构内力计算不同方法的优化选择,影响线的快速绘制等问题,针对这些不同的问题,有着不一样的解法,这就要求教师重点介绍每一种方法的基本原理,挖掘概念、原理及方法的本质,通过讲解典型例题,让学生体会每一种方法的具体应用,不断地变换约束前提条件,分析计算结果的异同,让学生印象更加深刻,避免单纯地做题而缺乏对题目的深刻分析与延伸。 2问题教学法在结构力学课程中的应用 2.1注重问题设计的针对性 针对性一方面指问题应遵循教与学的实际需要而定,围绕教学的重点和难点,同时,还要针对学生的学习心理特征,问题要能够启动学生心理上的新需求,能够触发学生潜在水平到现实水平的最近发展区。如静定刚架的内力计算问题,重点是要求学生掌握内力的具体计算和刚结点的性质,刚架是由多根杆件通过部分或全部刚结点连接而成,那么,求解的思路就是,能否把刚架离散成一个个单跨梁来进行分析呢?在离散过程中,从哪里断开比较合适呢?合适与否由什么来决定?事实上在刚结点处断开和打断梁式杆是等同的。随着问题的深入,刚结点的特性也就总结出来了。同时还可追问什么样的外力会在杆件中引起弯矩?什么样的外力会在杆件中引起剪力?什么样的外力会在杆件中引起轴力?通过对结构内力特性的定性分析,使得学生对单跨梁的理解进一步加强。 2.2理论与实践相结合的教学形式 目前,大多数高校仅开设结构力学理论课程,且课时量都进行了一定缩减,使得学生在学习过程中感到非常枯燥乏味,难学难懂,本应是在实际工程当中应用非常广泛的课程,却在教学过程中严重脱离实际,这是当下这门课程的教学水平处于瓶颈状态的关键所在。对于目前各高校普遍存在的此类问题,可通过增设结构力学实践课程及结构力学课程设计来达到改善教学质量的目的。实际上,本课程对实验室场地,实验设施,实验材料等方面的要求并不高,无需大型设备,只需一定空间的场所,并采购一些制作模型所需的实验材料和工具即可,所需费用不大,对场所要求较低,相对来说属于易实施,花费低的教学改革方案。通过增设相关实验课程,可以使得学生有机会通过亲自动手制作模型,进行相关受力分析及位移计算,从而更加熟练的掌握结构的力学计算方法,增强学生创新实践能力,也可为在校期间参与结构大赛等大型竞赛活动打下非常坚实的基础,培养出更加符合新形势新要求的新型综合性人才。 2.3注重问题的启发性 问题设置水平的高低,一个重要的衡量因素就是问题是否具有启发性。具有启发性的问题不是非此即彼的问题,而是具有开放性,这样才能使学生放飞思绪,调动思维的积极性。如在力法求解超静定结构中,基本未知量的确定是通过去除多余约束来确定的,因为多余约束不是唯一确定的,显然,基本结构的选取也不唯一,如何优选基本结构呢?好与不好的区别就在于是否方便计算。由于个人习惯不同,不同的同学可能会选择不同的基本结构,授课教师通过对不同形式基本结构的求解过程进行对比,可以初步帮助同学们树立优化设计的思想,即使条条大路通罗马,便捷的道路总是让人青睐的。 2.4课程内容根据不同专业方向来设置现阶段 土木工程专业主要包含三大方向,岩土工程、交通土建以及建筑工程,对于传统的结构力学教材而言,基本上过半的工程实例都是建筑工程方向的,为了使交通土木工程方向的学生能够结合实际情况学习本课程,除了现有教材的工程实例外,还需要根据专业重点适当调节每章的比例,工程实例和学时。如,交通土木工程中“道路”和“桥梁”的应力分析是一个移动荷载,对结构有很大影响。所以,应该增加交通土木工程方向结构力学课程中“影响线”一章的比例,并增加相应的工程实例。此外,在解释相应内容时,应根据不同方向调整实例。 2.5注重问题的效果导向

流体力学结课论文

谈流体力学的研究内容及发展简史 流体力学是力学的一个独立分支,是一门研究流体的平衡和流体机 械运动规律及其实际应用的技术科学,在许多工业部门中都有着广泛应 用,航空工业中飞机的制造离不开空气动力学;造船工业部门要用到水 动力学,与土建类各专业有着更加密切的关系,了解流体动力学的研究 内容及发展简史对学习流体力学知识具有的一定的引导作用,为以后的 学习铺设台阶,引起学习的兴趣。 流体力学的研究内容 流体是气体和液体的总称。在人们的生活和生产活动中随时随地都 可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。 大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70% 是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等) 乃至地球深处熔浆的流动都是流体力学的研究内容。 流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的 应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动 学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力 学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛 顿流体力学等。 在流体力学中为简化计算,对流体模型做出了假设:质量守恒;动量 守恒;能量守恒。 在流体力学中常会假设流体是不可压缩流体,也就是流体的密 度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会 假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为 非粘性流体。若流体黏度不为零,而且流体被容器包围(如管子), 则在边界处流体的速度为零。 流体的主要物理性质: 1、流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。液体 有一定的体积,存在一个自由液面;气体能充满任意形状的容器,无一 定的体积,不存在自由液面。 2、流体的连续介质模型 微观:流体是由大量做无规则运动的分子组成的,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右的分子,相邻分子间的距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右的分子,相邻分子间的距离约为3.2×10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用的一切特征尺度和特征时间都

计算流体力学结课报告

计算流体力学结课报告200Km/h列车fluent仿真计算 学部:化、环、生学部 学院:化工机械与安全学院 学号:31507095 班级:化1512班 学生姓名:孙金

引言 数值仿真就是对所建立的数值模型进行数值实验和求解的过程。而计算流体力学CFD (Computational Fluid Dynamics)就是在工程仿真实验领域中应用最广泛的一门学科。任何流体运动的规律都是以质量守恒定律、动量守恒定律和能量守恒定律为基础的。这些基本定律可由数学方程组来描述,如欧拉方程、N-S方程。采用数值计算方法,通过计算机求解这些控制流体流动的数学方程,进而研究流体的运动规律这就是CFD研究问题的方法。在实际计算流体力学方面,采用通用的CFD软件来完成工程上的一些流体力学问题,有极为广泛的应用前景。近年来,随着计算机技术以及相关技术的发展,CFD技术已经在工程领域内取得重大的进步,特别是在高速列车的外型设计方面起了很大作用。随着国家经济的发展,国家运输业也有了很大的发展,特别是列车经过几次提速后,高速列车在国家运输行业中所占比例不断提高。高速列车的特点是庞大、细长、在地面轨道上运行,其空气动力学问题非常复杂。空气在列车表面形成空气流场,空气阻力急剧增加,作用在列车的阻力大部分来自压强阻力,而一部分来自表面磨擦阻力,这就使能耗过大,同时列车可能出现较大的空气升力,导致列车产生“飘”的现象,激发列车脱轨事故的发生,因此研究高速列车气动力性能非常重要。用CFD仿真可以详细了解高速列车的空气动力特性,从而设计出阻力小、噪音低等各方面性能完善的高质量列车。本文采用CFD学科中的常用商业软件Fluent仿真一个时速200km/h的二维流线型车头的外流场,对其空气动力性能进行分析,从而得到不同车辆形状其周围流场的不同,进而分析哪种车型更适合。

计算流体力学过渡到编程的傻瓜入门教程

借宝地写几个小短文,介绍CFD的一些实际的入门知识。主要是因为这里支持Latex,写起来比较便。 CFD,计算流体力学,是一个挺难的学科,涉及流体力学、数值分析和计算机算法,还有计算机图形学的一些知识。尤其是有关偏微分程数值分析的东西,不是那么容易入门。大多数图书,片中数学原理而不重实际动手,因为作者都把读者当做已经掌握基础知识的科班学生了。所以数学基础不那么好的读者往往看得很吃力,看了还不知道怎么实现。本人当年虽说是学航天工程的,但是那时本科教育已经退步,基础的流体力学课被砍得只剩下一维气体动力学了,因此自学CFD的时候也是头晕眼花。不知道怎么实现,也很难找到教学代码——那时候网络还不发达,只在教研室的故纸堆里搜罗到一些完全没有注释,编程风格也不好的冗长代码,硬着头皮分析。后来网上淘到一些代码研读,结合书籍论文才慢慢入门。可以说中间没有老师教,后来赌博士为了混学分上过CFD专门课程,不过那时候我已经都掌握课堂上那些了。 回想自己入门艰辛,不免有一个想法——写点通俗易懂的CFD入门短文给师弟师妹们。本人不打算搞得很系统,而是希望能结合实际,阐明一些最基本的概念和手段,其中一些复杂的道理只是点到为止。目前也没有具体的计划,想到哪里写到哪里,因此可能会很零散。但是我争取让初学CFD 的人能够了解一些基本的东西,看过之后,会知道一个CFD代码怎么炼成的(这“炼”字好像很流行啊)。欢迎大家提出意见,这样我尽可能的可以追加一些修改和解释。

言归正传,第一部分,我打算介绍一个最基本的算例,一维激波管问题。说白了就是一根两端封闭的管子,中间有个隔板,隔板左边和右边的气体状态(密度、速度、压力)不一样,突然把隔板抽去,管子面的气体怎么运动。这是个一维问题,被称作黎曼间断问题,好像是黎曼最初研究双曲微分程的时候提出的一个问题,用一维无粘可压缩Euler程就可以描述了。 这里 这个程就是描述的气体密度、动量和能量随时间的变化()与它们各自的流量(密度流量,动量流量,能量流量)随空间变化()的关系。 在CFD常把这个程写成矢量形式 这里 进一步可以写成散度形式

计算流体力学螺旋管分析报告

重庆大学《计算流体力学与计算传热学基础》上机实验水平螺旋管内的对流换热过程 学生:刘伟文 学号:20123000 指导教师:李隆键 专业:热能与动力工程 重庆大学动力工程学院 二O一五年六月

一、前言 螺旋管在热力、化工、石油及核工业等领域得到了广泛应用,螺旋管换热器也具有结构简单、传热系数高等优点。它的传热系数比直管高,在相同空间里可得到更大的传热面积,布置更长的管道,减少了焊缝,提高了安全性。尽管螺旋管的流体阻力增大,压降增大,但是其传热效率的提高导致能量的节约要高于因阻力增大而消耗的能量。因此,螺旋管在许多行业得到普遍应用而倍受青睐。在工程应用中,由于工艺要求,往往需将流体加热至规定的温度范围,传热是其中的基本单元操作,所以有必要对螺旋管的传热与流动特性进行研究。从理论知识我们知道由于向心力的作用,流体从管中心部分由螺旋管内侧流向外侧壁面,因而造成了螺旋管内侧的低压区。在压差作用下,流体从外侧沿着圆管的上部和下部壁面流回内侧。这种流动是与管的轴向垂直的,也就是与流体的主体流动相垂直,称为二次流。流体的这种二次流与轴向主流复合成螺旋式的前进运动。这样,对于流体的传热传质,不仅可依靠流体的径向扩散,还有径向二次流的作用,相当于边界层进行了破坏,增强了流体传质。 二、GAMBIT建模

1、先建立一个半径为6的圆面。 2、将该圆面向X轴正方向移动120。 3、用圆面sweep形成螺旋柱体。(绕Y轴正方向)

4、重复以上操作,得到如图所示几何体弯管。 5、设置边界层。

并应用至每个截面:

6、设置圆面的网格,选择pave方式,interval size 选择0.6,这样边界层网格与圆面中心网格过渡较平缓。 7、依次建立体网格。 8、检查网格质量。 最差网格为0.41,满足要求。 8、输出网格。

计算流体力学课程大作业

《计算流体力学》课程大作业 ——基于涡量-流函数法的不可压缩方腔驱动流问题数值模拟 张伊哲 航博101 1、 引言和综述 2、 问题的提出,怎样使用涡量-流函数方法建立差分格式 3、 程序说明 4、 计算结果和讨论 5、 结论 1引言 虽然不可压缩流动的控制方程从形式上看更为简单,但实际上,目前不可压缩流动的数值方法远远不如可压缩流动的数值方法成熟。 考虑不可压缩流动的N-S 方程: 01()P t νρ??=? ? ??+??=-?+???? U U UU f U (1.1) 其中ν是运动粘性系数,认为是常数。将方程组写成无量纲的形式: 01()Re P t ??=?? ??+??=-?+????U U UU f U (1.2) 其中Re 是雷诺数。 从数学角度看,不可压缩流动的控制方程中不含有密度对时间的偏导数项,方程表现出椭圆-抛物组合型的特点;从物理意义上看,在不可压缩流动中,压力这一物理量的波动具有无穷大的传播速度,它瞬间传遍全场,以使不可压缩条件在任何时间、任何位置满足,这就是椭圆型方程的物理意义。这就造成不可压缩的N-S 方程不能使用比较成熟的发展型...偏微分方程的数值求解理论和方法。 如果将动量方程和连续性方程完全耦合求解,即使使用显示的离散格式,也将会得到一个刚性很强的、庞大的稀疏线性方程组,计算量巨大,更重要的问题是不易收敛。因此,实际应用中,通常都必须将连续方程和动量方程在一定程度上解耦。 目前,求解不可压缩流动的方法主要有涡量-流函数法,SIMPLE 法及其衍生的改进方法,有限元法,谱方法等,这些方法各有优缺点。其中涡量-流函数法是解决二维不可压缩流动的有效方法。作者本学期学习了研究生计算流体课程,为了熟悉计算流体的基本方法,选择使用涡量-流函数法计算不可压缩方腔驱动流问题,并且对于不同雷诺数下的解进行比较和分析,得出一些结论。 本文接下来的内容安排为:第2节提出不可压缩方腔驱动流问题,并分析该问题怎样使用涡量-流函数方法建立差分格式、选择边界条件。第3节介绍程序的结构。第4节对于不同雷诺数下的计算结果进行分析,并且与U.GHIA 等人【1】的经典结论进行对比,评述本

定性结构力学课程总结

定性结构力学课程总结 结13,吴文献,2001010169 这学期选修了袁老师的定性结构力学这门课,觉得很有收获。 首先,对定性结构力学有了一定的了解,建立的定性分析的概念。我认为所谓的定性结构力学,就是结构力学中的计算部分相对而言的,是从分析的角度出发,根据已有的知识和结论,把握一个问题的关键所在,有时可以做到不用任何计算就可以给出问题正确而简便的解答。无论是从结构力学的产生和发展过程还是从解决问题的角度来看,定性分析都是不可或缺的一个环节,甚至可以说它比具体的计算重要的多。每当遇见一个问题,我们不应该急着去用一些公式去计算、求解,而是应该先对其进行定性分析,充分的把握问题的本质,可以达到事半功倍的效果。 其次,对结构力学的一些内容和重要原理有了更加深入的认识。结构力学中的很多东西原来认识的不够到位或者太肤浅,听了袁教授的课后,这些方面得到了加强。如平衡的概念,在学习结构力学的过程中,理解的深度不够,仅限于列出X、Y方向上力的和弯矩的方程,根据方程判断是否平衡。上了袁老师的课,经袁老师的一再强调,知道了还可以有动平衡的概念,给结构一定的虚位移,若各个力(弯矩)在虚位移上做的功相等即可得出原结构是平衡的。如在课上曾举过的下面的例子就是很好的用虚位移判别平衡的例子。其他还有很多概念,如约束、对称、极限等都是一再强调其重要性。 再次,对结构力学求解器的原理和功能有了更多的了解。“把繁琐交给求解器,我们留下创造力”这是编制结构力学求解器的目的,而结构力学求解器也确确实实的达到了原来的目的。袁老师用了相当多的时间介绍求解器的求解功能,并初步介绍了程序结构力学的基本原理和实现办法。这学期在课后作业中也多次的应用求解器求解一些问题,包括框架结构的位移内力分析和结构的动力特性分析,而在课程设计等其他相关课程中,也一再应用求解器帮助我们解决计算问题。总的感觉求解器的功能是相当强大的,一定有广阔的前景,同时也使自己对程序结构力学有了一定的兴趣。 最后,对定性分析有一些感想。从一定角度上看,定性分析可以提升到别的高度。无论是生活,还是学习、工作,有很多可以运用“定性分析”原理的地方。无论进行什么样的工作,都应该在冷静、全面、正确的“定性分析”,充分的了解事情的本质后才采取行动,进行“求解”,可以避免不必要的错误,提高效率。

流体力学报告

流体力学报告 每一门力学学科的建立,都需要建立模型,也就是把实际的问题抽象化,而抽象过程就是把现实中对所研究问题不重要的因素忽略掉,也就是模型假设,从而建立于这个问题相适应的模型进行研究,如果有意义有价值,也就慢慢深入研究,从而形成一门学科,它们都是随社会的发展而发展形成的.比如现如今最前沿的力学学科"纳米力学"就是如此。我们土木工程常说的三大力学有:1.理论力学---分析力学,振动力学,水力学或称为流体力学(这些研究对材料都不太侧重 )2.材料力学---弹性力学,塑性力学(都是又材料特性而分的) 3.结构力学:就是分析复杂的结构的情形。在此我重点叙述我对流体力学这门课学科的学习和认知。 一·流体的基本信息解释: 流体,是与固体相对应的一种物体形态,是液体和气体的总称. 由大量的、不断地作热运动而且无固定平衡位置的分子构成的,它的基本特征是没有一定的形状并且具有流动性。流体都有一定的可压缩性,液体可压缩性很小,而气体的可压缩性较大,在流体的形状改变时,流体各层之间也存在一定的运动阻力(即粘滞性)。当流体的粘滞性和可压缩性很小时,可近似看作是理想流体,它是人们为研究流体的运动和状态而引入的一个理想模型。是液压传动和气压传动的介质。大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体的研究内容。

二·流体力学的阐述: 流体力学是连续介质力学的一门分支,是研究流体(包含气体,液体以及等离子态)现象以及相关力学行为的科学。可以按照研究对象的运动方式分为流体静力学和流体动力学,还可按流动物质的种类分为水力学,空气动力学等等。对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础,特别是从20世纪以来,流体力学已发展成为基础科学体系的一部分,同时又在工业、农业、交通运输、天文学、地学、生物学、医学等方面得到广泛应用。流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同"力学模型"的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。 三·对流体的研究假设: 连续体假设 物质都由分子构成,尽管分子都是离散分布的,做无规则的热运动.但理论和实验都表明,在很小的范围内,做热运动的流体分子微团的统计平均值是稳定的.因此可以近似的认为流体是由连续物质构成,其中的温度,密度,压力等物理量都是连续分布的标量场。 质量守恒 质量守恒目的是建立描述流体运动的方程组。欧拉法描述为:流进

计算流体力学实验报告

计算流体力学实验报告——热传导方程求解 姓名:梁庆 学号:0808320126 指导老师:江坤 日期:2010/12/30

基于FTCS格式热传导方程求解程序设计 摘要 计算流体力学是通过数值方法求解流体力学控制方程,得到流场的定量描述,并以预测流体运动规律的学科。在CFD中,我们将流体控制方程中积分微分项,近似的表示为离散的代数形式,使得积分或微分形式的控制方程转化为离散的代数方程组;然后通过计算机求解这些代数方程,从而得到流场在空间和时间点上的数值解。 基于以上思路,我们利用FTCS格式差分,工程上常用的热传导方程,并编制计算机求解程序,解出其数值解。并通过Matlab绘制,求解结果,分别以二维,三维的形式,给出求解结果,本实验通过求解的数值解,制作了1秒内长度为1的距离内,热传导情况动画,以备分析所用。 关键词FTCS 有限差分热传导方程

一、 问题重述 编制一个可以有限差分程序,实现求解热传导方程。 非定常热传导方程: 22(0) u u t t γγ??=>?? 初边值问题的有限差分求解。初始条件和边界条件为: (,0)() (0,)()0(1,)()0 u x f x u t a t u t b t =?? ==??==? 其中1γ=,初值条件为:000.3()1 0.30.71010 0.7 1.0 3 3x f x x x ? <

相关文档
最新文档