八年级数学因式分解1(1)

合集下载

八年级因式分解常见方法和经典题型(适合基础和提高)

八年级因式分解常见方法和经典题型(适合基础和提高)

西安乐童教育中心八年级数学 因式分解常见方法讲解和经典题型常见方法一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b); (2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2; (3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2); (4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2). 下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式 例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

1 因式分解-初中八年级下册数学教学导学案(北师版)

1 因式分解-初中八年级下册数学教学导学案(北师版)

因式分解-初中八年级下册数学教学导学案(北师版)一、背景初中数学教学中,因式分解是一个比较重要的知识点。

因式分解是将代数式分解成乘积的形式,帮助学生了解多项式的构成,掌握多项式的基本性质和运算方法,为后续的学习打下基础。

二、教学目的•掌握因式分解的方法和步骤。

•理解多项式的基本构成和性质。

•能够运用因式分解法简化运算。

•培养学生的推理思维能力,提高学生的数学综合素质。

三、教学内容1. 因式分解的基本思路因式分解的基本思路是将多项式进行拆分,得到可以拆分的因式,再将这些因式相乘得到原多项式。

例如,(x^2 + 3x + 2)可以分解为(x + 1)(x + 2)。

2. 因式分解的方法(1)提公因式法提公因式法是将多项式中的公因式提出来,然后再根据乘法分配律整理得到因式分解式。

例如,把 6x + 9y 写成 3(2x + 3y) 的形式,其中3就是公因式。

(2)配方法配方法是将多项式拆成两个部分,其中一个部分是二次的完全平方式,另一个部分是该完全平方式的“平方项系数”和零次项的乘积。

例如,将x^2 + 6x + 5分解成(x + 1)(x + 5),其中(x + 1)是一个完全平方式,(x + 5)的平方项系数是1,零次项是5,它们的积是5。

(3)直接相除法直接相除法就是按照长除法的方法,求出多项式的一个因式和余数。

然后再对因式进行因式分解。

例如,对于x^2 - 1,可以先除以x - 1,得到x + 1,然后再将x + 1分解为(x + 1)(1)。

(4)公式法公式法是通过特定的公式来分解多项式。

例如,x^2 - a^2可以使用差平方公式(x-a)(x+a)进行分解。

3. 教学重点和难点(1)教学重点因式分解的基本思路、方法和步骤。

(2)教学难点运用因式分解法简化多项式的实际问题。

4. 教学方法综合使用讲授、演示、对话、自主学习等多种教学方法,重点强调提问、讲解和操练。

5. 教学时序(1)第一课时授课主题:因式分解的基本思路主要内容:•引入因式分解的概念和基本思路。

初二数学上册【因式分解】解题常用8种总结

初二数学上册【因式分解】解题常用8种总结

初二数学上册【因式分解】解题常用8种总结一.提取公因式法(一)公因式是单项式的因式分解1.分解因式确定公因式的方法①系数:取各项系数的最大公因数;②字母(或多项式):取各项都含有的字母(或多项式);③指数:取相同字母(或多项式)的最低次幂.注意:公因式可以是单独的一个数或字母,也可以是多项式,当第一项是负数时可先提负号,当公因式与多项式某一项相同时,提公因式后剩余项是1,不要漏项.解:原式=一4m²n(m²一4m+7).(二)公因式是多项式的因式分解2.因式分解15b(2a一b)²+25(b一2a)²解:原式=15b(2a一b)²+25(2a一b)²=5(2a一b)²(3b+5)二.公式法(一)直接用公式法3.分解因式(1).(x²+y²)²一4x²y²(2).(x²十6x)²+18(x²+6x)十81解:(1)原式=(x²+y²+2xy)(x²+y²一2xy)=(x十y)²(x一y)²(2)原式=(x²十6x+9)²=[(x+3)²]²=(二)先提再套法4.分解因式(三)先局部再整法5.分解因式9x²一16一(x十3)(3x+4)解:原式=(3x十4)(3x一4)一(x十3)(3x十4)=(3x+4)[(3x一4)一(x+3)]=(3x十4)(2x一7)(四)先展开再分解法6.分解因式4x(y一x)一y²解:原式=4xy一4x²一y²=一(4x²一4xy+y²)=一(2x一y)²三.分组分解法7.分解因式x²一2xy+y²一9解:原式=(x一y)²一9=(x一y十3)(x一y一3)四.拆、添项法8.分解因式五.整体法(一)"提"整体9.分解因式a(x+y一z)一b(z一x一y)一c(x一z+y)解:原式=a(x十y一z)十b(x十y一z)一c(x十y一z)=(x十y一z)(a+b一c)(二)"当"整体10.分解因式(x+y)²一4(x+y一1)解:原式=(x+y)²一4(x+y)+4=(x十y一2)²(三)"拆"整体11.分解因式ab(c²+d²)+cd(a²+b²)解:原式=abc²+abd²+cda²+cdb²=(abc²+cda²)+(abd²+cdb²)=ac(bc十ad)+bd(ad+bc)=(bc十ad)(ac+bd)(四)"凑"整体12.分解因式x²一y²一4x+6y一5解:原式=(x²一4x十4)一(y²一6y+9)=(x一2)²+(y一3)²=[(x一2)十(y一3)][(x 一2)一(y一3)]=(x+y一5)(x一y十1)六.换元法13.分解因式(a²十2a一2)(a²+2a+4)+9解:设a²+2a=m,则原式=(m一2)(m+4)十9=m²十4m一2m一8+9=m²+2m 十1=(m+1)²=(a²+2a十1)²=七.十字相乘法公式:x²十(a十b)x十ab=(x+a)(x十b)或对于一个三项式若能象上边一样中间左侧上下相乘得x²,中间右侧上下相乘得ab,中间上下斜对角相乘之和为(a+b)x,则能进行分解,如:14.x²一5x一14解:原式=(x一7)(x十2)十字相乘法分解因式非常重,在以后有关代数式的运算,解方程等知识中常常用到.八.待定系数法15.分解因式x²+3xy+2y²十4x+5y+3解:因为x²+3xy+2y²=(x+y)(x+2y)设原式=(x+y+m)(x+2y十n)=x²十3xy+2y²十(m+n)x+(2m+n)y+mn.∴m=1,n=3∴原式=(x+y+1)(x+2y+3)【总结】因式分解的知识在代数中有着重要的地位,同学们要多加强这方面的练习,为以后的学习奠定扎实的基础。

1 因式分解

1   因式分解

根据上面的算式进行因式分解: (1)3x2-3x=( (2)ma+mb-m=( (3)m2-16=( (4)y2-6y+9=( )( )( )( );
为止.
思考:因式分解与整式乘法有什么关系?举例说明.
课堂小结
1.把一个多项式化成几个整式的积的形式,这种变 形叫做因式分解,因式分解也可称为分解因式. 2.因式分解与整式乘法是互逆过程. 3.因式分解要注意以下几点: (1)分解的对象必须是多项式;
解析:主要 ( D )
A.a+b=b+a
B.4x2y-8xy2+1=4xy(x-2y)+1 C.a(a-b)=a2-ab
D.a2-2ab+2a=a(a-2b+2)
解析:主要考查因式分解的概念.故选D.
3.把一个多项式化成 几个整式的积 的形式,这种变形叫做 因式分解.
因式分解的概念
观察下面的拼图过程,写出相应的关系式.
解答:(1)ma+mb+mc=m(a+b+c). (2)x2+2x+1=(x+1)2.
像这样,把一个多项式化成 几个整式的积的形式,这种变 形叫做因式分解.因式分解也 可称为分解因式.
(教材做一做)计算下列各式: (1)3x(x-1)= (2)m(a+b-1)= (3)(m+4)(m-4)= (4)(y-3)2= . ; ; ; [知识拓展] 对于因式 分解应注意以下几点:(1) 分解的对象必须是多项 式;(2)分解的结果一定是 ); ); )( ). 几个整式的乘积的形 式;(3)要分解到不能分解
4.因式分解与整式乘法的关系是
互为逆过程
.
5.计算

北师版八年级数学下册教学课件(BS) 第四章 因式分解 第1课时 平方差公式

北师版八年级数学下册教学课件(BS) 第四章 因式分解 第1课时 平方差公式

,
y
3. 2
方法总结:在与x2-y2,x±y有关的求代数式或未知数的值的问 题中,通常需先因式分解,然后整体代入或联立方程组求值.
例4 计算下列各题: (1)1012-992; (2)53.52×4-46.52×4.
解:(1)原式=(101+99)(101-99)=400; (2)原式=4(53.52-46.52) =4(53.5+46.5)(53.5-46.5) =4×100×7=2800.
(2)原式=(a2-4b2)-(a+2b) =(a+2b)(a-2b)-(a+2b) =(a+2b)(a-2b-1).
例3 已知x2-y2=-2,x+y=1,求x-y,x,y的值.
解:∵x2-y2=(x+y)(x-y)=-2,
x+y=1①, ∴x-y=-2②.
联立①②组成二元一次方程组,
解得
x
1 2
(x a p)2 (x b q)2
(x p) (x q) (x p) (x q)
(2x p q)( p q).
方法总结:公式中的a、b无论表示数、单项式、还是多项式,只
要被分解的多项式能转化成平方差的形式,就能用平方差公式因 式分解.
针对训练 分解因式:
(1)(a+b)2-4a2; (2)9(m+n)2-(m-n)2.
8. (1)992-1能否被100整除吗?
(2)n为整数,(2n+1)2-25能否被4整除? 解:(1)∵ 992-1=(99+1)(99-1)=100×98,
∴992-1能否被100整除. (2)原式=(2n+1+5)(2n+1-5)
=(2n+6)(2n-4) =2(n+3) ×2(n-2)=4(n+3)(n-2). ∵n为整数 ∴(2n+1)2-25能被4整除.

(完整版)初二数学因式分解技巧

(完整版)初二数学因式分解技巧

(完整版)初⼆数学因式分解技巧因式分解技巧⽅法第⼀部分:⽅法介绍多项式的因式分解是代数式恒等变形的基本形式之⼀,它被⼴泛地应⽤于初等数学之中,是我们解决许多数学问题的有⼒⼯具.因式分解⽅法灵活,技巧性强,学习这些⽅法与技巧,不仅是掌握因式分解内容所必需的,⽽且对于培养学⽣的解题技能,发展学⽣的思维能⼒,都有着⼗分独特的作⽤.初中数学教材中主要介绍了提取公因式法、运⽤公式法、分组分解法和⼗字相乘法.本讲及下⼀讲在中学数学教材基础上,对因式分解的⽅法、技巧和应⽤作进⼀步的介绍.⼀、提公因式法.:ma+mb+mc=m(a+b+c)⼆、运⽤公式法.在整式的乘、除中,我们学过若⼲个乘法公式,现将其反向使⽤,即为因式分解中常⽤的公式,例如:(1)(a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2).下⾯再补充两个常⽤的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);例.已知a b c ,,是ABC ?的三边,且222a b c ab bc ca ++=++,则ABC ?的形状是()A.直⾓三⾓形 B 等腰三⾓形 C 等边三⾓形 D 等腰直⾓三⾓形解:222222222222a b c ab bc ca a b c ab bc ca ++=++?++=++222()()()0a b b c c a a b c ?-+-+-=?==三、分组分解法.(⼀)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运⽤公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为⼀组,后两项分为⼀组先分解,然后再考虑两组之间的联系。

八年级数学因式分解

八年级数学因式分解

数学因式分解是将一个数或多项式分解成乘积的过程。

这种技能在代数和数学中很重要,因为它可以简化复杂的表达式,使它们更容易处理和理解。

以下是一些常见的因式分解方法:
整数因式分解:将一个整数分解成它的质因数乘积的形式。

例如,72可以分解为2^3 \times 3^2。

多项式因式分解:将一个多项式分解成它的不可约因子的乘积。

例如,x^2 - 4可以分解为(x-2)(x+2)。

完全平方数差分公式:a^2-b^2=(a+b)(a-b)。

完全立方数差分公式:a^3-b^3=(a-b)(a^2+ab+b^2)。

公因式分解:找到多项式中的公共因子并将其提取。

例如,2x^3+4x^2可以分解为2x^2(x+2)。

分组分解:将多项式拆分为两个部分,并在每个部分中寻找公共因子,然后将这些因子提取出来。

例如,2x^3+3x^2+4x+6可以分解为(2x^3+3x^2)+(4x+6)=x^2(2x+3)+2(2x+3)=(x^2+2)(2x+3)。

以上是一些常见的因式分解方法,但还有许多其他技巧和公式可用于因式分解。

八年级数学上:12.5因式分解(第1课时)课件华师大版版

八年级数学上:12.5因式分解(第1课时)课件华师大版版

拓展 提升
1.已知:a+b=3,ab=2,求下列各 式的值: (1)a2b+ab2; (2)2(a+b)-3ab(a+b) 2. 先化简,再求值: 5x(a-2)+4x(2-a),其中x=0.4,a=102.
3.长和宽分别为a,b的长方形,它的周长为
14,面积为10,则a2b+ab2的值是多少?
1、什么叫因式分解?
[归纳总结] 运用提公因式法因式分解的基本步骤: (1)确定应提取的公因式; (2)用公因式去除这个多项式,所得的商作为另一个因式; (3)把多项式写成这两个因式的积的形式. 注意:(1)公因式既可以是单项式,也可以是多项式. (2)确定一个多项式的公因式时,不仅要考虑字母因式,还 要考虑系数.对于系数,取各项系数的最大公因数作为公因式 的系数,对于字母因式,取相同字母因式的最低次幂. (3)若首项系数是负数,一般要先提出负号. (4)提公因式时,如果某项就是公因式或与公因式互为相反 数,提取后不能漏掉± 1. (5)将多项式因式分解时,必须分解到不能再分解为止.
[归纳总结] 在计算求值时, 若式子各项还有公因数, 先 提取公因数再计算,可使运算简便.
阅读下列因式分解的过程,再回答所提出的问题: 1+x+x(x+1)+x(x+1)2 =(1+x)[1+x+x(x+1)] =(1+x)2(1+x) =(1+x)3 (1)上述分解因式的方法是___ ,共应用了____次. (2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2004,则需 应用上述方法2004次,结果是____ . (3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n (n为正整数).
把一个多项式化成几个整式的积的形式,象这样的 式子变形叫把这个多项式因式分解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档