计算流体力学过渡到编程的傻瓜入门教程

合集下载

CFD理论过渡到编程的最简单教程

CFD理论过渡到编程的最简单教程

CFD理论过渡到编程的最简单教程
CFD是一种计算流体动力学的技术,主要利用计算机模拟流体运动过程。

它用数值方法来模拟流体的运动,从而求解流体流动、传热、反应等物理学问题,可以用来研究流体流动的物理特性,如热传导、扩散和其它物理现象。

CFD模拟可以帮助科学家和工程师更深入地了解流体运动,从而提高机械设计的性能。

二、CFD理论和编程
在研究CFD之前,我们必须从数据收集、处理、模拟到结果可视化等步骤,全面理解CFD的原理。

在理论研究的基础上,需要进行编程,以实现CFD的功能。

实现一个CFD程序,必须将CFD的理论和基础知识转化为可执行的程序码,最终实现CFD的功能,模拟真实世界的流体运动特征。

CFD的实现过程主要包括以下几个步骤:
1.首先,确定要模拟的物体形状和结构,并根据物体的尺寸、形状和材料等建立三维的模型;
2.根据运动粒子原理,将模型划分为许多空间网格,计算每个网格内的流体流量;
3.为了保证模拟结果的精确度,调整网格细化程度、增加网格点的数量;
4.运用CFD理论,根据粒子运动原理进行计算,确定网格内粒子的速度、密度、能量等参数;。

《流体力学入门》课件

《流体力学入门》课件

03
气体压力计利用弹性元 件的变形来测量压力, 适用于测量较低的压力 。
04
流体静压力的计算需要 考虑流体的密度、重力 加速度和作用面积等因 素。
03
流体动力学基础
流体动力学基本概念
01
流体
流体是气体和液体的总称,具有流 动性和不可压缩性。
流线
流线是表示流体运动方向的几何线 条。
03
02
流场
流场是流体运动所占据的空间区域 。
伯努利方程
伯努利方程描述了流体在 封闭管道中流动时,流体 的压力、速度和高度之间 的关系。
连续性方程
连续性方程描述了流体在 流动过程中质量守恒的规 律。
流体流动的阻力与损失
摩擦阻力
摩擦阻力是由于流体与管 壁之间的摩擦而产生的阻 力,通常用达西-韦伯定律 来描述。
局部损失
局部损失是由于流体在管 道中流动时,由于管道形 状、方向变化等原因而产 生的能量损失。
《流体力学入门》 ppt课件
xx年xx月xx日
• 流体力学简介 • 流体静力学基础 • 流体动力学基础 • 流体流动现象与规律 • 流体力学在工程中的应用
目录
01
流体力学简介
流体的定义与特性
总结词
流体的定义与特性是流体力学研究的基础。
详细描述
流体是指在任何微小剪切力作用下都能发生连续变形的物体,具有粘性、压缩性和流动性等特性。
流体动力学还用于解决一些工程问题,例如管 道流动的阻力和传热问题,以及流体动力学的 振动和稳定性问题等。
流体动力学在航空航天、交通运输、能源等领 域也有着重要的应用,例如飞机和汽车的设计 、发动机的工作原理等。
流体流动现象与规律在工程中的应用

(完整版)CFD理论过渡到编程的傻瓜入门教程

(完整版)CFD理论过渡到编程的傻瓜入门教程

CFD理论过渡到编程的傻瓜入门教程(注:这是一篇不知道谁写的介绍一维无粘可压缩Euler方程,以及如何编程实现求解该方程的论文。

作者从最基本的概念出发,深入浅出的讲解了控制方程,有限体积格式,MSUCL方法,限制器,Roe格式等相关知识。

这篇论文我觉得有利于大家学习CFD编程的相关知识,所以推荐给大家。

文章的后面附有我写的程序(C语言),用于求解一维激波管问题,大家有兴趣可以看看(程序中加了注释说明)胡偶2011)借宝地写几个小短文,介绍CFD的一些实际的入门知识。

主要是因为这里支持Latex,写起来比较方便。

CFD,计算流体力学,是一个挺难的学科,涉及流体力学、数值分析和计算机算法,还有计算机图形学的一些知识。

尤其是有关偏微分方程数值分析的东西,不是那么容易入门。

大多数图书,片中数学原理而不重实际动手,因为作者都把读者当做已经掌握基础知识的科班学生了。

所以数学基础不那么好的读者往往看得很吃力,看了还不知道怎么实现。

本人当年虽说是学航天工程的,但是那时本科教育已经退步,基础的流体力学课被砍得只剩下一维气体动力学了,因此自学CFD的时候也是头晕眼花。

不知道怎么实现,也很难找到教学代码——那时候网络还不发达,只在教研室的故纸堆里搜罗到一些完全没有注释,编程风格也不好的冗长代码,硬着头皮分析。

后来网上淘到一些代码研读,结合书籍论文才慢慢入门。

可以说中间没有老师教,后来赌博士为了混学分上过CFD专门课程,不过那时候我已经都掌握课堂上那些了。

回想自己入门艰辛,不免有一个想法——写点通俗易懂的CFD入门短文给师弟师妹们。

本人不打算搞得很系统,而是希望能结合实际,阐明一些最基本的概念和手段,其中一些复杂的道理只是点到为止。

目前也没有具体的计划,想到哪里写到哪里,因此可能会很零散。

但是我争取让初学CFD 的人能够了解一些基本的东西,看过之后,会知道一个CFD代码怎么炼成的(这“炼”字好像很流行啊)。

欢迎大家提出意见,这样我尽可能的可以追加一些修改和解释。

计算流体力学编程教程第10节

计算流体力学编程教程第10节

计算流体力学编程教程第10节计算流体力学是一门关键的学科,它涉及的领域非常广泛,包括
空气动力学、水动力学等等。

在今天的工业和科技领域中,CFD模拟和计算已成为必要的工具。

因此,每一个计算机工程师或科学家都应该
掌握CFD编程。

首先,学习CFD编程需要了解流体力学的基础知识,如Navier-Stokes方程、数学方法等。

通过建立数学模型和边界条件,我们才能
开始编写CFD程序。

在这个过程中,需要采用合理的计算方法和算法,比如有限体积法(FVM)和有限元法(FEM)。

这些方法不仅可以提高
程序的精度和鲁棒性,还可以提高程序的运行效率,以便在合理的时
间内获得结果。

其次,正确使用CFD软件和相关工具非常重要。

需要掌握一些流
行的CFD软件,如OpenFOAM、Ansys Fluent等,这些软件提供了完整
的CFD模拟和计算环境,包括网格划分、边界条件设置、求解器选择等。

此外,还需要了解一些标准的网格文件格式,如STL、VRML等,
方便实现三维模型的导入和导出。

最后,与实践结合非常重要。

我们可以通过模拟实现真实环境的
数值计算,比如压力、流速等等,从而分析流体的行为和反应特性。

通过分析计算结果,我们可以改进和优化设计,提高产品性能。

总而言之,掌握CFD编程需要明确流体力学基础知识、选择合适的计算方法、正确使用软件和工具,并与实践相结合。

通过不断地学习和实践,我们可以成为真正的CFD编程专家。

ICEM_CFD基础入门教程操作界面中文

ICEM_CFD基础入门教程操作界面中文

ICEM_CFD基础入门教程操作界面中文ICEM_CFD是一款常用的计算流体力学(CFD)前处理软件,它可以用来进行几何建模、网格生成以及网格质量改进等操作。

本教程将介绍ICEM_CFD软件的基础入门操作界面,并详细说明其主要功能和使用方法。

1.工作窗口:-图层窗口:用于管理不同的几何元素和网格单元。

可以将几何模型和网格分别分配到不同的图层中,便于管理和操作。

2.工具栏:-文件操作:包括新建、打开、保存和导出等文件操作。

-网格操作:包括网格划分、网格改进、网格质量检查和网格参数设置等操作。

-显示选项:可以选择显示几何模型、网格和图层等,方便用户对模型进行观察和分析。

-操作模式:设置不同的操作模式,如选择模式、移动模式、旋转模式和缩放模式等,方便用户进行几何模型和网格的操作和调整。

3.属性窗口:-几何模型属性:可以设置几何模型的名称、颜色和透明度等属性。

-网格生成属性:可以设置网格单元类型、边界条件和网格参数等属性。

-网格质量属性:可以设置网格质量检查和改进的参数和标准。

-显示属性:可以设置几何模型和网格的显示方式、颜色和透明度等属性。

4.建模流程:在ICEM_CFD中,进行建模和网格生成的一般流程如下:-导入CAD几何模型:可以通过导入现有的CAD几何模型文件,如STEP、IGES或者CATIA等文件格式,或者直接在ICEM_CFD中手动创建几何模型。

-网格划分:在几何模型的基础上进行网格划分,可以使用不同的网格划分算法和参数设置,生成合适的网格。

-网格改进:对生成的网格进行质量检查和改进,可以使用网格质量检查工具来查看和修复网格质量问题,并采用网格平滑和网格形变等操作来改进网格质量。

-边界条件设置:在网格上设置边界条件,包括流动边界条件、壁面边界条件和入出口边界条件等。

- 导出网格:将生成的网格导出为适用于CFD计算的文件格式,如ANSYS Fluent、OpenFOAM等格式。

通过上述步骤,可以完成几何建模和网格生成的基本操作和流程。

计算流体力学入门

计算流体力学入门

计算流体力学入门第一章基本原理和方程1.计算流体力学的基本原理1.1为什么会有计算流体力学1.2计算流体力学是一种科研工具1.3计算流体力学是一种设计工具1.4计算流体力学的冲击-其它方面的应用1.4.1汽车和发动机方面的应用1.4.2工业制造领域的应用1.4.3土木工程中的应用1.4.4环境工程中的应用1.4.5海军体形中的应用(如潜艇)在第一部分,作为本书的出发点,首先介绍计算流体力学的一些基本原理和思想,同时也导出并讨论流体力学的基本控制方程组,这些方程组是计算流体力学的物理基础,在理解和应用计算流体力学的任何一方面之前,必须完全了解控制方程组的数学形式和各项的物理意义,所有这些就是第一部分的注意内容。

1.1 为什么有计算流体力学时间:21世纪早期。

地点:世界上任何地方的一个主要机场。

事件:一架光滑美丽的飞机沿着跑道飞奔,起飞,很快就从视野中消失。

几分钟之内,飞机加速到音速。

仍然在大气层内,飞机的超音速燃烧式喷气发动机将飞机推进到了26000ft/s-轨道速度-飞行器进入地球轨道的速度。

这是不是一个充满幻想的梦?这个梦还没有实现,这是一个星际运输工具的概念,从20世纪八十年代到九十年代,已经有几个国家已经开始这方面的研制工作。

特别的,图1.1显示的是一个艺术家为NASD设计的飞行器的图纸。

美国从八十年代中期开始就进行这项精深的研究。

对航空知识了解的人都知道,象这种飞行器,这样的推进力使飞机飞的更快更高的设想总有一天会实现。

但是,只有当CFD发展到了一定程度,能够高效准确可靠的计算通过飞行器和发动机周围的三维流场的时候,这个设想才能实现,不幸的是地球上的测量装置-风洞-还不存在这种超音速飞行的飞行体系。

我们的风洞还不能同时模拟星际飞行器在飞行中所遇到的高Ma和高的流场温度。

在21世纪,也不会出现这样的风洞,因此,CFD就是设计这种飞行器的主要手段。

为了设计这种飞行器和其它方面的原因,出现了CFD-本书的主要内容。

工程流体力学的计算方法CFD基础课件

工程流体力学的计算方法CFD基础课件
详细描述
云计算技术使得大规模CFD模拟成为 可能,同时提供了灵活的计算资源和 数据管理方式。未来,云计算技术将 进一步优化,以降低计算成本和提高 计算效率。
THANKS
CFX
工业标准的CFD软件
CFX是全球公认的工业标准的CFD软件之一,广泛应用于能源、化工、航空航天、汽车等领域。它具 有强大的求解器和先进的物理模型,能够模拟复杂的流体流动和传热问题,并提供丰富的后处理功能 。
OpenFOAM
开源CFD软件
OpenFOAM是一款开源的CFD软件,由C编写,具有高度的灵活性和可定制性。它提供了丰富的工具包和案例库,适用于各 种流体动力学模拟,包括复杂流动、传热、化学反应等问题。
粘性。
热传导
流体在温度梯度作用下会产生 热传导现象。
流体动力学基本方程
质量守恒方程
表示流体质量随时间的变化规律 。
动量守恒方程
表示流体动量随时间的变化规律。
能量守恒方程
表示流体能量随时间的变化规律。
流体流动的分类
层流流动
均匀流动和非均匀流动
流体质点仅沿流线方向作有规则的线 运动,互不混杂。
根据流动是否具有空间均匀性进行分 类。
06
CFD未来发展与挑战
高精度算法与求解器
总结词
随着计算能力的不断提升,高精度算法和求解器在 CFD领域的应用将更加广泛。
详细描述
高精度算法和求解器能够提供更精确的流场模拟结果 ,有助于更深入地理解流体动力学现象。未来,高精 度算法和求解器将进一步优化,以适应更复杂、更高 要求的CFD模拟。
多物理场耦合模拟
有限体积法的优点在于能够很好地处 理流体流动中的非线性特性和复杂边 界条件,因此在工程流体力学中得到 了广泛应用。

计算流体力学速成课

计算流体力学速成课

计算流体力学速成课
计算流体力学速成课程,是帮助学生快速掌握流体力学基本原理、基础概念及相关计算方法的学习课程。

课程主要内容包括:
一、流体力学标准
在本课程中,将介绍流体力学的基本概念,并阐述流体力学的基
本定义、基本方程及流体力学分析的研究方法。

包括集合无量纲和摩
擦的计算,揭示流体力学的物理形式、数学模型、复杂流动特征及其
应用。

二、计算流体力学基础
本课程将深入讲解流体力学中的三维速度场、密度场和压力场的
流体力学计算,以及流体力学计算中必不可少的方程,如热传导方程、平衡方程、拉格朗日方程等。

三、计算流体力学应用
本课程将着重介绍计算机辅助计算流体力学(CFD)技术,讲解该
技术的基本原理、技术特点以及应用领域,为学生提供完整的计算流
体力学实用技能。

四、实验技术
实验技术将让学生实践流体力学中的实验技术,学习如何使用流
体力学仪器进行实验测量、数据处理和模拟试验等。

总之,计算流体力学速成课程,旨在帮助学生快速系统掌握流体
力学的基本原理、基础概念及相关计算方法,以提高学生对流体力学
的理解和应用知识,为他们未来的专业学习和工作作好充分的准备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

借宝地写几个小短文,介绍CFD的一些实际的入门知识。

主要是因为这里支持Latex,写起来比较便。

CFD,计算流体力学,是一个挺难的学科,涉及流体力学、数值分析和计算机算法,还有计算机图形学的一些知识。

尤其是有关偏微分程数值分析的东西,不是那么容易入门。

大多数图书,片中数学原理而不重实际动手,因为作者都把读者当做已经掌握基础知识的科班学生了。

所以数学基础不那么好的读者往往看得很吃力,看了还不知道怎么实现。

本人当年虽说是学航天工程的,但是那时本科教育已经退步,基础的流体力学课被砍得只剩下一维气体动力学了,因此自学CFD的时候也是头晕眼花。

不知道怎么实现,也很难找到教学代码——那时候网络还不发达,只在教研室的故纸堆里搜罗到一些完全没有注释,编程风格也不好的冗长代码,硬着头皮分析。

后来网上淘到一些代码研读,结合书籍论文才慢慢入门。

可以说中间没有老师教,后来赌博士为了混学分上过CFD专门课程,不过那时候我已经都掌握课堂上那些了。

回想自己入门艰辛,不免有一个想法——写点通俗易懂的CFD入门短文给师弟师妹们。

本人不打算搞得很系统,而是希望能结合实际,阐明一些最基本的概念和手段,其中一些复杂的道理只是点到为止。

目前也没有具体的计划,想到哪里写到哪里,因此可能会很零散。

但是我争取让初学CFD 的人能够了解一些基本的东西,看过之后,会知道一个CFD代码怎么炼成的(这“炼”字好像很流行啊)。

欢迎大家提出意见,这样我尽可能的可以追加一些修改和解释。

言归正传,第一部分,我打算介绍一个最基本的算例,一维激波管问题。

说白了就是一根两端封闭的管子,中间有个隔板,隔板左边和右边的气体状态(密度、速度、压力)不一样,突然把隔板抽去,管子面的气体怎么运动。

这是个一维问题,被称作黎曼间断问题,好像是黎曼最初研究双曲微分程的时候提出的一个问题,用一维无粘可压缩Euler程就可以描述了。

这里这个程就是描述的气体密度、动量和能量随时间的变化()与它们各自的流量(密度流量,动量流量,能量流量)随空间变化()的关系。

在CFD常把这个程写成矢量形式这里进一步可以写成散度形式一定要熟悉这种矢量形式以上是控制程,下面说说求解思路。

可压缩流动计算中,有限体积(FVM)是最广泛使用的算法,其他算法多多少少都和FVM有些联系或者共通的思路。

了解的FVM,学习其他高级点的算法(比如目前比较热门的间断有限元、谱FVM、谱FDM)就好说点了。

针对一个微元控制体,把Euler程在空间积分用微积分知识可以得到也就是说控制体气体状态平均值的变化是控制体界面上流通量的结果。

因此我们要计算的演化,关键问题是计算控制体界面上的。

FVM就是以这个积分关系式出发,把整个流场划分为多小控制体,每个控制体和围相邻的某个控制体共享一个界面,通过计算每个界面上的通量来得到相邻控制体之间的影响,一旦每个控制体的变化得到,整个流场的变化也就知道了。

所以,再强调一次,关键问题是计算控制体界面上的。

初学者会说,这个不难,把界面上的插值得到,然后就可以计算。

有道理!咱们画个图,有三个小控制体i-1到i+1,中间的“|”表示界面,控制体i右边的界面用表示,左边的就是。

| i-1 | i | i+1 |好下个问题:每个小控制体长度都是如插值计算界面上的?最自然的想法就是:取两边的平均值呗,但是很不幸,这是不行的。

那么换个法?直接平均得到?还是很不行,这样也不行。

我靠,这是为什么?这明明是符合微积分里面的知识啊?这个道理有点复杂,说开了去可以讲一本书,可以说从50年代到70年代,CFD科学家就在琢磨这个问题。

这里,初学者只需要记住这个结论:对于流动问题,不可以这样简单取平均值来插值或者差分。

如果你非要想知道这个究竟,我现在也不想给你讲清楚,因为我眼下的目的是让你快速上手,而且该不刨根问底的时候就不要刨根问底,这也是初学阶段一种重要的学习法。

好了,既然目的只是为了求,我在这里,只告诉你一种计算法,也是非常重要、非常流行的一种法。

简单的说,就是假设流动状态在界面是不连续的,先计算出界面两边的值,和,再由它们用某种法计算出。

上述法是非常重要的,是由一个联人Godunov在50年代首创的,后来被发展成为通用Godunov法,著名的ENO/WENO就是其中的一种。

好了,现在的问题是:1 怎么确定和2 怎么计算对于第一个问题,Godunov在他的论文中,是假设每个控制体中是均匀分布的,因此第二个问题,Godunov采用了精确黎曼解来计算。

什么是“精确黎曼解”,就是计算这个激波管问题的精确解。

既然有精确解,那还费功夫搞这些FVM算法干什么?因为只有这种简单一维问题有精确解,稍微复杂一点就不行了。

精确解也比较麻烦,要分析5种情况,用牛顿法迭代求解(牛顿法是什么?看数值计算的书去,哦,算了,现在暂时可以不必看)。

这是最初Godunov的法,后来在这个思想的基础上,各种变体都出来了。

也不过是在这两个问题上做文章,怎么确定,怎么计算。

Godunov假设的是每个小控制体是均匀分布,也就是所谓分段常数(piecewise constant),所以后来有分段线性(picewise linear)或者分段二次分布(picewise parabolic),到后来ENO/WENO出来,那这个假设的多项式次数就继续往上走了。

都是用多项式近似的,这是数值计算中的一个强大工具,你可以在很多地看到这种近似。

Godunov用的四精确黎曼解,太复杂太慢,也不必要,所以后来就有各种近似黎曼解,最有名的是Roe求解器、HLL求解器和Osher求解器,都是对精确黎曼解做的简化。

这个多项式的阶数是和计算精度密切相关的,阶数越高,误差就越小。

不过一般来说,分段线性就能得到不错的结果了,所以工程中都是用这个,Fluent、Fastran以及NASA的CFL3D、OverFlow都是用这个。

而黎曼求解器对精度的影响不是那么大,但是对整个算法的物理适用性有影响,也就是说某种近似黎曼求解器可能对某些流动问题不合适,比如单纯的Roe对于钝头体的脱体激波会算得乱七八糟,后来加了熵修正才算搞定。

上次(/node/399)说到了求解可压缩流动的一个重要算法,通用Godunov法。

其两个主要步骤就是1 怎么确定和2 怎么计算这里我们给出第一点一个具体的实现法,就是基于原始变量的MUSCL格式(以下简称MUSCL)。

它是一种很简单的格式,而且具有足够的精度,NASA著名的CFL3D软件就是使用了这个格式,大家可以去它的主页(/Cfl3dv6/cfl3dv6.html)上看手册,里面空间离散那一章清楚的写着。

MUSCL假设控制体原始变量(就是)的分布是一次或者二次多项式,如果得到了这个多项式,就可以求出控制体左右两个界面的一侧的值和。

我们以压力p为例来说明怎么构造这个多项式。

这里我只针对二次多项式来讲解,你看完之后肯定能自己推导出一次多项式的结果(如果你搞不定,那我对你的智商表示怀疑)。

OK,开始假设,这个假设不影响最终结论,因为你总可以把一个区间线性的变换到长度为1的区间。

假设压力p在控制体i部的分布是一个二次多项式,控制体i的中心处于处,左右两个界面就是和。

这里先强调一个问题,在FVM中,每个控制体的求解出来的变量实际上是这个控制体的平均值。

所以,。

我们知道,和,等距网格情况下和处的导数可以近似表示为那么由上述三个有关a,b和c的程,我们可以得到这样就可以得到f(x)的表达式了,由此可以算出和通常MUSCL格式写成如下形式对应我们的推导结果(二次多项式假设)。

但是这不是最终形式。

如果直接用这个公式,就会导致流场在激波(间断)附近的振荡。

因为直接用二次多项式去逼近一个间断,会导致这样的效果。

所以科学家们提出要对间断附近的斜率有所限制,因此引入了一个非常重要的修改——斜率限制器。

加入斜率限制器后,上述公式就有点变化。

这里是Van Albada限制器是一个小数(),以防止分母为0。

密度和速度通过同样的法来搞定。

密度、速度和压力被称作原始变量,所以上述法是基于原始变量的MUSCL。

此外还有基于特征变量的MUSCL,要复杂一点,但是被认为适合更高精度的格式。

然而一般计算中,基于原始变量的MUSCL由于具有足够的精度、简单的形式和较低的代价而被广泛使用。

OK,搞定了。

下面进入第二点,怎么求。

关于这一点,我不打算做详细介绍了,直接使用现有的近似黎曼解就可以了,都是通过和计算得到。

比如Roe因为形式简单,而非常流行。

在CFL3D软件主页(/Cfl3dv6/cfl3dv6.html)上看手册,附录C的C.1.3。

想了一下,还是把Roe求解器稍微说说吧,力求比较完整。

但是不要指望我把Roe求解器解释清楚,因为这个不是很容易三言两语说清的。

Roe求解器的数学形式是这样的显然这个公式的第一项是一个中心差分形式,先前说过简单的中心差分不可行,原因是耗散不足导致振荡,说得通俗点就像一个弹簧,如果缺乏耗散(阻尼)它就会一直振荡。

“耗散”这个术语在激波捕捉格式中是最常见的。

第二项的作用就是提供足够的耗散了。

这里和已经用MUSCL求得了,的定义在第一讲中已经介绍了。

只有是还没说过的。

这个矩阵可以写成特征矩阵和特征向量矩阵的形式而,,和的具体表达式在多书上都有,而且这里的矩阵表达有问题,所以就不写了。

是由、和代入计算得到。

而、和采用所谓Roe平均值这才是Roe求解器关键的地!总结一下,就是用Roe平均计算界面上的气体状态,然后计算得到,这样就可以得到了。

如果有时间,我后面会找一个代码逐句分析一下。

总之,计算还是很不直接的。

构造近似黎曼解是挺有学问的,需要对气体动力学的物理和数学面有较深的理解。

通常,如果不是做基础研究,.你只需要知道它们的特点,会用它们就可以了,而不必深究它们怎么推导出来的。

Word文档。

相关文档
最新文档